1
|
Harris R, Karimi M. Dissecting the regulatory network of transcription factors in T cell phenotype/functioning during GVHD and GVT. Front Immunol 2023; 14:1194984. [PMID: 37441063 PMCID: PMC10333690 DOI: 10.3389/fimmu.2023.1194984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors play a major role in regulation and orchestration of immune responses. The immunological context of the response can alter the regulatory networks required for proper functioning. While these networks have been well-studied in canonical immune contexts like infection, the transcription factor landscape during alloactivation remains unclear. This review addresses how transcription factors contribute to the functioning of mature alloactivated T cells. This review will also examine how these factors form a regulatory network to control alloresponses, with a focus specifically on those factors expressed by and controlling activity of T cells of the various subsets involved in graft-versus-host disease (GVHD) and graft-versus-tumor (GVT) responses.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
2
|
Immune Checkpoints and targeted agents in relapse and graft-versus-host disease after hematopoietic stem cell transplantation. Mol Biol Rep 2023; 50:2909-2917. [PMID: 36572760 DOI: 10.1007/s11033-022-08220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for malignant hematologic disorders. Novel anti-infection agents have successfully decreased the risk of fatal infections post-HSCT in recent years, but the relapse of primary disease and graft-versus-host disease (GVHD) remain the major causes of death for transplant recipients, and significantly deteriorate the quality of life. Thus, it is crucial to maintain the immune homeostasis in transplant recipients and balance the graft-versus-leukemia (GVL) effect and GVHD. METHODS We reviewed the recently published literatures on immune checkpoint (IC) and targeted agents in relapse and GVHD after allogeneic HSCT RESULTS: Emerging data suggest that IC is an attractive target to modulate immune responses, and accumulating evidences of IC-targeted agents have been published for the treatment of malignancies and autoimmune disorders. The unique mechanism of IC-targeted agents, which affects the immune homeostasis of the transplant recipient by modulating alloreactivity, minimizes the risk of organ toxicity and immunosuppression associated with conventional therapy CONCLUSION: There is an increase in literature reporting the application of immune checkpoint-targeted agents in HSCT settings, and an overview will benefit further exploration in this field.
Collapse
|
3
|
Margarit-Soler A, Deyà-Martínez À, Canizales JT, Vlagea A, García-García A, Marsal J, Del Castillo MT, Planas S, Simó S, Esteve-Sole A, Grande MSL, Badell I, Tarrats MR, Fernández-Avilés F, Alsina L. Case report: Challenges in immune reconstitution following hematopoietic stem cell transplantation for CTLA-4 insufficiency-like primary immune regulatory disorders. Front Immunol 2022; 13:1070068. [PMID: 36636328 PMCID: PMC9831655 DOI: 10.3389/fimmu.2022.1070068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T-lymphocyte antigen-4 (CTLA-4) haploinsufficiency is a T-cell hyperactivation disorder that can manifest with both immunodeficiency and immune dysregulation. Approximately one-third of patients may present mild symptoms and remain stable under supportive care. The remaining patients may develop severe multiorgan autoimmunity requiring lifelong immunosuppressive treatment. Hematopoietic stem cell transplantation (HSCT) is potentially curable for patients with treatment-resistant immune dysregulation. Nevertheless, little experience is reported regarding the management of complications post-HSCT. We present case 1 (CTLA-4 haploinsufficiency) and case 2 (CTLA-4 insufficiency-like phenotype) manifesting with severe autoimmunity including cytopenia and involvement of the central nervous system (CNS), lung, and gut and variable impairment of humoral responses. Both patients underwent HSCT for which the main complications were persistent mixed chimerism, infections, and immune-mediated complications [graft-versus-host disease (GVHD) and nodular lung disease]. Detailed management and outcomes of therapeutic interventions post-HSCT are discussed. Concretely, post-HSCT abatacept and human leukocyte antigen (HLA)-matched sibling donor lymphocyte infusions may be used to increase T-cell donor chimerism with the aim of correcting the immune phenotype of CTLA-4 haploinsufficiency.
Collapse
Affiliation(s)
- Adriana Margarit-Soler
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| | - Àngela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Juan Torres Canizales
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Department of Immunology, Biomedical Diagnostic Center, Hospital Clínic of Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana García-García
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Júlia Marsal
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Sílvia Planas
- Department of Pathology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Sílvia Simó
- Infectious Diseases Unit, Department of Pediatrics, Hospital Sant Joan de Déu, Barcelona, Spain,Center for Biomedical Network Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Ana Esteve-Sole
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - María Suárez-Lledó Grande
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Isabel Badell
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Pediatric Haematology and Stem Cell Transplantation Unit, Pediatric Department, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Rovira Tarrats
- Bone Marrow Transplant Unit, Oncology Service, Hospital Sant Joan de Déu, Barcelona, Spain,Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Francesc Fernández-Avilés
- Hematopoietic Transplantation Unit, Hematology Department, Clinical Institute of Hematology and Oncology (ICMHO), Hospital Clínic de Barcelona, Barcelona, Spain,Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain,Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain,Clinical Immunology Program Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain,Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain,*Correspondence: Adriana Margarit-Soler, ; Laia Alsina,
| |
Collapse
|
4
|
Zhu F, Xu Y, Fan X, Zhang F, Wang D, Qiao J, Zhu S, Zhao K, Pan B, Chen C, Zeng L, Li Z, Xu K. Role of T cell immune response cDNA 7 on the pathology of acute graft-versus-host disease. Oncol Lett 2020; 20:300. [PMID: 33101494 PMCID: PMC7577082 DOI: 10.3892/ol.2020.12163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/18/2020] [Indexed: 11/06/2022] Open
Abstract
Activation of T lymphocytes is the initiating factor of the occurrence of acute graft-versus-host disease (aGVHD), and cytotoxic T lymphocyte antigen-4 (CTLA-4) is the inhibitory receptor for activating T cells. T cell immune response cDNA 7 (TIRC7) is considered an upstream regulator of CTLA-4; however, little is understood regarding the effects of TIRC7 on the regulation of CTLA-4 in aGVHD. The purpose of the present study was to evaluate the regulatory effects of TIRC7 on aGVHD, mainly in the pathology. Recipient mice were exposed to a preconditioning dose of 7.5 Gy irradiation on the day of the transplantation and were divided into the following groups: Blank control group, bone marrow transplantation control group, total body irradiation group, mild-moderate aGVHD group and severe aGVHD group. According to the different administration of CTLA-4 and TIRC7 monoclonal antibodies, the mild-moderate and severe aGVHD groups were randomly divided into the hematopoietic stem cell transplantation (HSCT) and HSCT + CTLA-4/TIRC7 groups. Recipient mice were sacrificed at different time points post-HSCT for histopathological analysis by hematoxylin and eosin staining. Compared with the control and other experimental groups, the mice in the combined CTLA-4 and TIRC7 group exhibited ameliorated pathological injury, and lower pathology scores of the liver, lung and intestine. These data revealed that intraperitoneal injection of anti-TIRC7 and/or anti-CTLA-4 monoclonal antibody into mice could effectively alleviate the severity of aGVHD.
Collapse
Affiliation(s)
- Feng Zhu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Yanqiu Xu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaohui Fan
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Fan Zhang
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Dong Wang
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jianlin Qiao
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shengyun Zhu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kai Zhao
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Bin Pan
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chong Chen
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lingyu Zeng
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Blood Disease Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
5
|
Zhu F, Qiu T, Zhu S, Zhao K, Chen C, Qiao J, Pan B, Yan Z, Chen W, Liu Q, Wu Q, Cao J, Sang W, Zeng L, Sun H, Li Z, Xu K. TIRC7 inhibits Th1 cells by upregulating the expression of CTLA‑4 and STAT3 in mice with acute graft‑versus‑host disease. Oncol Rep 2020; 44:43-54. [PMID: 32319655 PMCID: PMC7254953 DOI: 10.3892/or.2020.7588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2020] [Indexed: 11/05/2022] Open
Abstract
In a previous study, it was demonstrated that T‑cell immune response cDNA 7 (TIRC7) levels reflect the efficacy of treatment of patients with acute graft‑versus‑host disease (GVHD). However, the pathogenesis of TIRC7 in acute GVHD remains poorly understood. Lymphocytes from patients with acute GVHD were selected as targeT cells, and the effects of TIRC7 on cytotoxic T lymphocyte antigen‑4 (CTLA‑4), T cell activation and cytokine secretion were observed by electroporation. A mouse model of acute GVHD was established; anti‑TIRC7 and anti‑CTLA‑4 monoclonal antibodies were intraperitoneally injected into recipient mice. Then, the effects of TIRC7 and CTLA‑4 on T cell activation and acute GVHD were monitored. After TIRC7 expression was downregulated, CTLA‑4 levels were decreased and STAT3 phosphorylation was reduced; conversely, the activation capacity of T lymphocytes was elevated, and the secretion of interferon‑γ and other cytokines was increased. The mice in the TIRC7 + CTLA‑4 co‑administration group exhibited the lowest acute GVHD scores, with the longest average survival time and shortest recovery time of hematopoietic reconstitution. In conclusion, the results indicated that TIRC7 may positively regulate the function of CTLA‑4 and inhibit T cell activation, thus suppressing the development and progression of acute GVHD.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Tingting Qiu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Shengyun Zhu
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kai Zhao
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Chong Chen
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jianlin Qiao
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Bin Pan
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhiling Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qiong Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qingyun Wu
- Laboratory of Transplant Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lingyu Zeng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Haiying Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
6
|
STAT3 Expression in Host Myeloid Cells Controls Graft-versus-Host Disease Severity. Biol Blood Marrow Transplant 2017; 23:1622-1630. [PMID: 28694183 DOI: 10.1016/j.bbmt.2017.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/27/2017] [Indexed: 02/04/2023]
Abstract
Professional antigen-presenting cells (APCs) are important modulators of acute graft-versus-host disease (GVHD). Although dendritic cells (DCs) are the most potent APC subset, other myeloid cells, especially macrophages (MFs) and neutrophils, recently have been shown to play a role in the severity of GVHD. The critical molecular mechanisms that determine the functions of myeloid cells in GVHD are unclear, however. Signal transducer and activator of transcription 3 (STAT3) is a master transcription factor that plays a crucial role in regulating immunity, but its role in MF biology and in acute GVHD remains unknown. To determine the impact of myeloid cell-specific expression of STAT3 on the severity of acute GVHD, we used myeloid cell-specific STAT3-deficient LysM-Cre/STAT3fl/- animals as recipients and donors in well-characterized experimental models of acute GVHD. We found that reduced expression of STAT3 in myeloid cells from the hosts, but not the donors, increased inflammation, increased donor T cell activation, and exacerbated GVHD. Our data demonstrate that STAT3 in host myeloid cells, such as MFs, dampens acute GVHD.
Collapse
|