1
|
Prado Wohlwend S, Bello Arques P. Radio theranostics in paragangliomas and pheochromocytomas. Rev Esp Med Nucl Imagen Mol 2024; 43:500017. [PMID: 38735639 DOI: 10.1016/j.remnie.2024.500017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
This continuing education aims to present in a clear and easy-to-understand manner the biology of paragangliomas and pheochromocytomas (PPGLs), the functional imaging studies available for their diagnosis and therapeutic planning, the requirements necessary to administer radioligand therapy (RLT) and the characteristics of these treatments (inclusion criteria, administration protocols, adverse effects and future perspectives). In this pathology we have two RLT options: [131I]MIBG and [177Lu]Lu-DOTA-TATE. The indication for treatment is determined by the expression of its therapeutic target in functional imaging studies, allowing precision and personalized medicine. Although most of the results we have for both treatments have as origin small retrospective series, RLT is presented as a safe and well-tolerated therapeutic option in PPGLs with slow-moderate progression or with uncontrollable symptoms, obtaining high disease control rates.
Collapse
Affiliation(s)
- Stefan Prado Wohlwend
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Clinical Center of Excellence Pheo Para Alliance.
| | - Pilar Bello Arques
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Clinical Center of Excellence Pheo Para Alliance
| |
Collapse
|
2
|
Muñoz JP, Larrosa C, Chamorro S, Perez-Jaume S, Simao M, Sanchez-Sierra N, Varo A, Gorostegui M, Castañeda A, Garraus M, Lopez-Miralles S, Mora J. Early Salvage Chemo-Immunotherapy with Irinotecan, Temozolomide and Naxitamab Plus GM-CSF (HITS) for Patients with Primary Refractory High-Risk Neuroblastoma Provide the Best Chance for Long-Term Outcomes. Cancers (Basel) 2023; 15:4837. [PMID: 37835531 PMCID: PMC10571514 DOI: 10.3390/cancers15194837] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Patients with high-risk neuroblastoma (HR-NB) who are unable to achieve a complete response (CR) to induction therapy have worse outcomes. We investigated the combination of humanized anti-GD2 mAb naxitamab (Hu3F8), irinotecan (I), temozolomide (T), and sargramostim (GM-CSF)-HITS-against primary resistant HR-NB. Eligibility criteria included having a measurable chemo-resistant disease at the end of induction (EOI) treatment. Patients were excluded if they had progressive disease (PD) during induction. Prior anti-GD2 mAb and/or I/T therapy was permitted. Each cycle, administered four weeks apart, comprised Irinotecan 50 mg/m2/day intravenously (IV) plus Temozolomide 150 mg/m2/day orally (days 1-5); naxitamab 2.25 mg/kg/day IV on days 2, 4, 8 and 10, (total 9 mg/kg or 270 mg/m2 per cycle), and GM-CSF 250 mg/m2/day subcutaneously was used (days 6-10). Toxicity was measured using CTCAE v4.0 and responses through the modified International Neuroblastoma Response Criteria (INRC). Thirty-four patients (median age at treatment initiation, 4.9 years) received 164 (median 4; 1-12) HITS cycles. Toxicities included myelosuppression and diarrhea, which was expected with I/T, and pain and hypertension, expected with naxitamab. Grade ≥3-related toxicities occurred in 29 (85%) of the 34 patients; treatment was outpatient. The best responses were CR = 29% (n = 10); PR = 3% (n = 1); SD = 53% (n = 18); PD = 5% (n = 5). For cohort 1 (early treatment), the best responses were CR = 47% (n = 8) and SD = 53% (n = 9). In cohort 2 (late treatment), the best responses were CR = 12% (n = 2); PR = 6% (n = 1); SD = 53% (n = 9); and PD = 29% (n = 5). Cohort 1 had a 3-year OS of 84.8% and EFS 54.4%, which are statistically significant improvements (EFS p = 0.0041 and OS p = 0.0037) compared to cohort 2. In conclusion, naxitamab-based chemo-immunotherapy is effective against primary chemo-resistant HR-NB, increasing long-term outcomes when administered early during the course of treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jaume Mora
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, 08950 Barcelona, Spain; (J.P.M.); (C.L.); (S.C.); (S.P.-J.); (M.S.); (N.S.-S.); (A.V.); (M.G.); (A.C.); (M.G.); (S.L.-M.)
| |
Collapse
|
3
|
Mastrangelo S, Romano A, Attinà G, Maurizi P, Ruggiero A. Timing and chemotherapy association for 131-I-MIBG treatment in high-risk neuroblastoma. Biochem Pharmacol 2023; 216:115802. [PMID: 37696454 DOI: 10.1016/j.bcp.2023.115802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Prognosis of high-risk neuroblastoma is dismal, despite intensive induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance. Patients who do not achieve a complete metastatic response, with clearance of bone marrow and skeletal NB infiltration, after induction have a significantly lowersurvival rate. Thus, it's necessary to further intensifytreatment during this phase. 131-I-metaiodobenzylguanidine (131-I-MIBG) is a radioactive compound highly effective against neuroblastoma, with32% response rate in relapsed/resistant cases, and only hematological toxicity. 131-I-MIBG wasutilized at different doses in single or multiple administrations, before autologous transplant or combinedwith high-dose chemotherapy. Subsequently, it was added to consolidationin patients with advanced NB after induction, but an independent contribution against neuroblastoma and for myelotoxicity is difficult to determine. Despiteresults of a 2008 paper demonstratedefficacy and mild hematological toxicity of 131-I-MIBG at diagnosis, no center had included it with intensive chemotherapy in first-line treatment protocols. In our institution, at diagnosis, 131-I-MIBG was included in a 5-chemotherapy drug combination and administered on day-10, at doses up to 18.3 mCi/kg. Almost 87% of objective responses were observed 50 days from start with acceptable hematological toxicity. In this paper, we review the literature data regarding 131-I-MIBG treatment for neuroblastoma, and report on doses and combinations used, tumor responses and toxicity. 131-I-MIBG is very effective against neuroblastoma, in particular if given to patients at diagnosis and in combination with chemotherapy, and it should be included in all induction regimens to improve early responses rates and consequently long-term survival.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy.
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
4
|
Nysom K, Morad AG, Rafael MS, Zier J, Marachelian A, Watt T, Morgenstern DA. Pain mitigation and management strategies for anti-GD2 infusions: An expert consensus. Pediatr Blood Cancer 2023; 70:e30217. [PMID: 36772891 DOI: 10.1002/pbc.30217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023]
Abstract
Monoclonal antibodies (mAbs) targeting disialoganglioside 2 (GD2) are an important treatment advance for high-risk neuroblastoma, including in patients with refractory or relapsed disease. Dinutuximab and dinutuximab beta are administered for ≥8 hours (and up to 10 days for dinutuximab beta), whereas naxitamab is administered over 0.5 to 2 hours as tolerated. As acute pain is a class effect of anti-GD2 mAbs, effective pain management is crucial to successful treatment. Here, we provide an overview of current pain-management strategies for anti-GD2 mAb infusions, with a focus on strategies suitable for naxitamab infusions, which cause a more rapid onset of often severe pain. We discuss opioid analgesics, ketamine, gabapentin, and other similar agents and nonpharmacologic approaches. Potential future pain-management options are also discussed, in addition to the use of sedatives to reduce the anxiety that may be associated with infusion-related pain. In this expert consensus paper, specific guidance for pain management during naxitamab infusions is provided, as these infusions are administered over 0.5 to 2 hours and may not need overnight hospitalization based on the physician's assessment, and require rapid-onset analgesia options suitable for potential outpatient administration.
Collapse
Affiliation(s)
| | | | - Margarida Simão Rafael
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - Judith Zier
- Children's Respiratory and Critical Care Specialists PA, Minneapolis, Minnesota, USA
| | | | - Tanya Watt
- UT Southwestern Medical Center, Dallas-Fort Worth, Texas, USA
| | | |
Collapse
|
5
|
Shah HJ, Ruppell E, Bokhari R, Aland P, Lele VR, Ge C, McIntosh LJ. Current and upcoming radionuclide therapies in the direction of precision oncology: A narrative review. Eur J Radiol Open 2023; 10:100477. [PMID: 36785643 PMCID: PMC9918751 DOI: 10.1016/j.ejro.2023.100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023] Open
Abstract
As new molecular tracers are identified to target specific receptors, tissue, and tumor types, opportunities arise for the development of both diagnostic tracers and their therapeutic counterparts, termed "theranostics." While diagnostic tracers utilize positron emitters or gamma-emitting radionuclides, their theranostic counterparts are typically bound to beta and alpha emitters, which can deliver specific and localized radiation to targets with minimal collateral damage to uninvolved surrounding structures. This is an exciting time in molecular imaging and therapy and a step towards personalized and precise medicine in which patients who were either without treatment options or not candidates for other therapies now have expanded options, with tangible data showing improved outcomes. This manuscript explores the current state of theranostics, providing background, treatment specifics, and toxicities, and discusses future potential trends.
Collapse
Affiliation(s)
- Hina J. Shah
- Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02115, USA,Corresponding author at: Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | - Evan Ruppell
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA 01655, USA
| | - Rozan Bokhari
- Department of Radiology, Beth Israel Lahey Health, Burlington, MA 01803, USA
| | - Parag Aland
- In-charge Nuclear Medicine and PET/CT, Infinity Medical Centre, Mumbai, Maharashtra 400015, India
| | - Vikram R. Lele
- Chief, Department of Nuclear Medicine and PET/CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Connie Ge
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lacey J. McIntosh
- Division of Oncologic and Molecular Imaging, University of Massachusetts Chan Medical School / Memorial Health Care, Worcester, MA 0165, USA
| |
Collapse
|
6
|
Mastrangelo S, Attinà G, Zagaria L, Romano A, Ruggiero A. Induction Regimen in High-Risk Neuroblastoma: A Pilot Study of Highly Effective Continuous Exposure of Tumor Cells to Radio-Chemotherapy Sequence for 1 Month. The Critical Role of Iodine-131-Metaiodobenzylguanidine. Cancers (Basel) 2022; 14:5170. [PMID: 36291955 PMCID: PMC9599979 DOI: 10.3390/cancers14205170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/29/2022] Open
Abstract
The prognosis of high-risk neuroblastoma (NB) continues to be poor. The early development of resistance often leads to disease recurrence. In the present study, an innovative induction regimen, including an intensive initial radio-chemotherapy sequence based on the use of iodine-131-metaiodobenzylguanidine (131-I-MIBG), was investigated. The duration of the regimen lasted only one month. Fifteen newly diagnosed patients aged >18 months with high-risk NB were treated with cisplatin, etoposide, cyclophosphamide, and vincristine, followed on day 10 by 131-I-MIBG (dose: 12−18.3 mCi/kg). Cisplatin and vincristine were administered on day 20 and 21 followed by the re-administration of vincristine, cyclophosphamide, and doxorubicin on day 29 and 30. Non-hematologic toxicity was not observed. Moderate hematologic toxicity was present probably attributable to chemotherapy. The evaluation of response was performed approximately 50 days after the initiation of treatment, yielding four complete responses, eight very good partial responses, one partial response, and two non-responses. Importantly, a complete metastatic response was achieved in 87% of patients. The present pilot study, which includes 131-I-MIBG, allows for a highly effective continuous exposure of tumor cells to both chemotherapy and radiotherapy. Furthermore, early high-dose chemotherapy followed by stem cell rescue may achieve high levels of tumor cell clearance and improve the prognosis of high-risk NB.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Giorgio Attinà
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Luca Zagaria
- UOC di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Alberto Romano
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Antonio Ruggiero
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| |
Collapse
|
7
|
Batra V, Samanta M, Makvandi M, Groff D, Martorano P, Elias J, Ranieri P, Tsang M, Hou C, Li Y, Pawel B, Martinez D, Vaidyanathan G, Carlin S, Pryma DA, Maris JM. Preclinical Development of [211At]meta- astatobenzylguanidine ([211At]MABG) as an Alpha Particle Radiopharmaceutical Therapy for Neuroblastoma. Clin Cancer Res 2022; 28:4146-4157. [PMID: 35861867 PMCID: PMC9475242 DOI: 10.1158/1078-0432.ccr-22-0400] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE [131I]meta-iodobenzylguanidine ([131I]MIBG) is a targeted radiotherapeutic administered systemically to deliver beta particle radiation in neuroblastoma. However, relapses in the bone marrow are common. [211At]meta-astatobenzylguanidine ([211At] MABG) is an alpha particle emitter with higher biological effectiveness and short path length which effectively sterilizes microscopic residual disease. Here we investigated the safety and antitumor activity [211At]MABG in preclinical models of neuroblastoma. EXPERIMENTAL DESIGN We defined the maximum tolerated dose (MTD), biodistribution, and toxicity of [211At]MABG in immunodeficient mice in comparison with [131I]MIBG. We compared the antitumor efficacy of [211At]MABG with [131I]MIBG in three murine xenograft models. Finally, we explored the efficacy of [211At]MABG after tail vein xenografting designed to model disseminated neuroblastoma. RESULTS The MTD of [211At]MABG was 66.7 MBq/kg (1.8 mCi/kg) in CB17SC scid-/- mice and 51.8 MBq/kg (1.4 mCi/kg) in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. Biodistribution of [211At]MABG was similar to [131I]MIBG. Long-term toxicity studies on mice administered with doses up to 41.5 MBq/kg (1.12 mCi/kg) showed the radiotherapeutic to be well tolerated. Both 66.7 MBq/kg (1.8 mCi/kg) single dose and fractionated dosing 16.6 MBq/kg/fraction (0.45 mCi/kg) × 4 over 11 days induced marked tumor regression in two of the three models studied. Survival was significantly prolonged for mice treated with 12.9 MBq/kg/fraction (0.35 mCi/kg) × 4 doses over 11 days [211At]MABG in the disseminated disease (IMR-05NET/GFP/LUC) model (P = 0.003) suggesting eradication of microscopic disease. CONCLUSIONS [211At]MABG has significant survival advantage in disseminated models of neuroblastoma. An alpha particle emitting radiopharmaceutical may be effective against microscopic disseminated disease, warranting clinical development.
Collapse
Affiliation(s)
- Vandana Batra
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Minu Samanta
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Groff
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Paul Martorano
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jimmy Elias
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Pietro Ranieri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew Tsang
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yimei Li
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Martinez
- Division of Anatomic Pathology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Sean Carlin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel A. Pryma
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Corresponding Author: John M. Maris, Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-590-5242; E-mail:
| |
Collapse
|
8
|
He H, Xu Q, Yu C. The efficacy and safety of Iodine-131-metaiodobenzylguanidine therapy in patients with neuroblastoma: a meta-analysis. BMC Cancer 2022; 22:216. [PMID: 35227236 PMCID: PMC8883646 DOI: 10.1186/s12885-022-09329-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Neuroblastoma is a common extracranial solid tumor of childhood. Recently, multiple treatments have been practiced including Iodine-131-metaiodobenzylguanidine radiation (131I-MIBG) therapy. However, the outcomes of efficacy and safety vary greatly among different studies. The aim of this meta-analysis is to evaluate the efficacy and safety of 131I-MIBG in the treatment of neuroblastoma and to provide evidence and hints for clinical decision-making. Methods Medline, EMBASE database and the Cochrane Library were searched for relevant studies. Eligible studies utilizing 131I-MIBG in the treatment of neuroblastoma were included. The pooled outcomes (response rates, adverse events rates, survival rates) were calculated using either a random-effects model or a fixed-effects model considering of the heterogeneity. Results A total of 26 clinical trials including 883 patients were analyzed. The pooled rates of objective response, stable disease, progressive disease, and minor response of 131I-MIBG monotherapy were 39%, 31%, 22% and 15%, respectively. The pooled objective response rate of 131I-MIBG in combination with other therapies was 28%. The pooled 1-year survival and 5-year survival rates were 64% and 32%. The pooled occurrence rates of thrombocytopenia and neutropenia in MIBG monotherapy studies were 53% and 58%. In the studies of 131I-MIBG combined with other therapies, the pooled occurrence rates of thrombocytopenia and neutropenia were 79% and 78%. Conclusion 131I-MIBG treatment alone or in combination of other therapies is effective on clinical outcomes in the treatment of neuroblastoma, individualized 131I-MIBG is recommended on a clinical basis.
Collapse
Affiliation(s)
- Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qiaoling Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
9
|
Lopez Quiñones AJ, Vieira LS, Wang J. Clinical Applications and the Roles of Transporters in Disposition, Tumor Targeting, and Tissue Toxicity of meta-Iodobenzylguanidine (mIBG). Drug Metab Dispos 2022; 50:DMD-MR-2021-000707. [PMID: 35197314 PMCID: PMC9488973 DOI: 10.1124/dmd.121.000707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transporters on the plasma membrane of tumor cells are promising molecular "Trojan horses" to deliver drugs and imaging agents into cancer cells. Radioiodine-labeled meta-iodobenzylguanidine (mIBG) is used as a diagnostic agent (123I-mIBG) and a targeted radiotherapy (131I-mIBG) for neuroendocrine cancers. mIBG enters cancer cells through the norepinephrine transporter (NET) where the radioactive decay of 131I causes DNA damage, cell death, and tumor necrosis. mIBG is predominantly eliminated unchanged by the kidney. Despite its selective uptake by neuroendocrine tumors, mIBG accumulates in several normal tissues and leads to tissue-specific radiation toxicities. Emerging evidences suggest that the polyspecific organic cation transporters play important roles in systemic disposition and tissue-specific uptake of mIBG. In particular, human organic cation transporter 2 (hOCT2) and toxin extrusion proteins 1 and 2-K (hMATE1/2-K) likely mediate renal secretion of mIBG whereas hOCT1 and hOCT3 may contribute to mIBG uptake into normal tissues such as the liver, salivary glands, and heart. This mini-review focuses on the clinical applications of mIBG in neuroendocrine cancers and the differential roles of NET, OCT and MATE transporters in mIBG disposition, response and toxicity. Understanding the molecular mechanisms governing mIBG transport in cancer and normal cells is a critical step for developing strategies to optimize the efficacy of 131I-mIBG while minimizing toxicity in normal tissues. Significance Statement Radiolabeled mIBG has been used as a diagnostic tool and as radiotherapy for neuroendocrine cancers and other diseases. NET, OCT and MATE transporters play differential roles in mIBG tumor targeting, systemic elimination, and accumulation in normal tissues. The clinical use of mIBG as a radiopharmaceutical in cancer diagnosis and treatment can be further improved by taking a holistic approach considering mIBG transporters in both cancer and normal tissues.
Collapse
Affiliation(s)
| | | | - Joanne Wang
- Dept. of Pharmaceutics, University of Washington, United States
| |
Collapse
|
10
|
Hara J, Nitani C, Shichino H, Kuroda T, Hishiki T, Soejima T, Mori T, Matsumoto K, Sasahara Y, Iehara T, Miyamura T, Kosaka Y, Takimoto T, Nakagawara A, Tajiri T. Outcome of children with relapsed high-risk neuroblastoma in Japan and analysis of the role of allogeneic hematopoietic stem cell transplantation. Jpn J Clin Oncol 2022; 52:486-492. [PMID: 35137156 DOI: 10.1093/jjco/hyac007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In Japan, allogeneic hematopoietic stem cell transplantation is widely performed for recurrent neuroblastomas. This retrospective study aimed to investigate the prognosis of recurrent neuroblastoma in Japan and explore the effectiveness of allogeneic hematopoietic stem cell transplantation. METHODS Clinical characteristics and data on the treatment of patients with high-risk neuroblastoma who experienced first progression between 2003 and 2010 after attaining complete remission or partial remission were collected from hospitals participating in the Japanese Neuroblastoma Research Group. RESULTS Data from 61 patients who fulfilled these criteria were collected. The median interval from disease onset to first progression was 19 months (range, 7-65 months), whereas the median observation time of the surviving patients was 18 months (range, 1-69 months). All patients were treated with chemotherapy, where 22 and 3 patients received allogeneic and autologous hematopoietic stem cell transplantation, respectively. Seven patients were alive in second complete remission, and 39 died, including two in complete remission. The 3-year progression-free survival and overall survival rates were 15.3% (SE: 6.1%) and 16.9% (SE: 6.5%), respectively. For patients with allogeneic hematopoietic stem cell transplantation, the 3-year progression-free survival and overall survival were 28.3% (standard error, 12.0%) and 24.3% (standard error, 11.5%), respectively, and for patients without allogeneic hematopoietic stem cell transplantation, the 3-year progression-free survival and overall survival were 6.0% (standard error 5.5%) and 12.0% (standard error 7.6%), respectively. The duration of initial remission (≥ 18 months) and implementation of allogeneic hematopoietic stem cell transplantation were independently predictive of progression-free survival (P = 0.002 and P = 0.017), whereas for overall survival, only allogeneic hematopoietic stem cell transplantation was predictive (P = 0.012). CONCLUSION Although allogeneic hematopoietic stem cell transplantation contributed to some improvement in prognosis, it was insufficient.
Collapse
Affiliation(s)
- Junichi Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Chika Nitani
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Hiroyuki Shichino
- Department of Pediatrics, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Tatsuo Kuroda
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoro Hishiki
- Department of Pediatric Surgery, Chiba University, Chiba, Japan
| | | | - Tetsuya Mori
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoji Sasahara
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe, Japan
| | - Tetsuya Takimoto
- Department of Childhood Cancer Data Management, National Center for Child Health and Development, Tokyo, Japan
| | | | - Tatsuro Tajiri
- Department of Pediatric Surgery, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.,Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
11
|
Altini C, Villani MF, Di Giannatale A, Cassano B, Pizzoferro M, Serra A, Castellano A, Cannatà V, Garganese MC. Tandem high-dose 131I-MIBG therapy supported by dosimetry in pediatric patients with relapsed-refractory high-risk neuroblastoma: the Bambino Gesu' Children's Hospital experience. Nucl Med Commun 2022; 43:129-144. [PMID: 34720106 DOI: 10.1097/mnm.0000000000001496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE 131I-meta-iodobenzylguanidine (131I-MIBG) combined with myeloablative chemotherapy represents an effective treatment in children affected by relapsed/refractory neuroblastoma (NBL) for disease palliation and in improving progression-free survival. The aim of our study is to evaluate the feasibility, safety and efficacy of tandem 131I-MIBG followed by high-dose chemotherapy with Melphalan. METHODS Thirteen patients (age range: 3-17 years) affected by relapsed/refractory NB, previously treated according to standard procedures, were included in the study. Each treatment cycle included two administrations of 131I-MIBG (with a dosimetric approach) followed by a single dose of Melphalan with peripheral blood stem cell rescue. RESULTS At the end of the treatment, ten patients experienced grade 4 neutropenia, two grade 3 and one patient grade 2, three patients presented febrile neutropenia and all needed RBC and platelets transfusions; one patient presented grade 4 mucositis, four grade 3 and one patient grade 2 mucositis. One patient showed progressive disease, eight patients showed stable disease and four patients showed partial response. CONCLUSION High-dose 131I-MIBG therapy combined with chemotherapy represent a well-tolerated and effective modality of treatment in heavily pretreated patients affected by relapsed/refractory NBL. However, further studies, including a wider cohort of patients, are needed.
Collapse
Affiliation(s)
- Claudio Altini
- Imaging Department, Nuclear Medicine Unit, IRCCS Bambino Gesù Children's Hospital
| | - Maria F Villani
- Imaging Department, Nuclear Medicine Unit, IRCCS Bambino Gesù Children's Hospital
| | - Angela Di Giannatale
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Milena Pizzoferro
- Imaging Department, Nuclear Medicine Unit, IRCCS Bambino Gesù Children's Hospital
| | - Annalisa Serra
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Maria C Garganese
- Imaging Department, Nuclear Medicine Unit, IRCCS Bambino Gesù Children's Hospital
| |
Collapse
|
12
|
Nyakale Elizabeth N, Kabunda J. Nuclear medicine therapy of malignant pheochromocytomas, neuroblastomas and ganglioneuromas. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Pediatric issues in nuclear medicine therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Kuroda R, Wakabayashi H, Araki R, Inaki A, Nishimura R, Ikawa Y, Yoshimura K, Murayama T, Imai Y, Funasaka T, Wada T, Kinuya S. Phase I/II clinical trial of high-dose [ 131I] meta-iodobenzylguanidine therapy for high-risk neuroblastoma preceding single myeloablative chemotherapy and haematopoietic stem cell transplantation. Eur J Nucl Med Mol Imaging 2021; 49:1574-1583. [PMID: 34837510 DOI: 10.1007/s00259-021-05630-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Paediatric high-risk neuroblastoma has poor prognosis despite modern multimodality therapy. This phase I/II study aimed to determine the safety, dose-limiting toxicity (DLT), and efficacy of high-dose 131I-meta-iodobenzylguanidine (131I-mIBG) therapy combined with single high-dose chemotherapy (HDC) and haematopoietic stem cell transplantation (HSCT) in high-risk neuroblastoma in Japan. METHODS Patients received 666 MBq/kg of 131I-mIBG and single HDC and HSCT from autologous or allogeneic stem cell sources. The primary endpoint was DLT defined as adverse events associated with 131I-mIBG treatment posing a significant obstacle to subsequent HDC. The secondary endpoints were adverse events/reactions, haematopoietic stem cell engraftment and responses according to the Response Evaluation Criteria in Solid Tumours version 1.1 (RECIST 1.1) and 123I-mIBG scintigraphy. Response was evaluated after engraftment. RESULTS We enrolled eight patients with high-risk neuroblastoma (six females; six newly diagnosed and two relapsed high-risk neuroblastoma; median age, 4 years; range, 1-10 years). Although all patients had adverse events/reactions after high-dose 131I-mIBG therapy, we found no DLT. Adverse events and reactions were observed in 100% and 25% patients during single HDC and 100% and 12.5% patients during HSCT, respectively. No Grade 4 complications except myelosuppression occurred during single HDC and HSCT. The response rate according to RECIST 1.1 was observed in 87.5% (7/8) in stable disease and 12.5% (1/8) were not evaluated. Scintigraphic response occurred in 62.5% (5/8) and 37.5% (3/8) patients in complete response and stable disease, respectively. CONCLUSION 131I-mIBG therapy with 666 MBq/kg followed by single HDC and autologous or allogeneic SCT is safe and efficacious in patients with high-risk neuroblastoma and has no DLT. TRIAL REGISTRATION NUMBER jRCTs041180030. NAME OF REGISTRY Feasibility of high-dose iodine-131-meta-iodobenzylguanidine therapy for high-risk neuroblastoma preceding myeloablative chemotherapy and haematopoietic stem cell transplantation (High-dose iodine-131-meta-iodobenzylguanidine therapy for high-risk neuroblastoma). URL OF REGISTRY: https://jrct.niph.go.jp/en-latest-detail/jRCTs041180030 . DATE OF ENROLMENT OF THE FIRST PARTICIPANT TO THE TRIAL 12/01/2018.
Collapse
Affiliation(s)
- Rie Kuroda
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Raita Araki
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Ryosei Nishimura
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yasuhiro Ikawa
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kenichi Yoshimura
- Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Toshinori Murayama
- Department of Clinical Development, Kanazawa University Hospital, 13-1 Takara-machi, Ishikawa, 920-8641, Japan
| | - Yasuhito Imai
- Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-machi, Ishikawa, 920-8641, Japan
| | - Tatsuyoshi Funasaka
- Innovative Clinical Research Center, Kanazawa University Hospital, 13-1 Takara-machi, Ishikawa, 920-8641, Japan
| | - Taizo Wada
- Department of Paediatrics, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
15
|
Weiss BD, Yanik G, Naranjo A, Zhang FF, Fitzgerald W, Shulkin BL, Parisi MT, Russell H, Grupp S, Pater L, Mattei P, Mosse Y, Lai HA, Jarzembowski JA, Shimada H, Villablanca JG, Giller R, Bagatell R, Park JR, Matthay KK. A safety and feasibility trial of 131 I-MIBG in newly diagnosed high-risk neuroblastoma: A Children's Oncology Group study. Pediatr Blood Cancer 2021; 68:e29117. [PMID: 34028986 PMCID: PMC9150928 DOI: 10.1002/pbc.29117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/02/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION 131 I-meta-iodobenzylguanidine (131 I-MIBG) is effective in relapsed neuroblastoma. The Children's Oncology Group (COG) conducted a pilot study (NCT01175356) to assess tolerability and feasibility of induction chemotherapy followed by 131 I- MIBG therapy and myeloablative busulfan/melphalan (Bu/Mel) in patients with newly diagnosed high-risk neuroblastoma. METHODS Patients with MIBG-avid high-risk neuroblastoma were eligible. After the first two patients to receive protocol therapy developed severe sinusoidal obstruction syndrome (SOS), the trial was re-designed to include an 131 I-MIBG dose escalation (12, 15, and 18 mCi/kg), with a required 10-week gap before Bu/Mel administration. Patients who completed induction chemotherapy were evaluable for assessment of 131 I-MIBG feasibility; those who completed 131 I-MIBG therapy were evaluable for assessment of 131 I-MIBG + Bu/Mel feasibility. RESULTS Fifty-nine of 68 patients (86.8%) who completed induction chemotherapy received 131 I-MIBG. Thirty-seven of 45 patients (82.2%) evaluable for 131 I-MIBG + Bu/Mel received this combination. Among those who received 131 I-MIBG after revision of the study design, one patient per dose level developed severe SOS. Rates of moderate to severe SOS at 12, 15, and 18 mCi/kg were 33.3%, 23.5%, and 25.0%, respectively. There was one toxic death. The 131 I-MIBG and 131 I-MIBG+Bu/Mel feasibility rates at the 15 mCi/kg dose level designated for further study were 96.7% (95% CI: 83.3%-99.4%) and 81.0% (95% CI: 60.0%-92.3%). CONCLUSION This pilot trial demonstrated feasibility and tolerability of administering 131 I-MIBG followed by myeloablative therapy with Bu/Mel to newly diagnosed children with high-risk neuroblastoma in a cooperative group setting, laying the groundwork for a cooperative randomized trial (NCT03126916) testing the addition of 131 I-MIBG during induction therapy.
Collapse
Affiliation(s)
- Brian D. Weiss
- Cincinnati Children’s Hospital, University of Cincinnati School of Medicine
| | - Gregory Yanik
- CS Mott Children’s Hospital, University of Michgian School of Medicine
| | - Arlene Naranjo
- Children’s Oncology Group Statistics & Data Center, University of Florida, Gainesville, FL
| | - Fan F Zhang
- Children’s Oncology Group Statistics & Data Center, Monrovia, CA
| | | | - Barry L. Shulkin
- St. Jude Children’s Research Hospital; University of Tennessee Health Science Center
| | | | - Heidi Russell
- Texas Children’s Cancer and Hematology Centers,,Center for Medical Ethics and Health Policy, Baylor College of Medicine
| | - Stephan Grupp
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Luke Pater
- Cincinnati Children’s Hospital, University of Cincinnati School of Medicine
| | - Peter Mattei
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Yael Mosse
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | | | | | | | - Judith G. Villablanca
- Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California
| | - Roger Giller
- Children’s Hospital Colorado, University of Colorado School of Medicine
| | - Rochelle Bagatell
- Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Julie R. Park
- Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, Washington
| | - Katherine K Matthay
- UCSF Benioff Children’s Hospital, University of California San Francisco School of Medicine, San Francisco, CA
| |
Collapse
|
16
|
Pezeshki PS, Moeinafshar A, Ghaemdoust F, Razi S, Keshavarz-Fathi M, Rezaei N. Advances in pharmacotherapy for neuroblastoma. Expert Opin Pharmacother 2021; 22:2383-2404. [PMID: 34254549 DOI: 10.1080/14656566.2021.1953470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Neuroblastoma is the most prevalent cancer type diagnosed within the first year after birth and accounts for 15% of deaths from pediatric cancer. Despite the improvements in survival rates of patients with neuroblastoma, the incidence of the disease has increased over the last decade. Neuroblastoma tumor cells harbor a vast range of variable and heterogeneous histochemical and genetic alterations which calls for the need to administer individualized and targeted therapies to induce tumor regression in each patient. AREAS COVERED This paper provides reviews the recent clinical trials which used chemotherapeutic and/or targeted agents as either monotherapies or in combination to improve the response rate in patients with neuroblastoma, and especially high-risk neuroblastoma. It also reviews some of the prominent preclinical studies which can provide the rationale for future clinical trials. EXPERT OPINION Although some distinguished advances in pharmacotherapy have been made to improve the survival rate and reduce adverse events in patients with neuroblastoma, a more comprehensive understanding of the mechanisms of tumorigenesis, resistance to therapies or relapse, identifying biomarkers of response to each specific drug, and developing predictive preclinical models of the tumor can lead to further breakthroughs in the treatment of neuroblastoma.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysan Moeinafshar
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghaemdoust
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
17
|
Vahidfar N, Eppard E, Farzanehfar S, Yordanova A, Fallahpoor M, Ahmadzadehfar H. An Impressive Approach in Nuclear Medicine: Theranostics. PET Clin 2021; 16:327-340. [PMID: 34053577 DOI: 10.1016/j.cpet.2021.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Radiometal-based theranostics or theragnostics, first used in the early 2000s, is the combined application of diagnostic and therapeutic agents that target the same molecule, and represents a considerable advancement in nuclear medicine. One of the promising fields related to theranostics is radioligand therapy. For instance, the concepts of targeting the prostate-specific membrane antigen (PSMA) for imaging and therapy in prostate cancer, or somatostatin receptor targeted imaging and therapy in neuroendocrine tumors (NETs) are part of the field of theranostics. Combining targeted imaging and therapy can improve prognostication, therapeutic decision-making, and monitoring of the therapy.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elisabeth Eppard
- Positronpharma SA, Santiago, Chile; Department of Nuclear Medicine, University Hospital Magdeburg, Germany
| | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Fallahpoor
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
18
|
Fathpour G, Jafari E, Hashemi A, Dadgar H, Shahriari M, Zareifar S, Jenabzade AR, Vali R, Ahmadzadehfar H, Assadi M. Feasibility and Therapeutic Potential of Combined Peptide Receptor Radionuclide Therapy With Intensive Chemotherapy for Pediatric Patients With Relapsed or Refractory Metastatic Neuroblastoma. Clin Nucl Med 2021; 46:540-548. [PMID: 33782280 DOI: 10.1097/rlu.0000000000003577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent evidence has demonstrated high expression of somatostatin receptors in neuroblastoma (NB) cells. Because of this, we endeavored to evaluate the diagnostic performance and clinical efficacy of 68Ga-DOTATATE PET/CT and peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTATATE combined with chemotherapy in pediatric NB patients. PATIENTS AND METHODS In total, 14 pediatric patients with histopathologically confirmed NB underwent 68Ga-DOTATATE PET/CT. Among them, the patients who were refractory or relapsed after therapy with 131I-MIBG and had intensive uptake of 68Ga-DOTATATE were referred for PRRT using 177Lu-DOTATATE. Treatment response based on follow-up imaging was classified into complete response, partial response, stable disease, and progressive disease. After each cycle of PRRT, laboratory tests were performed for evaluation of hematological, renal, and hepatic toxicities. The CTCAE (Common Terminology Criteria for Adverse Events; version 4.03) was used for grading adverse event. Curie score and International Society of Pediatric Oncology Europe Neuroblastoma score were used for semiquantitative analysis of scans of patients who underwent PRRT. In addition, overall survival was calculated as the time interval between the date of the first cycle and the end of follow-up or death. RESULTS Overall, 14 refractory NB children including 7 boys and 7 girls with a median age of 5.5 years (ranged from 4 to 9) underwent 68Ga-DOTATATE PET/CT. PET/CT was positive in 10/14 patients (71.4%), and the median number of detected lesions in positive patients was 2 (range, 1-13). Of 14 patients, 5 patients underwent PRRT, including 3 boys and 2 girls. A total of 19 PRRT cycles and 66.4 GBq 177Lu-DOTATATE were given. Among these 5 patients, 2 showed an initial complete response, which relapsed a few months later, 1 showed a partial response, and 2 showed progressive disease. According to the Kaplan-Meier test, the overall survival was estimated at 14.5 months (95% confidence interval, 8.9-20.1). In evaluation of PRRT-related toxicity according to the CTCAE, 4 patients showed grade 1, and 1 showed grade 2 leukopenia. Two patients showed grade 1, and 2 others showed grade 2 anemia. Two patients showed grade 1, and 3 patients showed grade 2 thrombocytopenia. Serum creatinine in 1 patient increased to grade 1. CONCLUSIONS Combination of 177Lu-DOTATATE with chemotherapeutic agents might achieve worthwhile responses with low toxicity, encouraging survival in NB patients who have relapsed or are refractory to conventional therapy, including 131I-MIBG therapy. Imaging with 68Ga-DOTATATE PET/CT in such patients has a relatively high detection efficacy, demonstrating its potential use as an alternative imaging tool to conventional modalities such as 123I/131I-MIBG. However, further well-designed trials are highly warranted.
Collapse
Affiliation(s)
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr
| | - Arman Hashemi
- From the Division of Hematology/Oncology, Department of Pediatrics, School of Medicine
| | - Habibollah Dadgar
- Cancer Research Center, Razavi Hospital, Imam Reza International University, Mashhad
| | - Mahdi Shahriari
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz
| | - Soheila Zareifar
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz
| | - Ali Reza Jenabzade
- Department of Pediatric Hematology and Oncology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Vali
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr
| |
Collapse
|
19
|
Ussowicz M, Wieczorek A, Dłużniewska A, Pieczonka A, Dębski R, Drabko K, Goździk J, Balwierz W, Handkiewicz-Junak D, Wachowiak J. Factors Modifying Outcome After MIBG Therapy in Children With Neuroblastoma-A National Retrospective Study. Front Oncol 2021; 11:647361. [PMID: 33912462 PMCID: PMC8075349 DOI: 10.3389/fonc.2021.647361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Neuroblastoma is the most common pediatric extracranial tumor with varied prognoses, but the survival of treated refractory or relapsing patients remains poor. Objective This analysis presents the outcomes of children with neuroblastoma undergoing MIBG therapy in Poland in 2006-2019. Study Design A retrospective cohort of 55 patients with refractory or relapsed neuroblastoma treated with I-131 MIBG in Poland in 2006-2019 was analyzed. The endpoints were overall survival (OS), event-free survival (EFS), cumulative incidence (CI) of second cancers and CI of hypothyroidism. Survival curves were estimated using the Kaplan-Meier method and compared between the cohorts by the log-rank test. Cox modeling was adopted to estimate hazard ratios for OS and EFS, considering factors with P < 0.2. Results Fifty-five patients with a median age of 78.4 months (range 18-193) with neuroblastoma underwent one or more (4 patients) courses of MIBG I-131 therapy. Fifteen patients were not administered chemotherapy, 3 children received standard-dose chemotherapy, and 37 patients were administered high-dose chemotherapy (HDCT) (busulfan-melphalan in 24 and treosulfan-based in 12 patients). Forty-six patients underwent stem cell transplantation, with autologous (35 patients), haploidentical (6), allogeneic (4), and syngeneic grafts (1). The median time from first MIBG therapy to SCT was 22 days. Children with relapsing tumors had inferior OS compared to those with primary resistant disease (21.2% vs 58.7%, p=0.0045). Survival was better in patients without MYCN gene amplification. MIBG therapy was never curative, except in patients further treated with HDCT with stem cell rescue irrespective of the donor type. 31 patients were referred for immune therapy after MIBG therapy, and the 5-year OS in this group was superior to the untreated children (55.2% vs 32.7%, p=0.003), but the difference in the 5-year EFS was not significant (25.6% vs 32.9%, p=ns). In 3 patients, a second malignancy was diagnosed. In 19.6% of treated children, hypothyroidism was diagnosed within 5 years after MIBG therapy. Conclusion MIBG therapy can be incorporated into the therapeutic strategy of relapsed or resistant neuroblastoma patients as preconditioning with HDCT rather than stand-alone therapy. Follow-up is required due to the incidence of thyroid failure and risk of second cancers.
Collapse
Affiliation(s)
- Marek Ussowicz
- Department and Clinic of Pediatric Oncology, Hematology and Bone Marrow Transplantation, Wroclaw Medical University, Wrocław, Poland
| | - Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Agnieszka Dłużniewska
- Stem Cell Transplant Center, University Children's Hospital, Department of Clinical Immunology and Transplantology, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Anna Pieczonka
- Department of Pediatric Oncology, Hematology and Transplantology (EBMT CIC 641, CIBMTR Center 10797), University of Medical Sciences, Poznań, Poland
| | - Robert Dębski
- Department of Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Bydgoszcz, Poland
| | - Katarzyna Drabko
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical University, Lublin, Poland
| | - Jolanta Goździk
- Stem Cell Transplant Center, University Children's Hospital, Department of Clinical Immunology and Transplantology, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, University Children's Hospital, Jagiellonian University Collegium Medicum, Kraków, Poland
| | - Daria Handkiewicz-Junak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology (EBMT CIC 641, CIBMTR Center 10797), University of Medical Sciences, Poznań, Poland
| |
Collapse
|
20
|
Giardino S, Piccardo A, Conte M, Puntoni M, Bertelli E, Sorrentino S, Montera M, Risso M, Caviglia I, Altrinetti V, Lanino E, Faraci M, Garaventa A. 131 I-Meta-iodobenzylguanidine followed by busulfan and melphalan and autologous stem cell rescue in high-risk neuroblastoma. Pediatr Blood Cancer 2021; 68:e28775. [PMID: 33099289 DOI: 10.1002/pbc.28775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Despite the progress in current treatments, the event-free survival of high-risk neuroblastoma (HR-NB) patients does not exceed 40%-50%, and the prognosis of refractory or relapsed patients is poor, still representing a challenge for pediatric oncologist. Therapeutic Iodine-131 meta-iodobenzylguanidine (Th-131 I-MIBG) is a recognized safe and potentially effective treatment for NB. MATERIALS This retrospective study reports the outcomes of 28 MIBG-avid NB patients with advanced disease either refractory or relapsed, which was undertaken from 1996 to 2014. Th-131 I-MIBG was administered shortly before (median: 17 days) high-dose chemotherapy with busulfan and melphalan (HD-BuMel) and autologous stem cell rescue (ASCR) at the Gaslini Institute in Genoa, with the aim of analyzing the feasibility, safety, and efficacy of this approach. RESULTS Engraftment occurred in all patients after a median of 14 (11-29) and 30 days (13-80) from ASCR for neutrophils and platelets, respectively. No treatment-related deaths were observed. The main high-grade (3-4) toxicity observed was oral and gastrointestinal mucositis in 78.6% and 7.1% of patients, respectively, whereas high-grade hepatic toxicity was observed in 10.7%. Two patients developed veno-occlusive-disease (7.1%), completely responsive to defibrotide. Hypothyroidism was the main late complication that occurred in nine patients (31.1%). After Th-131 MIBG and HD-BuMel, 19 patients (67.8%) showed an improvement in disease status. Over a median follow-up of 15.9 years, the three-year and five-year overall survival (OS) probabilities were 53% (CI 0.33-0.69) and 41% (CI 0.22-0.59), and the three-year and five-year rates of cumulative risk of progression/relapse were 64% (CI 0.47-0.81) and 73% (CI 0.55-0.88), respectively. MYCN amplification emerged as the only risk factor significantly associated with OS (HR, 3.58;P = 0.041). CONCLUSION Th-131 I-MIBG administered shortly before HD-BuMel is a safe and effective regimen for patients with advanced MIBG-avid NB. These patients should be managed in centers with proven expertise.
Collapse
Affiliation(s)
- Stefano Giardino
- Hematopoietic Stem Cell Transplantation, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Massimo Conte
- Pediatric Oncology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | - Matteo Puntoni
- Clinical Trial Unit, Scientific Directorate, Ospedale Galliera, Genoa, Italy
| | - Enrica Bertelli
- Pediatric Oncology Unit, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Mariapina Montera
- Immunohematology and Transfusional Department, Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Risso
- Immunohematology and Transfusional Department, Istituto Giannina Gaslini, Genoa, Italy
| | - Ilaria Caviglia
- Infectious Disease Unit, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Edoardo Lanino
- Hematopoietic Stem Cell Transplantation, Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation, Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
21
|
Pryma DA, Rosenspire KC. A Mighty Oak Forest from a Single, Well-Planted Acorn. J Nucl Med 2020; 61:83S-84S. [PMID: 33293454 DOI: 10.2967/jnumed.120.251389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Daniel A Pryma
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen C Rosenspire
- Division of Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Feng J, Cheng FW, Leung AW, Lee V, Yeung EW, Ching Lam H, Cheung J, Lam GK, Chow TT, Yan CL, Kong Li C. Upfront consolidation treatment with 131I-mIbG followed by myeloablative chemotherapy and hematopoietic stem cell transplantation in high-risk neuroblastoma. Pediatr Investig 2020; 4:168-177. [PMID: 33150310 PMCID: PMC7520103 DOI: 10.1002/ped4.12216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
Importance 131I‐metaiodobenzylguanidine (131I‐mIBG) has a significant targeted antitumor effect for neuroblastoma. However, currently there is a paucity of data for the use of 131I‐mIBG as a “front‐line” therapeutic agent in those patients with newly diagnosed high‐risk neuroblastoma as part of the conditioning regimen for myeloablative chemotherapy (MAC). Objective To evaluate the feasibility of upfront consolidation treatment with 131I‐mIBG plus MAC and hematopoietic stem cell transplantation (HSCT) in high‐risk neuroblastoma patients. Methods A retrospective, single‐center study was conducted from 2003–2019 on newly diagnosed high‐risk neuroblastoma patients without progressive disease (PD) after the completion of induction therapy. They received 131I‐mIBG infusion and MAC followed by HSCT. Results A total of 24 high‐risk neuroblastoma patients were enrolled with a median age of 3.0 years at diagnosis. After receiving this sequential consolidation treatment, 3 of 13 patients who were in partial response (PR) before 131I‐mIBG treatment achieved either complete response (CR) (n = 1) or very good partial response (VGPR) (n = 2) after HSCT. With a median follow‐up duration of 13.0 months after 131I‐mIBG therapy, the 5‐year event‐free survival and overall survival rates estimated were 29% and 38% for the entire cohort, and 53% and 67% for the patients who were in CR/VGPR at the time of 131I‐mIBG treatment. Interpretation Upfront consolidation treatment with 131I‐mIBG plus MAC and HSCT is feasible and tolerable in high‐risk neuroblastoma patients, however the survival benefit of this 131I‐mIBG regimen is only observed in the patients who were in CR/VGPR at the time of 131I‐mIBG treatment.
Collapse
Affiliation(s)
- Jianhua Feng
- Department of Paediatrics The Chinese University of Hong Kong Hong Kong China.,Department of Paediatrics The First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Frankie Wt Cheng
- Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| | - Alex Wk Leung
- Department of Paediatrics The Chinese University of Hong Kong Hong Kong China
| | - Vincent Lee
- Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| | - Eva Wm Yeung
- Department of Clinical Oncology Prince of Wales Hospital The Chinese University of Hong Kong Hong Kong China
| | - Hoi Ching Lam
- Department of Clinical Oncology Prince of Wales Hospital The Chinese University of Hong Kong Hong Kong China
| | - Jeanny Cheung
- Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| | - Grace Ks Lam
- Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| | - Terry Tw Chow
- Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| | - Carol Ls Yan
- Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| | - Chi Kong Li
- Department of Paediatrics The Chinese University of Hong Kong Hong Kong China.,Department of Paediatrics and Adolescent Medicine Hong Kong Children's Hospital Hong Kong China
| |
Collapse
|
23
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
24
|
Tan HY, Yeong CH, Wong YH, McKenzie M, Kasbollah A, Md Shah MN, Perkins AC. Neutron-activated theranostic radionuclides for nuclear medicine. Nucl Med Biol 2020; 90-91:55-68. [PMID: 33039974 DOI: 10.1016/j.nucmedbio.2020.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Theranostics in nuclear medicine refers to personalized patient management that involves targeted therapy and diagnostic imaging using a single or combination of radionuclide (s). The radionuclides emit both alpha (α) or beta (β-) particles and gamma (γ) rays which possess therapeutic and diagnostic capabilities, respectively. However, the production of these radionuclides often faces difficulties due to high cost, complexity of preparation methods and that the products are often sourced far from the healthcare facilities, hence losing activity due to radioactive decay during transportation. Subject to the availability of a nuclear reactor within an accessible distance from healthcare facilities, neutron activation is the most practical and cost-effective route to produce radionuclides suitable for theranostic purposes. Holmium-166 (166Ho), Lutetium-177 (177Lu), Rhenium-186 (186Re), Rhenium-188 (188Re) and Samarium-153 (153Sm) are some of the most promising neutron-activated radionuclides that are currently in clinical practice and undergoing clinical research for theranostic applications. The aim of this paper is to review the physical characteristics, current clinical applications and future prospects of these neutron activated radionuclides in theranostics. The production, physical properties, validated clinical applications and clinical studies for each neutron-activated radionuclide suitable for theranostic use in nuclear medicine are reviewed in this paper.
Collapse
Affiliation(s)
- Hun Yee Tan
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Yin How Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Molly McKenzie
- School of Life Sciences, University of Dundee, DD1 4HN, United Kingdom
| | - Azahari Kasbollah
- Medical Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mohamad Nazri Md Shah
- Department of Biomedical Imaging, University of Malaya Medical Centre, 59100 Kuala Lumpur, Malaysia
| | - Alan Christopher Perkins
- Radiological Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
25
|
Wang J, Yao W, Li K. Applications and prospects of targeted therapy for neuroblastoma. WORLD JOURNAL OF PEDIATRIC SURGERY 2020; 3:e000164. [DOI: 10.1136/wjps-2020-000164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 11/04/2022] Open
Abstract
BackgroundNeuroblastoma is an extremely malignant tumor in children. For advanced or recurrent cases, existing treatment modalities are limited and efficacy remains disappointing. With the improvement in understanding of molecular biology of neuroblastoma and the development of clinical trials of targeted drug therapy, a variety of targeted therapies for neuroblastoma have appeared.Data sourcesAll the recent literatures on targeted therapies of neuroblastoma on PubMed were searched and reviewed.ResultsThis article reviewed targeted therapies of neuroblastoma going through clinical trials and obtained preliminary results. The features, advantages and disadvantages of targeted radiation therapy,immunotherapy, gene and pathway molecular inhibitor and angiogenesis inhibitor were discussed.ConclusionThis study provides references for better understanding the current progress of targeted therapies for neuroblastoma.
Collapse
|
26
|
Sugiyama M, Seigo K, Hosoya Y, Iguchi A, Manabe A. 131 I-MIBG therapy with WT-1 peptide for refractory neuroblastoma. Pediatr Int 2020; 62:746-747. [PMID: 32478419 DOI: 10.1111/ped.14175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Minako Sugiyama
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kinuya Seigo
- Depertment of Nuclear Medicine, Kanazawa University Hospital, Ishikawa, Japan
| | - Yosuke Hosoya
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Akihiro Iguchi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Atsushi Manabe
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
27
|
Suh JK, Koh KN, Min SY, Kim YS, Kim H, Im HJ, Namgoong JM, Kim DY, Ahn SD, Lee JJ, Seo JJ. Feasibility and effectiveness of treatment strategy of tandem high-dose chemotherapy and autologous stem cell transplantation in combination with 131 I-MIBG therapy for high-risk neuroblastoma. Pediatr Transplant 2020; 24:e13658. [PMID: 31960542 DOI: 10.1111/petr.13658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022]
Abstract
This study was performed to evaluate the safety and effectiveness of tandem HDCT/ASCT combined with targeted radiotherapy using 131 I-MIBG for high-risk neuroblastoma. Patients with high-risk neuroblastoma were treated with 8 to 10 cycles of induction chemotherapy before tandem HDCT/ASCT. Patients received 131 I-MIBG treatment before the second HDCT/ASCT. Local radiotherapy and maintenance therapy were performed after tandem HDCT/ASCT. Between 2012 and 2016, 19 patients were diagnosed with high-risk neuroblastoma in our institution and 18 of them received tandem HDCT/ASCT combined with 131 I-MIBG therapy. For the first HDCT/ASCT regimen, 12 patients received busulfan/melphalan and six patients received melphalan/etoposide/carboplatin. The second HDCT included ThioCy. The median dose of 131 I-MIBG was 17.2 mCi/kg for the first eight patients, while 12 patients in the latter period of the study received reduced dose of 10.7 mCi/kg. The 5-year OS and EFS rates were 79% and 61%, respectively, for all 19 patients with high-risk neuroblastoma, and 83% and 64%, respectively, for 18 patients who completed tandem HDCT/ASCT combined with 131 I-MIBG therapy. Six patients experienced disease relapse and five patients died. Treatment-related mortality was not observed. Among 15 evaluable patients, 11 patients (73%) developed hypothyroidism, six patients (40%) had CKD, and six patients (40%) had growth failure. Hypothyroidism and growth failure were less frequent in patients who received reduced doses of 131 I-MIBG therapy. Tandem HDCT/ASCT combined with HD 131 I-MIBG therapy could be feasible for patients with high-risk neuroblastoma with acceptable toxicity profiles and favorable outcomes.
Collapse
Affiliation(s)
- Jin Kyung Suh
- Divison of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung-Nam Koh
- Divison of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - So Yoon Min
- Divison of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Sun Kim
- Divison of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyery Kim
- Divison of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung-Man Namgoong
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Yeon Kim
- Department of Pediatric Surgery, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Do Ahn
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Jin Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Jin Seo
- Divison of Pediatric Hematology/Oncology, Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
28
|
Yi ES, Son MH, Hyun JK, Cho HW, Ju HY, Lee JW, Yoo KH, Sung KW, Koo HH. Predictors of survival in patients with high-risk neuroblastoma who failed tandem high-dose chemotherapy and autologous stem cell transplantation. Pediatr Blood Cancer 2020; 67:e28066. [PMID: 31736249 DOI: 10.1002/pbc.28066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/22/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This study aims to explore prognostic factors for high-risk neuroblastoma patients with response failure to tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT). METHODS Survival outcomes were compared according to characteristics at initial diagnosis, at relapse/progression, and after relapse/progression in patients who experienced relapse/progression after tandem HDCT/auto-SCT from 2006 to 2018. RESULTS Forty-nine patients experienced relapse/progression after tandem HDCT/auto-SCT during the study period: 43 received salvage treatment and 30 underwent allogeneic SCT (allo-SCT) after reinduction treatment. Although all six patients who did not undergo salvage treatment died, 13 of the 43 patients who did remain alive. The 3-year probabilities of event-free survival (EFS) and overall survival (OS) from initial relapse/progression among the 49 patients were 14.4% ± 5.2% and 21.2% ± 6.4%, respectively. A higher neuron-specific enolase (NSE) level (>24 ng/mL) at relapse/progression was an independent prognostic factor for worse OS. Nine of 30 patients who underwent allo-SCT remain alive, and the 3-year probabilities of EFS and OS from allo-SCT were 16.5% ± 7.2% and 21.6% ± 8.3%, respectively. A higher NSE level and no incorporation of high-dose 131 I-metaiodobenzylguanidine (HD-MIBG) treatment into allo-SCT were independent prognostic factors for worse EFS and OS after allo-SCT. CONCLUSION The results suggest that a higher serum NSE level at relapse/progression is a predictor of worse prognosis in patients with response failure to tandem HDCT/auto-SCT, and that incorporation of HD-MIBG treatment into allo-SCT may improve outcomes.
Collapse
Affiliation(s)
- Eun Sang Yi
- Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Meong Hi Son
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju Kyung Hyun
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
29
|
Abstract
Neuroblastoma is a heterogenous disease, with solid tumors arising in the adrenal gland or paraspinal regions in young children. Neuroblastoma is unique, with varied presentation and prognosis based on primary location and tumor stage. Tumor behavior and response to treatment ranges from spontaneous regression to disseminated, lethal disease depending on the individual biology of a patient's tumor. Stratification of the disease has changed, with patients now placed in low, intermediate, and high-risk categories depending on age, stage, and tumor biology. Long-term survival for the high-risk subset of patients with metastatic disease is <40% despite aggressive multimodal therapy. Derived from sympathoadrenal cells of the adrenal medulla and sympathetic nervous system, both malignant neuroblastoma and differentiated tumors have specialized norepinephrine transporter (NET) receptors which are naturally occurring in the sympathetic nervous system throughout the body. Metaiodobenzylguanidine (MIBG) is a norepinephrine analog that undergoes active uptake by NET receptors resulting in accumulation in neuroblastoma as well as tissues normally expressing the NET receptor. When radioiodine labeled, MIBG can be used for both diagnosis and treatment. This article describes the history of MIBG use in neuroblastoma, including its utility as an imaging modality for diagnosis as well as the varied ways in which is it included in the multimodal treatment algorithm.
Collapse
|
30
|
Tolbert VP, Dvorak CC, Golden C, Vissa M, El-Haj N, Perwad F, Matthay KK, Vo KT. Risk Factors for Transplant-Associated Thrombotic Microangiopathy after Autologous Hematopoietic Cell Transplant in High-Risk Neuroblastoma. Biol Blood Marrow Transplant 2019; 25:2031-2039. [PMID: 31199983 PMCID: PMC9161973 DOI: 10.1016/j.bbmt.2019.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022]
Abstract
High-risk neuroblastoma has a poor prognosis, and research studies have shown that increasing the intensity of therapy improves outcomes. Autologous hematopoietic cell transplant (aHCT) as consolidation therapy confers a significant survival advantage but is accompanied by significant morbidity. Transplant-associated thrombotic microangiopathy (TA-TMA) is a life-threatening complication caused by endothelial injury that often leads to hemolytic anemia, microthrombotic platelet consumption, and renal injury. Here we investigated the incidence, potential risk factors, and sequelae of TA-TMA in patients with high-risk neuroblastoma. We conducted a retrospective chart review of all patients (n = 141) with neuroblastoma in our institutions who underwent aHCT from 2000 to 2017. Ten patients (7%) developed TA-TMA. The patients in the TA-TMA group were similar to the rest of the subjects in demographics, disease burden, prior therapies, renal function, and timing of transplant. The type of conditioning regimen was the only statistically significant pretransplant variable (P < .001). Six of 15 patients (40%) intended to receive tandem transplants (cyclophosphamide/thiotepa and then carboplatin/etoposide/melphalan (CEM)), 4 of 68 patients (6%) who received conditioning with single CEM, and none of the 56 patients who received busulfan/melphalan were diagnosed with TA-TMA. Patients with TA-TMA were more likely to require intensive care unit transfer, have a longer length of stay in the hospital, and experience a delay or change in their subsequent therapy. In our cohort overall, patients with a delay in therapy after transplant appeared to have a worse overall survival, although the difference was not statistically significant. Because of this high incidence and significant morbidity, we have implemented standardized screening for TA-TMA during and after transplant. We anticipate that screening will lead to earlier intervention and decreased severity of disease.
Collapse
Affiliation(s)
- Vanessa P Tolbert
- Department of Pediatrics, University of California San Francisco School of Medicine and Benioff Children's Hospital, San Francisco, California
| | - Christopher C Dvorak
- Department of Pediatrics, University of California San Francisco School of Medicine and Benioff Children's Hospital, San Francisco, California
| | - Carla Golden
- Division of Hematology/Oncology, University of California San Francisco Benioff Children's Hospital, Oakland, California
| | - Madhav Vissa
- Division of Hematology/Oncology, University of California San Francisco Benioff Children's Hospital, Oakland, California
| | - Nura El-Haj
- Division of Hematology/Oncology, University of California San Francisco Benioff Children's Hospital, Oakland, California
| | - Farzana Perwad
- Department of Pediatrics, University of California San Francisco School of Medicine and Benioff Children's Hospital, San Francisco, California
| | - Katherine K Matthay
- Department of Pediatrics, University of California San Francisco School of Medicine and Benioff Children's Hospital, San Francisco, California
| | - Kieuhoa T Vo
- Department of Pediatrics, University of California San Francisco School of Medicine and Benioff Children's Hospital, San Francisco, California.
| |
Collapse
|
31
|
Jimenez C, Erwin W, Chasen B. Targeted Radionuclide Therapy for Patients with Metastatic Pheochromocytoma and Paraganglioma: From Low-Specific-Activity to High-Specific-Activity Iodine-131 Metaiodobenzylguanidine. Cancers (Basel) 2019; 11:cancers11071018. [PMID: 31330766 PMCID: PMC6678905 DOI: 10.3390/cancers11071018] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Low-specific-activity iodine-131–radiolabeled metaiodobenzylguanidine (I-131-MIBG) was introduced last century as a potential systemic therapy for patients with malignant pheochromocytomas and paragangliomas. Collective information derived from mainly retrospective studies has suggested that 30–40% of patients with these tumors benefit from this treatment. A low index of radioactivity, lack of therapeutic standardization, and toxicity associated with intermediate to high activities (absorbed radiation doses) has prevented the implementation of I-131-MIBG’s in clinical practice. High-specific-activity, carrier-free I-131-MIBG has been developed over the past two decades as a novel therapy for patients with metastatic pheochromocytomas and paragangliomas that express the norepinephrine transporter. This drug allows for a high level of radioactivity, and as yet is not associated with cardiovascular toxicity. In a pivotal phase two clinical trial, more than 90% of patients achieved partial responses and disease stabilization with the improvement of hypertension. Furthermore, many patients exhibited long-term persistent antineoplastic effects. Currently, the high-specific-activity I-131-MIBG is the only approved therapy in the US for patients with metastatic pheochromocytomas and paragangliomas. This review will discuss the historical development of high-specific-activity I-131-MIBG, its benefits and adverse events, and future directions for clinical practice applicability and trial development.
Collapse
Affiliation(s)
- Camilo Jimenez
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA.
| | - William Erwin
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1461, Houston, TX 77030, USA
| | - Beth Chasen
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Pastor ER, Mousa SA. Current management of neuroblastoma and future direction. Crit Rev Oncol Hematol 2019; 138:38-43. [PMID: 31092383 DOI: 10.1016/j.critrevonc.2019.03.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma is the most common solid extracranial tumor in pediatrics and can regress spontaneously or grow and metastasize with resistance to multiple therapeutic approaches. The prognosis and approach to treatment depends on the tumor presentation and whether it expresses certain drivers such as MYCN, ALK, and TrkB. Expression or mutation of these genes and kinases correlates with high-risk and poor prognosis. Multiple therapeutic approaches are being used to target MYCN, ALK, and TrkB, as well as GD2, a surface antigen present on the surface of neuroblastoma tumor cells. This review discusses the nature of these targets and several current therapies for neuroblastoma. A focus is placed on recent therapeutic developments including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy.
Collapse
Affiliation(s)
- Elizabeth R Pastor
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA.
| |
Collapse
|
33
|
Newman EA, Abdessalam S, Aldrink JH, Austin M, Heaton TE, Bruny J, Ehrlich P, Dasgupta R, Baertschiger RM, Lautz TB, Rhee DS, Langham MR, Malek MM, Meyers RL, Nathan JD, Weil BR, Polites S, Madonna MB. Update on neuroblastoma. J Pediatr Surg 2019; 54:383-389. [PMID: 30305231 DOI: 10.1016/j.jpedsurg.2018.09.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/09/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022]
Abstract
Neuroblastoma is an embryonic cancer arising from neural crest stem cells. This cancer is the most common malignancy in infants and the most common extracranial solid tumor in children. The clinical course may be highly variable with the possibility of spontaneous regression in the youngest patients and increased risk of aggressive disease in older children. Clinical heterogeneity is a consequence of the diverse biologic characteristics that determine patient risk and survival. This review will focus on current progress in neuroblastoma staging, risk stratification, and treatment strategies based on advancing knowledge in tumor biology and genetic characterization. TYPE OF STUDY: Review article. LEVEL OF EVIDENCE: Level II.
Collapse
Affiliation(s)
- Erika A Newman
- C.S Mott Children's Hospital, The University of Michigan Medicine, Ann Arbor, MI.
| | | | | | - Mary Austin
- Memorial Hermann Texas Medical Center, Houston, TX
| | - Todd E Heaton
- Memorial Sloan Kettering Cancer Center, NY, New York
| | | | - Peter Ehrlich
- C.S Mott Children's Hospital, The University of Michigan Medicine, Ann Arbor, MI
| | | | | | - Timothy B Lautz
- Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL
| | | | - Max R Langham
- University of Tennessee Health Science Center and St. Jude Children's Research Hospital, Memphis, TN
| | - Marcus M Malek
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Rebecka L Meyers
- Primary Children's Hospital, University of Utah, Salt Lake City, UT
| | | | - Brent R Weil
- Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA
| | | | - Mary Beth Madonna
- Ann & Robert H Lurie Children's Hospital of Chicago, Northwestern University, Chicago, IL
| | | |
Collapse
|
34
|
Kraal KCJM, Timmerman I, Kansen HM, van den Bos C, Zsiros J, van den Berg H, Somers S, Braakman E, Peek AML, van Noesel MM, van der Schoot CE, Fiocco M, Caron HN, Voermans C, Tytgat GAM. Peripheral Stem Cell Apheresis is Feasible Post 131Iodine-Metaiodobenzylguanidine-Therapy in High-Risk Neuroblastoma, but Results in Delayed Platelet Reconstitution. Clin Cancer Res 2018; 25:1012-1021. [PMID: 30314967 DOI: 10.1158/1078-0432.ccr-18-1904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/01/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeted radiotherapy with 131iodine-meta-iodobenzylguanidine (131I-MIBG) is effective for neuroblastoma (NBL), although optimal scheduling during high-risk (HR) treatment is being investigated. We aimed to evaluate the feasibility of stem cell apheresis and study hematologic reconstitution after autologous stem cell transplantation (ASCT) in patients with HR-NBL treated with upfront 131I-MIBG-therapy. EXPERIMENTAL DESIGN In two prospective multicenter cohort studies, newly diagnosed patients with HR-NBL were treated with two courses of 131I-MIBG-therapy, followed by an HR-induction protocol. Hematopoietic stem and progenitor cell (e.g., CD34+ cell) harvest yield, required number of apheresis sessions, and time to neutrophil (>0.5 × 109/L) and platelet (>20 × 109/L) reconstitution after ASCT were analyzed and compared with "chemotherapy-only"-treated patients. Moreover, harvested CD34+ cells were functionally (viability and clonogenic capacity) and phenotypically (CD33, CD41, and CD62L) tested before cryopreservation (n = 44) and/or after thawing (n = 19). RESULTS Thirty-eight patients (47%) were treated with 131I-MIBG-therapy, 43 (53%) only with chemotherapy. Median cumulative 131I-MIBG dose/kg was 0.81 GBq (22.1 mCi). Median CD34+ cell harvest yield and apheresis days were comparable in both groups. Post ASCT, neutrophil recovery was similar (11 days vs. 10 days), whereas platelet recovery was delayed in 131I-MIBG- compared with chemotherapy-only-treated patients (29 days vs. 15 days, P = 0.037). Testing of harvested CD34+ cells revealed a reduced post-thaw viability in the 131I-MIBG-group. Moreover, the viable CD34+ population contained fewer cells expressing CD62L (L-selectin), a marker associated with rapid platelet recovery. CONCLUSIONS Harvesting of CD34+ cells is feasible after 131I-MIBG. Platelet recovery after ASCT was delayed in 131I-MIBG-treated patients, possibly due to reinfusion of less viable and CD62L-expressing CD34+ cells, but without clinical complications. We provide evidence that peripheral stem cell apheresis is feasible after upfront 131I-MIBG-therapy in newly diagnosed patients with NBL. However, as the harvest of 131I-MIBG-treated patients contained lower viable CD34+ cell counts after thawing and platelet recovery after reinfusion was delayed, administration of 131I-MIBG after apheresis is preferred.
Collapse
Affiliation(s)
- Kathelijne C J M Kraal
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| | - Ilse Timmerman
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Hannah M Kansen
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands.,Department of Paediatric Pulmonology and Allergology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Cor van den Bos
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| | - Jozsef Zsiros
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands.,Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| | - Henk van den Berg
- Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| | - Sebastiaan Somers
- Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annemarie M L Peek
- Department of Pediatric Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Marta Fiocco
- Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.,Mathematical Institute, Leiden University, Leiden, the Netherlands
| | - Huib N Caron
- Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| | - Carlijn Voermans
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve A M Tytgat
- Princess Máxima Center for Pediatric Oncology (PMC), Utrecht, the Netherlands. .,Department of Pediatric Oncology, Emma Children's Hospital (EKZ/AMC), Amsterdam, the Netherlands
| |
Collapse
|
35
|
Feasibility of Busulfan Melphalan and Stem Cell Rescue After 131I-MIBG and Topotecan Therapy for Refractory or Relapsed Metastatic Neuroblastoma: The French Experience. J Pediatr Hematol Oncol 2018; 40:426-432. [PMID: 29642099 DOI: 10.1097/mph.0000000000001137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
High-risk neuroblastoma is characterized by poor long-term survival, especially for very high-risk (VHR) patients (poor response of metastases after induction therapy). The benefits of a tandem high-dose therapy and hematologic stem cell reinfusion (HSCR) have been shown in these patients. Further dose escalation will be limited by toxicity. It is thus important to evaluate the efficacy and tolerability of the addition of new agents such as I-MIBG (131Iode metaiodobenzylguanidine) to be combined with high-dose therapy in the consolidation phase. We report the feasibility of busulfan/melphalan (BuMel) after I-MIBG therapy with HSCR in patients with refractory or relapsed metastatic neuroblastoma. From November 2008 to March 2015, 9 patients received BuMel after I-MIBG therapy and topotecan. The main toxicity was digestive with only 1 patient developing grade 4 sinusoidal obstructive syndrome. Seven patients are alive at a median follow-up of 25 months. Among them, 2 are in ongoing complete remission and 1 in ongoing stable disease. These results suggest that BuMel with HSCR can be administered safely 2 months after I-MIBG therapy associated with topotecan for VHR patients. This strategy will be compared with tandem high-dose chemotherapy (thiotepa and busulfan-melphalan), followed by HSCR in the upcoming SIOPEN VHR Neuroblastoma Protocol.
Collapse
|
36
|
Araki R, Nishimura R, Inaki A, Wakabayashi H, Imai Y, Kuribayashi Y, Yoshimura K, Murayama T, Kinuya S. Feasibility of High-dose Iodine-131-metaiodobenzylguanidine Therapy for High-risk Neuroblastoma Preceding Myeloablative Chemotherapy and Hematopoietic Stem Cell Transplantation: a Study Protocol. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2018; 6:161-166. [PMID: 29998150 PMCID: PMC6038972 DOI: 10.22038/aojnmb.2018.29845.1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective(s): High-risk neuroblastoma is a childhood cancer with poor prognosis despite modern multimodality therapy. Internal radiotherapy using 131I-metaiodobenzylguanidine (MIBG) is effective for treating the disease even if it is resistant to chemotherapy. The aim of this study is to evaluate the safety and efficacy of 131I-MIBG radiotherapy combined with myeloablative high-dose chemotherapy and hematopoietic stem cell transplantation. Methods: Patients with high-risk neuroblastoma will be enrolled in this study. A total of 8 patients will be registered. Patients will receive 666 MBq/kg of 131I-MIBG and after safety evaluation will undergo high-dose chemotherapy and hematopoietic stem cell transplantation. Autologous and allogeneic stem cell sources will be accepted. After engraftment or 28 days after hematopoietic stem cell transplantation, the safety and response will be evaluated. Conclusion: This is the first prospective study of 131I-MIBG with high-dose chemotherapy and hematopoietic stem cell transplantation in Japan. The results will be the basis of a future nationwide clinical trial.
Collapse
Affiliation(s)
- Raita Araki
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Ryosei Nishimura
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Yasuhito Imai
- Innovative Clinical Research Center, Kanazawa University, Japan
| | | | | | | | - Seigo Kinuya
- Department of Nuclear Medicine, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| |
Collapse
|
37
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
38
|
Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging 2018; 52:254-265. [PMID: 30100938 DOI: 10.1007/s13139-018-0523-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
Collapse
Affiliation(s)
- Daiki Kayano
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan.,2Department of Nuclear Medicine, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima, 960-1295 Japan
| | - Seigo Kinuya
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
39
|
Villablanca JG, Ji L, Shapira-Lewinson A, Marachelian A, Shimada H, Hawkins RA, Pampaloni M, Lai H, Goodarzian F, Sposto R, Park JR, Matthay KK. Predictors of response, progression-free survival, and overall survival using NANT Response Criteria (v1.0) in relapsed and refractory high-risk neuroblastoma. Pediatr Blood Cancer 2018; 65:e26940. [PMID: 29350464 PMCID: PMC7456604 DOI: 10.1002/pbc.26940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE The New Approaches to Neuroblastoma Therapy Response Criteria (NANTRC) were developed to optimize response assessment in patients with recurrent/refractory neuroblastoma. Response predictors and associations of the NANTRC version 1.0 (NANTRCv1.0) and prognostic factors with outcome were analyzed. METHODS A retrospective analysis was performed of patients with recurrent/refractory neuroblastoma enrolled from 2000 to 2009 on 13 NANT Phase 1/2 trials. NANTRC overall response integrated CT/MRI (Response Evaluation Criteria in Solid Tumors [RECIST]), metaiodobenzylguanidine (MIBG; Curie scoring), and percent bone marrow (BM) tumor (morphology). RESULTS Fourteen (6.9%) complete response (CR) and 14 (6.9%) partial response (PR) occurred among 203 patients evaluable for response. Five-year progression-free survival (PFS) was 16 ± 3%; overall survival (OS) was 27 ± 3%. Disease sites at enrollment included MIBG-avid lesions (100% MIBG trials; 84% non-MIBG trials), measurable CT/MRI lesions (48%), and BM (49%). By multivariable analysis, Curie score of 0 (P < 0.001), lower Curie score (P = 0.003), no measurable CT/MRI lesions (P = 0.044), and treatment on peripheral blood stem cell (PBSC) supported trials (P = 0.005) were associated with achieving CR/PR. Overall response of stable disease (SD) or better was associated with better OS (P < 0.001). In multivariable analysis, MYCN amplification (P = 0.037) was associated with worse PFS; measurable CT/MRI lesions (P = 0.041) were associated with worse OS; prior progressive disease (PD; P < 0.001/P < 0.001), Curie score ≥ 1 (P < 0.001; P = 0.001), higher Curie score (P = 0.048/0.037), and treatment on non-PBSC trials (P = < 0.001/0.003) were associated with worse PFS and OS. CONCLUSIONS NANTRCv1.0 response of at least SD is associated with better OS in patients with recurrent/refractory neuroblastoma. Patient and tumor characteristics may predict response and outcome. Identifying these variables can optimize Phase 1/2 trial design to select novel agents for further testing.
Collapse
Affiliation(s)
- Judith G. Villablanca
- Department of Pediatrics, Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Lingyun Ji
- Department of Preventative Medicine Statistics, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Adi Shapira-Lewinson
- Department of Pediatric Hematology- Oncology, The Ruth Rappaport Children’s Hospital, Haifa, Israel
| | - Araz Marachelian
- Department of Pediatrics, Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Hiroyuki Shimada
- Department of Pathology, Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Randall A. Hawkins
- Department of Radiology, University of California San Francisco, San Francisco, California
| | - Miguel Pampaloni
- Department of Radiology, University of California San Francisco, San Francisco, California
| | - Hollie Lai
- Department of Pediatric Radiology, Children’s Hospital Orange County, Orange, California
| | - Fariba Goodarzian
- Department of Radiology, Children’s Hospital Los Angeles, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Richard Sposto
- Department of Preventative Medicine Statistics, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Julie R. Park
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington
| | - Katherine K. Matthay
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| |
Collapse
|
40
|
Lacoeuille F, Arlicot N, Faivre-Chauvet A. Targeted alpha and beta radiotherapy: An overview of radiopharmaceutical and clinical aspects. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2018. [DOI: 10.1016/j.mednuc.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, Feldmann G, Ahmadzadehfar H, Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther 2017; 10:4821-4828. [PMID: 29042793 PMCID: PMC5633297 DOI: 10.2147/ott.s140671] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The importance of personalized medicine has been growing, mainly due to a more urgent need to avoid unnecessary and expensive treatments. In nuclear medicine, the theranostic approach is an established tool for specific molecular targeting, both for diagnostics and therapy. The visualization of potential targets can help predict if a patient will benefit from a particular treatment. Thanks to the quick development of radiopharmaceuticals and diagnostic techniques, the use of theranostic agents has been continually increasing. In this article, important milestones of nuclear therapies and diagnostics in the context of theranostics are highlighted. It begins with a well-known radioiodine therapy in patients with thyroid cancer and then progresses through various approaches for the treatment of advanced cancer with targeted therapies. The aim of this review was to provide a summary of background knowledge and current applications, and to identify the advantages of targeted therapies and imaging in nuclear medicine practices.
Collapse
Affiliation(s)
- Anna Yordanova
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| | | | | | | | | | | | - Georg Feldmann
- Department of Medicine 3, University Hospital Bonn, Bonn, Germany
| | | | - Markus Essler
- Department of Nuclear Medicine (Clinical Nuclear Medicine)
| |
Collapse
|
42
|
Pandit-Taskar N, Modak S. Norepinephrine Transporter as a Target for Imaging and Therapy. J Nucl Med 2017; 58:39S-53S. [PMID: 28864611 DOI: 10.2967/jnumed.116.186833] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
The norepinephrine transporter (NET) is essential for norepinephrine uptake at the synaptic terminals and adrenal chromaffin cells. In neuroendocrine tumors, NET can be targeted for imaging as well as therapy. One of the most widely used theranostic agents targeting NET is metaiodobenzylguanidine (MIBG), a guanethidine analog of norepinephrine. 123I/131I-MIBG theranostics have been applied in the clinical evaluation and management of neuroendocrine tumors, especially in neuroblastoma, paraganglioma, and pheochromocytoma. 123I-MIBG imaging is a mainstay in the evaluation of neuroblastoma, and 131I-MIBG has been used for the treatment of relapsed high-risk neuroblastoma for several years, however, the outcome remains suboptimal. 131I-MIBG has essentially been only palliative in paraganglioma/pheochromocytoma patients. Various techniques of improving therapeutic outcomes, such as dosimetric estimations, high-dose therapies, multiple fractionated administration and combination therapy with radiation sensitizers, chemotherapy, and other radionuclide therapies, are being evaluated. PET tracers targeting NET appear promising and may be more convenient options for the imaging and assessment after treatment. Here, we present an overview of NET as a target for theranostics; review its current role in some neuroendocrine tumors, such as neuroblastoma, paraganglioma/pheochromocytoma, and carcinoids; and discuss approaches to improving targeting and theranostic outcomes.
Collapse
Affiliation(s)
| | - Shakeel Modak
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
43
|
Park JR, Bagatell R, Cohn SL, Pearson AD, Villablanca JG, Berthold F, Burchill S, Boubaker A, McHugh K, Nuchtern JG, London WB, Seibel NL, Lindwasser OW, Maris JM, Brock P, Schleiermacher G, Ladenstein R, Matthay KK, Valteau-Couanet D. Revisions to the International Neuroblastoma Response Criteria: A Consensus Statement From the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol 2017; 35:2580-2587. [PMID: 28471719 PMCID: PMC5676955 DOI: 10.1200/jco.2016.72.0177] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose More than two decades ago, an international working group established the International Neuroblastoma Response Criteria (INRC) to assess treatment response in children with neuroblastoma. However, this system requires modification to incorporate modern imaging techniques and new methods for quantifying bone marrow disease that were not previously widely available. The National Cancer Institute sponsored a clinical trials planning meeting in 2012 to update and refine response criteria for patients with neuroblastoma. Methods Multidisciplinary investigators from 13 countries reviewed data from published trials performed through cooperative groups, consortia, and single institutions. Data from both prospective and retrospective trials were used to refine the INRC. Monthly international conference calls were held from 2011 to 2015, and consensus was reached through review by working group leadership and the National Cancer Institute Clinical Trials Planning Meeting leadership council. Results Overall response in the revised INRC will integrate tumor response in the primary tumor, soft tissue and bone metastases, and bone marrow. Primary and metastatic soft tissue sites will be assessed using Response Evaluation Criteria in Solid Tumors (RECIST) and iodine-123 (123I) -metaiodobenzylguanidine (MIBG) scans or [18F]fluorodeoxyglucose-positron emission tomography scans if the tumor is MIBG nonavid. 123I-MIBG scans, or [18F]fluorodeoxyglucose-positron emission tomography scans for MIBG-nonavid disease, replace technetium-99m diphosphonate bone scintigraphy for osteomedullary metastasis assessment. Bone marrow will be assessed by histology or immunohistochemistry and cytology or immunocytology. Bone marrow with ≤ 5% tumor involvement will be classified as minimal disease. Urinary catecholamine levels will not be included in response assessment. Overall response will be defined as complete response, partial response, minor response, stable disease, or progressive disease. Conclusion These revised criteria will provide a uniform assessment of disease response, improve the interpretability of clinical trial results, and facilitate collaborative trial designs.
Collapse
Affiliation(s)
- Julie R. Park
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Rochelle Bagatell
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Susan L. Cohn
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Andrew D. Pearson
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Judith G. Villablanca
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Frank Berthold
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Susan Burchill
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Ariane Boubaker
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Kieran McHugh
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Jed G. Nuchtern
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Wendy B. London
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Nita L. Seibel
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - O. Wolf Lindwasser
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - John M. Maris
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Penelope Brock
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Gudrun Schleiermacher
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Ruth Ladenstein
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Katherine K. Matthay
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| | - Dominique Valteau-Couanet
- Julie R. Park, Seattle Children’s Hospital and University of Washington School of Medicine, Seattle, WA; Rochelle Bagatell and John M. Maris, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA; Susan L. Cohn, University of Chicago, Chicago, IL; Andrew D. Pearson, Institute of Cancer Research and Royal Marsden National Health Service (NHS) Foundation Trust, Sutton, Surrey; Susan Burchill, Leeds Institute of Cancer and Pathology, St James University Hospital, Leeds; Kieran McHugh and Penelope Brock, Great Ormond Street Hospital for Children, NHS Trust, London, United Kingdom; Judith G. Villablanca, Children’s Hospital Los Angeles and University of Southern California Keck School of Medicine, Los Angeles; Katherine K. Matthay, University of California San Francisco School of Medicine, San Francisco, CA; Frank Berthold, Children’s Hospital and University of Cologne, Köln, Germany; Ariane Boubaker, Institute of Radiology, Clinique de La Source, Lausanne, Switzerland; Jed G. Nuchtern, Texas Children’s Hospital and Baylor College of Medicine, Houston, TX; Wendy B. London, Dana-Farber/Boston Children’s Cancer and Blood Disorder Center, Harvard Medical School, Boston, MA; Nita L. Seibel and O. Wolf Lindwasser, National Cancer Institute, Bethesda, MD; Gudrun Schleiermacher, Institut Curie, Paris; Dominique Valteau-Couanet, Gustave Roussy, Villejuif, France; and Ruth Ladenstein, Children’s Cancer Research Institute, St Anna Children’s Hospital, Vienna, Austria
| |
Collapse
|
44
|
Marachelian A, Villablanca JG, Liu CW, Liu B, Goodarzian F, Lai HA, Shimada H, Tran HC, Parra JA, Gallego R, Bedrossian N, Young S, Czarnecki S, Kennedy R, Weiss BD, Goldsmith K, Granger M, Matthay KK, Groshen S, Asgharzadeh S, Sposto R, Seeger RC. Expression of Five Neuroblastoma Genes in Bone Marrow or Blood of Patients with Relapsed/Refractory Neuroblastoma Provides a New Biomarker for Disease and Prognosis. Clin Cancer Res 2017; 23:5374-5383. [PMID: 28559462 DOI: 10.1158/1078-0432.ccr-16-2647] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/13/2017] [Accepted: 05/23/2017] [Indexed: 11/16/2022]
Abstract
Purpose: We determined whether quantifying neuroblastoma-associated mRNAs (NB-mRNAs) in bone marrow and blood improves assessment of disease and prediction of disease progression in patients with relapsed/refractory neuroblastoma.Experimental Design: mRNA for CHGA, DCX, DDC, PHOX2B, and TH was quantified in bone marrow and blood from 101 patients concurrently with clinical disease evaluations. Correlation between NB-mRNA (delta cycle threshold, ΔCt, for the geometric mean of genes from the TaqMan Low Density Array NB5 assay) and morphologically defined tumor cell percentage in bone marrow, 123I-meta-iodobenzylguanidine (MIBG) Curie score, and CT/MRI-defined tumor longest diameter was determined. Time-dependent covariate Cox regression was used to analyze the relationship between ΔCt and progression-free survival (PFS).Results: NB-mRNA was detectable in 83% of bone marrow (185/223) and 63% (89/142) of blood specimens, and their ΔCt values were correlated (Spearman r = 0.67, P < 0.0001), although bone marrow Ct was 7.9 ± 0.5 Ct stronger than blood Ct When bone marrow morphology, MIBG, or CT/MRI were positive, NB-mRNA was detected in 99% (99/100), 88% (100/113), and 81% (82/101) of bone marrow samples. When all three were negative, NB-mRNA was detected in 55% (11/20) of bone marrow samples. Bone marrow NB-mRNA correlated with bone marrow morphology or MIBG positivity (P < 0.0001 and P = 0.007). Bone marrow and blood ΔCt values correlated with PFS (P < 0.001; P = 0.001) even when bone marrow was morphologically negative (P = 0.001; P = 0.014). Multivariate analysis showed that bone marrow and blood ΔCt values were associated with PFS independently of clinical disease and MYCN gene status (P < 0.001; P = 0.055).Conclusions: This five-gene NB5 assay for NB-mRNA improves definition of disease status and correlates independently with PFS in relapsed/refractory neuroblastoma. Clin Cancer Res; 23(18); 5374-83. ©2017 AACR.
Collapse
Affiliation(s)
- Araz Marachelian
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California. .,Children's Hospital Los Angeles, Los Angeles, California
| | - Judith G Villablanca
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California.,Children's Hospital Los Angeles, Los Angeles, California
| | - Cathy W Liu
- Children's Hospital Los Angeles, Los Angeles, California
| | - Betty Liu
- Children's Hospital Los Angeles, Los Angeles, California
| | - Fariba Goodarzian
- Children's Hospital Los Angeles, Los Angeles, California.,Department of Radiology, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California
| | - Hollie A Lai
- Children's Hospital Los Angeles, Los Angeles, California.,Department of Radiology, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California
| | - Hiroyuki Shimada
- Children's Hospital Los Angeles, Los Angeles, California.,Department of Pathology, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California
| | - Hung C Tran
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California.,Children's Hospital Los Angeles, Los Angeles, California
| | - Jaime A Parra
- Children's Hospital Los Angeles, Los Angeles, California
| | | | | | - Sabrina Young
- Children's Hospital Los Angeles, Los Angeles, California
| | | | | | - Brian D Weiss
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kelly Goldsmith
- Aflac Cancer Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | | | - Katherine K Matthay
- University of California, San Francisco Children's Hospital, San Francisco, California
| | - Susan Groshen
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California
| | - Shahab Asgharzadeh
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California.,Children's Hospital Los Angeles, Los Angeles, California.,Department of Pathology, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California
| | - Richard Sposto
- Children's Hospital Los Angeles, Los Angeles, California.,Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California
| | - Robert C Seeger
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Children's Center for Cancer and Blood Diseases, Los Angeles, California.,Children's Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
45
|
Lee JW, Lee S, Cho HW, Ma Y, Yoo KH, Sung KW, Koo HH, Cho EJ, Lee SK, Lim DH. Incorporation of high-dose 131I-metaiodobenzylguanidine treatment into tandem high-dose chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma: results of the SMC NB-2009 study. J Hematol Oncol 2017; 10:108. [PMID: 28511709 PMCID: PMC5432997 DOI: 10.1186/s13045-017-0477-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background In our previous SMC NB-2004 study of patients with high-risk neuroblastomas, which incorporated total-body irradiation (TBI) with second high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT), the survival rate was encouraging; however, short- and long-term toxicities were significant. In the present SMC NB-2009 study, only TBI was replaced with 131I-meta-iodobenzylguanidine (MIBG) treatment in order to reduce toxicities. Methods From January 2009 to December 2013, 54 consecutive patients were assigned to receive tandem HDCT/auto-SCT after nine cycles of induction chemotherapy. The CEC (carboplatin + etoposide + cyclophosphamide) regimen and the TM (thiotepa + melphalan) regimen with (for metastatic MIBG avid tumors) or without (for localized or MIBG non-avid tumors) 131I-MIBG treatment (18 or 12 mCi/kg) were used for tandem HDCT/auto-SCT. Local radiotherapy, differentiation therapy with 13-cis-retinoic acid, and immunotherapy with interleukin-2 were administered after tandem HDCT/auto-SCT. Results Fifty-two patients underwent the first HDCT/auto-SCT and 47 patients completed tandem HDCT/auto-SCT. There was no significant immediate toxicity during the 131I-MIBG infusion. Acute toxicities during the tandem HDCT/auto-SCT were less severe in the NB-2009 study than in the NB-2004 study. Late effects such as growth hormone deficiency, cataracts, and glomerulopathy evaluated at 3 years after the second HDCT/auto-SCT were also less significant in the NB-2009 study than in NB-2004 study. There was no difference in the 5-year event-free survival (EFS) between the two studies (67.5 ± 6.7% versus 58.3 ± 6.9%, P = 0.340). Conclusions Incorporation of high-dose 131I-MIBG treatment into tandem HDCT/auto-SCT could reduce short- and long-term toxicities associated with TBI, without jeopardizing the survival rate. Trial registration ClinicalTrials.gov NCT03061656
Collapse
Affiliation(s)
- Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Sanghoon Lee
- Department of Pediatric Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Hee Won Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Youngeun Ma
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Eun Joo Cho
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Suk-Koo Lee
- Department of Pediatric Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 135-710, Republic of Korea
| |
Collapse
|
46
|
Li R, Polishchuk A, DuBois S, Hawkins R, Lee SW, Bagatell R, Shusterman S, Hill-Kayser C, Al-Sayegh H, Diller L, Haas-Kogan DA, Matthay KK, London WB, Marcus KJ. Patterns of Relapse in High-Risk Neuroblastoma Patients Treated With and Without Total Body Irradiation. Int J Radiat Oncol Biol Phys 2017; 97:270-277. [DOI: 10.1016/j.ijrobp.2016.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/06/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022]
|
47
|
Speleman F, Park JR, Henderson TO. Neuroblastoma: A Tough Nut to Crack. Am Soc Clin Oncol Educ Book 2017; 35:e548-57. [PMID: 27249766 DOI: 10.1200/edbk_159169] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuroblastoma, an embryonal tumor arising from neural crest-derived progenitor cells, is the most common solid tumor in childhood, with more than 700 cases diagnosed per year in the United States. In the past several decades, significant advances have been made in the treatment of neuroblastoma. Treatment advances reflect improved understanding of the biology of neuroblastoma. Although amplification of MYCN was discovered in the early 1980s, our understanding of neuroblastoma oncogenesis has advanced in the last decade as a result of high-throughput genomic analysis, exome and whole-genome sequencing, genome-wide association studies, and synthetic lethal drug screens. Our refined understanding of neuroblastoma biology and genetics is reflected in improved prognostic stratification and appropriate tailoring of therapy in recent clinical trials. Moreover, for high-risk neuroblastoma, a disease that was uniformly fatal 3 decades ago, recent clinical trials incorporating autologous hematopoietic transplant and immunotherapy utilizing anti-GD2 antibody plus cytokines have shown improved event-free and overall survival. These advances have resulted in a growing population of long-term survivors of neuroblastoma. Examination of the late effects and second malignant neoplasms (SMNs) in both older generations of survivors and more recently treated survivors will inform both design of future trials and surveillance guidelines for long-term follow-up. As a consequence of advances in understanding of the biology of neuroblastoma, successful clinical trials, and refined understanding of the late effects and SMNs of survivors, the promise of precision medicine is becoming a reality for patients with neuroblastoma.
Collapse
Affiliation(s)
- Frank Speleman
- From the Center for Medical Genetics Ghent, Cancer Research Institute Ghent, Ghent, Belgium; Seattle Children's Hospital, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; University of Chicago Comer Children's Hospital, Chicago, IL
| | - Julie R Park
- From the Center for Medical Genetics Ghent, Cancer Research Institute Ghent, Ghent, Belgium; Seattle Children's Hospital, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; University of Chicago Comer Children's Hospital, Chicago, IL
| | - Tara O Henderson
- From the Center for Medical Genetics Ghent, Cancer Research Institute Ghent, Ghent, Belgium; Seattle Children's Hospital, Seattle, WA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA; University of Chicago Comer Children's Hospital, Chicago, IL
| |
Collapse
|
48
|
Abstract
Neuroblastoma is the most common extracranial solid tumour occurring in childhood and has a diverse clinical presentation and course depending on the tumour biology. Unique features of these neuroendocrine tumours are the early age of onset, the high frequency of metastatic disease at diagnosis and the tendency for spontaneous regression of tumours in infancy. The most malignant tumours have amplification of the MYCN oncogene (encoding a transcription factor), which is usually associated with poor survival, even in localized disease. Although transgenic mouse models have shown that MYCN overexpression can be a tumour-initiating factor, many other cooperating genes and tumour suppressor genes are still under investigation and might also have a role in tumour development. Segmental chromosome alterations are frequent in neuroblastoma and are associated with worse outcome. The rare familial neuroblastomas are usually associated with germline mutations in ALK, which is mutated in 10-15% of primary tumours, and provides a potential therapeutic target. Risk-stratified therapy has facilitated the reduction of therapy for children with low-risk and intermediate-risk disease. Advances in therapy for patients with high-risk disease include intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy; these have improved 5-year overall survival to 50%. Currently, new approaches targeting the noradrenaline transporter, genetic pathways and the tumour microenvironment hold promise for further improvements in survival and long-term quality of life.
Collapse
|
49
|
Galli S, Naranjo A, Van Ryn C, Tilan JU, Trinh E, Yang C, Tsuei J, Hong SH, Wang H, Izycka-Swieszewska E, Lee YC, Rodriguez OC, Albanese C, Kitlinska J. Neuropeptide Y as a Biomarker and Therapeutic Target for Neuroblastoma. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:3040-3053. [PMID: 27743558 DOI: 10.1016/j.ajpath.2016.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022]
Abstract
Neuroblastoma (NB) is a pediatric malignant neoplasm of sympathoadrenal origin. Challenges in its management include stratification of this heterogeneous disease and a lack of both adequate treatments for high-risk patients and noninvasive biomarkers of disease progression. Our previous studies have identified neuropeptide Y (NPY), a sympathetic neurotransmitter expressed in NB, as a potential therapeutic target for these tumors by virtue of its Y5 receptor (Y5R)-mediated chemoresistance and Y2 receptor (Y2R)-mediated proliferative and angiogenic activities. The goal of this study was to determine the clinical relevance and utility of these findings. Expression of NPY and its receptors was evaluated in corresponding samples of tumor RNA, tissues, and sera from 87 patients with neuroblastic tumors and in tumor tissues from the TH-MYCN NB mouse model. Elevated serum NPY levels correlated with an adverse clinical presentation, poor survival, metastasis, and relapse, whereas strong Y5R immunoreactivity was a marker of angioinvasive tumor cells. In NB tissues from TH-MYCN mice, high immunoreactivity of both NPY and Y5R marked angioinvasive NB cells. Y2R was uniformly expressed in undifferentiated tumor cells, which supports its previously reported role in NB cell proliferation. Our findings validate NPY as a therapeutic target for advanced NB and implicate the NPY/Y5R axis in disease dissemination. The correlation between elevated systemic NPY and NB progression identifies serum NPY as a novel NB biomarker.
Collapse
Affiliation(s)
- Susana Galli
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Arlene Naranjo
- Department of Biostatistics, Children's Oncology Group Statistics & Data Center, University of Florida, Gainesville, Florida
| | - Collin Van Ryn
- Department of Biostatistics, Children's Oncology Group Statistics & Data Center, University of Florida, Gainesville, Florida
| | - Jason U Tilan
- Department of Nursing, School of Nursing and Health Studies, Georgetown University, Washington, District of Columbia; Department of Human Science, School of Nursing and Health Studies, Georgetown University, Washington, District of Columbia
| | - Emily Trinh
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Chao Yang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Jessica Tsuei
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia
| | - Sung-Hyeok Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Hongkun Wang
- Department of Biostatistics and Bioinformatics, Georgetown University Medical Center, Washington, District of Columbia
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yi-Chien Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Olga C Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia
| | - Chris Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia; Department of Pathology, Georgetown University Medical Center, Washington, District of Columbia
| | - Joanna Kitlinska
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
50
|
Sharp SE, Trout AT, Weiss BD, Gelfand MJ. MIBG in Neuroblastoma Diagnostic Imaging and Therapy. Radiographics 2016; 36:258-78. [PMID: 26761540 DOI: 10.1148/rg.2016150099] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroblastoma is a common malignancy observed in infants and young children. It has a varied prognosis, ranging from spontaneous regression to aggressive metastatic tumors with fatal outcomes despite multimodality therapy. Patients are divided into risk groups on the basis of age, stage, and biologic tumor factors. Multiple clinical and imaging tests are needed for accurate patient assessment. Iodine 123 ((123)I) metaiodobenzylguanidine (MIBG) is the first-line functional imaging agent used in neuroblastoma imaging. MIBG uptake is seen in 90% of neuroblastomas, identifying both the primary tumor and sites of metastatic disease. The addition of single photon emission computed tomography (SPECT) and SPECT/computed tomography to (123)I-MIBG planar images can improve identification and characterization of sites of uptake. During scan interpretation, use of MIBG semiquantitative scoring systems improves description of disease extent and distribution and may be helpful in defining prognosis. Therapeutic use of MIBG labeled with iodine 131 ((131)I) is being investigated as part of research trials, both as a single agent and in conjunction with other therapies. (131)I-MIBG therapy has been studied in patients with newly diagnosed neuroblastoma and those with relapsed disease. Development and implementation of an institutional (131)I-MIBG therapy research program requires extensive preparation with a focus on radiation protection.
Collapse
Affiliation(s)
- Susan E Sharp
- From the Department of Radiology (S.E.S., A.T.T., M.J.G.) and Department of Pediatrics, Division of Oncology (B.D.W.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229-3039
| | - Andrew T Trout
- From the Department of Radiology (S.E.S., A.T.T., M.J.G.) and Department of Pediatrics, Division of Oncology (B.D.W.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229-3039
| | - Brian D Weiss
- From the Department of Radiology (S.E.S., A.T.T., M.J.G.) and Department of Pediatrics, Division of Oncology (B.D.W.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229-3039
| | - Michael J Gelfand
- From the Department of Radiology (S.E.S., A.T.T., M.J.G.) and Department of Pediatrics, Division of Oncology (B.D.W.), Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH 45229-3039
| |
Collapse
|