1
|
Cortes-Santiago N, Deutsch G, Patel KR, Silva-Carmona M, Henderson C, Sartain SE, Bhar S, Pogoriler J. The Pathology of Pulmonary Disease After Pediatric Hematopoietic Stem Cell Transplantation. Am J Surg Pathol 2024; 48:1201-1214. [PMID: 39072367 DOI: 10.1097/pas.0000000000002267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Pulmonary complications continue to cause significant morbidity and mortality in posthematopoietic stem cell transplantation (HSCT) settings. The histopathology of pulmonary diseases in the post-HSCT context is poorly characterized, especially in the pediatric population. We sought to characterize the pathologic spectrum of pulmonary disease post-HSCT in a pediatric cohort. Fifty-six specimens, including 53 biopsy specimens, corresponding to 53 patients, were identified. Biopsy slides were reviewed and assigned to diagnostic categories (infectious, graft-versus-host disease, vasculopathy, indeterminate, and others) by consensus among 3 pediatric pulmonary pathologists, taking into consideration pathologic, clinical, radiologic, and laboratory findings. The most common diagnostic category was infection (n=20). Vasculopathy, mostly in the form of fibromyxoid intimal expansion, was very common in the entire cohort (n=26) and was the sole finding in a small subset of patients (n=5), with particularly poor outcomes. A subset of biopsies remained indeterminate (n=10), and the findings in this cohort were dominated by acute lung injury. The latter group had a poor prognosis, with a short biopsy-to-death interval. The overall clinicopathologic concordance was 40%, most commonly agreeing in the infectious category. Finally, wedge biopsies led to a change in management in 69% of cases versus 23% of limited procedures (i.e., core needle biopsies). Our results suggest that while infectious complications continue to be common post-HSCT, other findings such as vasculopathy and acute lung injury portend a particularly poor prognosis and should be actively sought and reported.
Collapse
Affiliation(s)
- Nahir Cortes-Santiago
- Department of Pediatrics, Section of Hematology, Baylor College of Medicine; Texas Children's Hospital, Houston, TX
| | - Gail Deutsch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Department of Laboratories, Seattle Children's Hospital, Seattle, WA
| | - Kalyani R Patel
- Department of Pediatrics, Section of Hematology, Baylor College of Medicine; Texas Children's Hospital, Houston, TX
| | - Manuel Silva-Carmona
- Department of Pediatrics, Division of Pulmonary Medicine, Baylor College of Medicine; Texas Children's Hospital, Houston, TX
| | - Carolyn Henderson
- Department of Pediatric Pulmonology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Sarah E Sartain
- Department of Pediatrics, Section of Hematology, Baylor College of Medicine; Texas Children's Hospital, Houston, TX
| | - Saleh Bhar
- Department of Pediatrics, Divisions of Hematology-Oncology and Critical Care Medicine, Pediatric Bone Marrow Transplantation and Cellular Therapy, Baylor College of Medicine; Texas Children's Hospital, Houston, TX
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
2
|
Tsakiris DA, Gavriilaki E, Chanou I, Meyer SC. Hemostasis and complement in allogeneic hematopoietic stem cell transplantation: clinical significance of two interactive systems. Bone Marrow Transplant 2024; 59:1349-1359. [PMID: 39004655 PMCID: PMC11452340 DOI: 10.1038/s41409-024-02362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT and how these changes may define clinical impact.
Collapse
Affiliation(s)
| | - Eleni Gavriilaki
- Second Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Chanou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece
| | - Sara C Meyer
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Castelli M, Micò MC, Grassi A, Algarotti A, Lussana F, Finazzi MC, Rambaldi B, Pavoni C, Rizzuto G, Tebaldi P, Vendemini F, Verna M, Bonanomi S, Biondi A, Balduzzi A, Rambaldi A, Gotti G. Safety and efficacy of narsoplimab in pediatric and adult patients with transplant-associated thrombotic microangiopathy: a real-world experience. Bone Marrow Transplant 2024; 59:1161-1168. [PMID: 38773280 PMCID: PMC11296948 DOI: 10.1038/s41409-024-02305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is a severe complication following hematopoietic stem cell transplantation (HSCT). No approved treatments are currently available. This study presents real-world data obtained with narsoplimab, a human immunoglobulin G4 monoclonal antibody that inhibits MASP-2, the effector enzyme of the lectin pathway of the complement system. Between January 2018 and August 2023, 20 (13 adult and 7 pediatric) patients diagnosed with TA-TMA received narsoplimab under an ongoing compassionate use program. The diagnosis was based on internationally defined criteria for pediatric and adult patients. Fifteen patients fulfilled the criteria recently established by an international consensus on TA-TMA. Nineteen patients exhibited high-risk characteristics. Thirteen patients (65%) responded to narsoplimab, achieving transfusion independence and significant clinical improvement. The one-hundred-day Overall Survival (OS) post-TA-TMA diagnosis was 70%, and 100% for responders. Narsoplimab proved to be effective and safe in the treatment of high-risk TA-TMA, with no increased infectious complications or other safety signals of concern across all age groups. The high response rates and the encouraging survival outcomes underscore the potential of narsoplimab as a valuable therapeutic option, particularly for high-risk cases.
Collapse
Affiliation(s)
- Marta Castelli
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Caterina Micò
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Grassi
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandra Algarotti
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Federico Lussana
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Chiara Finazzi
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Benedetta Rambaldi
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Paola Tebaldi
- Department of Pathology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | - Marta Verna
- Department of Pediatrics, Fondazione IRCCS San Gerardo, Monza, Italy
| | - Sonia Bonanomi
- Department of Pediatrics, Fondazione IRCCS San Gerardo, Monza, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Adriana Balduzzi
- Department of Pediatrics, Fondazione IRCCS San Gerardo, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
- Department of Oncology and Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
| | - Giacomo Gotti
- Department of Pediatrics, Fondazione IRCCS San Gerardo, Monza, Italy
| |
Collapse
|
4
|
Kafa K, Hoell JI. Transplant-associated thrombotic microangiopathy in pediatrics: incidence, risk factors, therapeutic options, and outcome based on data from a single center. Front Oncol 2024; 14:1399696. [PMID: 39050576 PMCID: PMC11266128 DOI: 10.3389/fonc.2024.1399696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Background Transplant-associated thrombotic microangiopathy (TA-TMA) is a critical complication of hematopoietic stem cell transplantation. Awareness about TA-TMA has increased in recent years, resulting in the implementation of TA-TMA screening in most centers. Methods Retrospective analysis of children who underwent autologous or allogeneic hematopoietic stem cell transplantation at our center between January 2018 and December 2022 was conducted to evaluate the incidence, clinical features, and outcomes of TA-TMA following the administration of different therapeutic options. Results A total of 45 patients comprised the study cohort, of whom 10 developed TA-TMA with a cumulative incidence of 22% by 100 days after transplantation. Patients with and without TA-TMA in our cohort displayed an overall survival of 80% and 88%, respectively (p = 0.48), and a non-relapse mortality of 0% and 5.7%, respectively (p = 0.12), at 1 year after transplantation. Risk factors for TA-TMA development included allogeneic transplantation and total body irradiation-based conditioning regime. Among the 10 patients with TA-TMA, 7 did not meet the high-risk criteria described by Jodele and colleagues. Of these seven patients, two responded to calcineurin-inhibitor withdrawal without further therapy and five developed multiorgan dysfunction syndrome and were treated with anti-inflammatory steroids (prednisone), and all responded to therapy. The three patients with high-risk TA-TMA were treated with complement blockade or prednisone, and all responded to therapy. Conclusion TA-TMA is a multifactorial complication with high morbidity rates. Patients with high-risk TA-TMA may benefit from complement blockade using eculizumab. No consensus has been reached regarding therapy for patients who do not meet high-risk criteria. Our analysis showed that these patients may respond to anti-inflammatory treatment with prednisone.
Collapse
Affiliation(s)
- Kinan Kafa
- Department of Pediatric Hematology and Oncology, University Hospital Halle (Saale), Halle, Germany
| | | |
Collapse
|
5
|
Ito S, Saito A, Sakurai A, Watanabe K, Karakawa S, Miyamura T, Yokosuka T, Ueki H, Goto H, Yagasaki H, Kinoshita M, Ozeki M, Yokoyama N, Teranishi H. Eculizumab treatment in paediatric patients diagnosed with aHUS after haematopoietic stem cell transplantation: a HSCT-TMA case series from Japanese aHUS post-marketing surveillance. Bone Marrow Transplant 2024; 59:315-324. [PMID: 38102212 PMCID: PMC10920193 DOI: 10.1038/s41409-023-02161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Haematopoietic stem-cell transplantation (HSCT)-associated thrombotic microangiopathy (HSCT-TMA) is a serious complication with high mortality. Accumulating evidence suggests that complement dysregulation is potentially involved in the development of HSCT-TMA. We retrospectively analysed the clinical characteristics and outcomes of thirteen paediatric patients who were diagnosed with atypical haemolytic uremic syndrome and treated with eculizumab to manage HSCT-TMA during post-marketing surveillance in Japan. The median time from HSCT to TMA was 31 days (Interquartile range, IQR;21-58) and the median doses of eculizumab was three (IQR;2-5). Seven patients (54%) were alive at the last follow-up while six died due to complications related to HSCT. Six of seven survivors initiated eculizumab after insufficient response to plasma therapy. Following eculizumab treatment, median platelet counts and LDH levels in all survivors significantly improved and renal function improved in 4/7 patients. All survivors possessed potential risk factors of complement overactivation. During the follow-up period after eculizumab discontinuation (median;111.5 days, IQR;95-555), no TMA recurrence was observed. In this analysis, eculizumab showed benefit in over half of this paediatric patient population. Ongoing clinical studies are expected to optimize the treatment regimen of terminal complement pathway inhibitor, and it may become a therapeutic option for paediatric HSCT-TMA in the future.
Collapse
Affiliation(s)
- Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan.
| | - Atsuro Saito
- Department of Hematology and Oncology, Children's Cancer Center, Kobe Children's Hospital, 1-6-7 Minatojimaminamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | - Ayako Sakurai
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Iida-cho, Narita, Chiba, 286-8523, Japan
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, 860 Urushiyama, Aoi-ku, Shizuoka, 420-8660, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-15 Yamadaoka Suita-shi, Osaka, 565-0871, Japan
| | - Tomoko Yokosuka
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Hideaki Ueki
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Iida-cho, Narita, Chiba, 286-8523, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, 2-138-4 Mutsukawa, Minami-ku, Yokohama, Kanagawa, 232-8555, Japan
| | - Hiroshi Yagasaki
- Pediatrics, Nihon University Itabashi hospital, 30-1 Ohyaguchi-kamicho, Itabashi-ku, Tokyo, 173- 8610, Japan
| | - Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Norifumi Yokoyama
- Department of Pediatrics, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu, Gifu, 500-8513, Japan
| | | |
Collapse
|
6
|
Schoettler ML, French K, Harris A, Bryson E, Deeb L, Hudson Z, Obordo J, Chandrakasan S, Parikh S, Watkins B, Stenger E, Qayed M, Chonat S, Westbrook A, Switchenko J, Williams KM. D-dimer and sinusoidal obstructive syndrome-novel poor prognostic features of thrombotic microangiopathy in children after hematopoietic cellular therapy in a single institution prospective cohort study. Am J Hematol 2024; 99:370-379. [PMID: 38164997 DOI: 10.1002/ajh.27186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 01/03/2024]
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is a common, severe complication of allogeneic hematopoietic cellular therapy (HCT). Even when treated in many studies, morbidity and mortality rates are high. This prospective single-institution cohort study serially enrolled all allogeneic HCT recipients from August 2019-August 2022. Patients were universally screened for TA-TMA and intermediate and high-risk patients were immediately treated with eculizumab. Sub-distribution cox-proportional hazards models were used to identify sub-distribution hazard ratios (sHR) for multi-organ dysfunction (MOD) and non-relapse-related mortality (NRM). Of 136 patients, 36 (26%) were diagnosed with TA-TMA and 21/36 (58%) developed MOD, significantly more than those without TA-TMA, (p < .0001). Of those with TA-TMA, 18 (50%) had high-risk TA-TMA (HR-TA-TMA), 11 (31%) had intermediate-risk TA-TMA (IR-TA-TMA), and 8 (22%) had standard risk (SR-TA-TMA). Twenty-six were treated with eculizumab (1/8 SR, 7/11 IR, and 18/18 HR). Elevated D-dimer predicted the development of MOD (sHR 7.6, 95% confidence interval [CI] 1.8-32.3). Children with concurrent sinusoidal obstructive syndrome (SOS) and TA-TMA had an excess risk of MOD of 34% and data supported a biologic interaction. The adjusted NRM risk was significantly higher in the TA-TMA patients (sHR 10.54, 95% CI 3.8-29.2, p < .0001), despite prompt treatment with eculizumab. Significant RF for NRM in TA-TMA patients included SOS (HR 2.89, 95% 1.07-7.80) and elevated D-dimer (HR 3.82, 95% CI 1.14-12.84). An unrelated donor source and random urine protein to creatine ratio ≥2 mg/mg were significantly associated with no response to eculizumab (odds ratio 15, 95% CI 2.0-113.6 and OR 6.5, 95% CI 1.1-38.6 respectively). TA-TMA was independently associated with NRM despite early diagnosis and treatment with eculizumab in this large pediatric transplant cohort. Prognostic implications of D-dimer in TA-TMA merit further investigation as this is a readily accessible biomarker. Concurrent SOS is an exclusion criterion of many ongoing clinical trials, but these data highlight these patients could benefit from novel therapeutic approaches. Multi-institutional clinical trials are needed to understand the impact of TA-TMA-targeted therapies.
Collapse
Affiliation(s)
- Michelle L Schoettler
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Kaley French
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Anora Harris
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Elyse Bryson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Laura Deeb
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Zuri Hudson
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Jeremy Obordo
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Suhag Parikh
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Benjamin Watkins
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Elizabeth Stenger
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Muna Qayed
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | - Adrianna Westbrook
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| | | | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Pediatric Hematopoietic Cellular Therapy, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Schoettler ML, Dandoy CE, Harris A, Chan M, Tarquinio KM, Jodele S, Qayed M, Watkins B, Kamat P, Petrillo T, Obordo J, Higham CS, Dvorak CC, Westbrook A, Zinter MS, Williams KM. Diffuse alveolar hemorrhage after hematopoietic cell transplantation- response to treatments and risk factors for mortality. Front Oncol 2023; 13:1232621. [PMID: 37546403 PMCID: PMC10399223 DOI: 10.3389/fonc.2023.1232621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Diffuse alveolar hemorrhage (DAH) is a life-threatening complication of hematopoietic cellular therapy (HCT). This study aimed to evaluate the effect of DAH treatments on outcomes using data from consecutive HCT patients clinically diagnosed with DAH from 3 institutions between January 2018-August 2022. Endpoints included sustained complete response (sCR) defined as bleeding cessation without recurrent bleeding, and non-relapse mortality (NRM). Forty children developed DAH at a median of 56.5 days post-HCT (range 1-760). Thirty-five (88%) had at least one concurrent endothelial disorder, including transplant-associated thrombotic microangiopathy (n=30), sinusoidal obstructive syndrome (n=19), or acute graft versus host disease (n=10). Fifty percent had a concurrent pulmonary infection at the time of DAH. Common treatments included steroids (n=17, 25% sCR), inhaled tranexamic acid (INH TXA,n=26, 48% sCR), and inhaled recombinant activated factor VII (INH fVIIa, n=10, 73% sCR). NRM was 56% 100 days after first pulmonary bleed and 70% at 1 year. Steroid treatment was associated with increased risk of NRM (HR 2.25 95% CI 1.07-4.71, p=0.03), while treatment with INH TXA (HR 0.43, 95% CI 0.19- 0.96, p=0.04) and INH fVIIa (HR 0.22, 95% CI 0.07-0.62, p=0.005) were associated with decreased risk of NRM. Prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Michelle L. Schoettler
- Division of Blood and Marrow Transplantation, Children’s Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, GA, United States
| | - Christopher E. Dandoy
- Cincinnati Children’s Medical Center, Division of Bone Marrow Transplantation and Immune Deficiency, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Anora Harris
- Division of Blood and Marrow Transplantation, Children’s Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, GA, United States
| | - Marilynn Chan
- Pediatric Pulmonary Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Keiko M. Tarquinio
- Division of Critical Care Medicine, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Sonata Jodele
- Cincinnati Children’s Medical Center, Division of Bone Marrow Transplantation and Immune Deficiency, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Muna Qayed
- Division of Blood and Marrow Transplantation, Children’s Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, GA, United States
| | - Benjamin Watkins
- Division of Blood and Marrow Transplantation, Children’s Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, GA, United States
| | - Pradip Kamat
- Division of Critical Care Medicine, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Toni Petrillo
- Division of Critical Care Medicine, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | - Jeremy Obordo
- Division of Blood and Marrow Transplantation, Children’s Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, GA, United States
| | - Christine S. Higham
- Pediatric Allergy, Immunology, and Bone Marrow Transplant Division, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher C. Dvorak
- Pediatric Allergy, Immunology, and Bone Marrow Transplant Division, University of California, San Francisco, San Francisco, CA, United States
| | - Adrianna Westbrook
- Department of Pediatrics, Pediatric Biostatistics Core, Emory University, Atlanta, GA, United States
| | - Matt S. Zinter
- Pediatric Allergy, Immunology, and Bone Marrow Transplant Division, University of California, San Francisco, San Francisco, CA, United States
- Pediatric Critical Care, University of California, San Francisco, San Francisco, CA, United States
| | - Kirsten M. Williams
- Division of Blood and Marrow Transplantation, Children’s Healthcare of Atlanta, Aflac Blood and Cancer Disorders Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Cortes-Santiago N, Patel KR, Wu H, Sartain SE, Bhar S, Silva-Carmona M, Pogoriler J. Pulmonary Histopathologic Findings in Pediatric Patients After Hematopoietic Stem Cell Transplantation: An Autopsy Study. Pediatr Dev Pathol 2023; 26:362-373. [PMID: 37165556 DOI: 10.1177/10935266231170101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Pathologic characterization of pulmonary complications following hematopoietic stem cell transplantation (HSCT) is limited. We describe lung findings in pediatric patients who died following HSCT and attempt to identify potential clinical associations. METHODS Pathology databases at Texas Children's Hospital and the Children's Hospital of Philadelphia were queried (2013-2018 CHOP and 2017-2018 TCH). Electronic medical records and slides were reviewed. RESULTS Among 29 patients, 19 received HSCT for hematologic malignancy, 8 for non-malignant hematologic disorders, and 2 for metastatic solid tumors. Twenty-five patients (86%) showed 1 or more patterns of acute and organizing lung injury. Sixty-two percent had microvascular sclerosis, with venous involvement noted in most cases and not correlating with clinical history of pulmonary hypertension, clinical transplant-associated thrombotic microangiopathy, irradiation, or graft-versus-host disease. Features suggestive of graft-versus-host-disease were uncommon: 6 patients had lymphocytic bronchiolitis, and only 2 patients had evidence of bronchiolitis obliterans (both clinically unexpected), both with a mismatched unrelated donor transplant. CONCLUSIONS Acute and subacute alveolar injury (diffuse alveolar damage or organizing pneumonia) is common in pediatric patients who died following HSCT and is difficult to assign to a specific etiology. Microvascular sclerosis was frequent and did not correlate with a single distinct clinical feature.
Collapse
Affiliation(s)
- Nahir Cortes-Santiago
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Kalyani R Patel
- Department of Pathology and Immunology, Texas Children's Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Wu
- Department of Pathology, Yale School of Medicine and Yale New Haven Hospital, New Haven, CT, USA
| | - Sarah E Sartain
- Department of Pediatrics, Section of Hematology/Oncology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology and Critical Care Medicine, Bone Marrow Transplantation, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Manuel Silva-Carmona
- Department of Pediatrics, Section of Pulmonology, Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Jennifer Pogoriler
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
9
|
Dandoy CE, Tsong WH, Sarikonda K, McGarvey N, Perales MA. Systematic Review of Signs and Symptoms Associated with Hematopoietic Stem Cell Transplantation-Associated Thrombotic Microangiopathy. Transplant Cell Ther 2023; 29:282.e1-282.e9. [PMID: 36592719 PMCID: PMC11284894 DOI: 10.1016/j.jtct.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a serious complication of the transplantation process that has been consistently associated with substantially greater morbidity and mortality compared with HSCT recipients who do not develop TMA. This study aimed to systematically review published signs and symptoms of HSCT-TMA and compare patients with HSCT-TMA and HSCT recipients who do not develop TMA. Publications were identified using multiple search term variations for stem cell transplantation that were entered into the PubMed, Embase, and CINAHL databases. Two reviewers screened references at the abstract level before reviewing full texts against inclusion and exclusion criteria using a PICOS-T framework. Complication proportions were grouped by organ class and then by complication type. Meta-analyses were conducted using a random-effects model in RevMan 5.4. After 2338 references were screened, a total of 30 studies were included in our analyses. The majority of studies (n = 23; 14 adult, 5 pediatric, 4 both) examined allogeneic transplantations only. Four studies examined autologous transplantation only (all pediatric), and 3 studies included both transplantation types (all pediatric). HSCT-TMA was associated with renal dysfunction (odds ratio [OR], 11.04 for adult, allogeneic and 7.35 for pediatric, all transplantations), renal failure (OR, 2.41 for adult and pediatric, allogeneic), renal replacement therapy (OR, 6.99 for pediatric, all transplantations and 60.85 for adult, allogeneic), and hypertension (OR, 5.44 for adult, allogeneic). HSCT-TMA was associated with respiratory failure (OR, 8.00 for adult and pediatric, allogeneic), pulmonary hypertension (OR, 9.86 for adult and pediatric, allogeneic), need for pleurocentesis (OR, 5.45 for pediatric, all transplantations), noninvasive ventilation (OR, 6.15 for pediatric, all transplantations), and invasive mechanical ventilation (OR, 5.18 for pediatric, all transplantations). Additionally, HSCT-TMA was associated with neurologic symptoms (OR, 2.28 for adult and pediatric, allogeneic), pericardial effusion (OR, 2.56 for adult and pediatric, allogeneic and 8.76 for pediatric, all transplantations), liver injury (OR, 3.87 for adult, allogeneic), infection (OR, 9.25 for adult, allogeneic; 2.06 for pediatric, all transplantations), gastrointestinal (GI) bleeding (OR, 7.78 for adult and pediatric, allogeneic), and acute graft-versus-host disease grade III-IV (OR, 3.29 for adult and pediatric, allogeneic). This study represents the first systematic review of HSCT-TMA signs and symptoms. Current diagnostic criteria systems involve laboratory markers for multiorgan dysfunction, including renal dysfunction, liver injury, and general tissue damage. Diagnostic criteria include neurologic symptoms, increased need for transfusions, and hypertension. This study identified additional associations with HSCT-TMA, including increased pulmonary hypertension, respiratory failure, fever, GI bleeding, and pericardial effusion. These symptoms might be included for evaluation in future diagnostic criteria and current practice.
Collapse
Affiliation(s)
- Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Wan H Tsong
- Omeros Corporation, Health Economics and Outcomes Research, Medical Affairs, Seattle, Washington
| | - Kaushik Sarikonda
- BluePath Solutions, Strategic Health Economics and Outcomes Research, Los Angeles, California
| | - November McGarvey
- BluePath Solutions, Strategic Health Economics and Outcomes Research, Los Angeles, California
| | - Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
10
|
Molecular Advances in Sinusoidal Obstruction Syndrome/Veno-Occlusive Disease. Int J Mol Sci 2023; 24:ijms24065620. [PMID: 36982695 PMCID: PMC10051970 DOI: 10.3390/ijms24065620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD) detected in the liver has been considered a severe complication of hematopoietic stem cell transplantation (HSCT). SOS/VOD is characterized by hepatomegaly, right upper quadrant pain, jaundice, and ascites. The severe forms of the disease may result in multi-organ dysfunction (MOD) with a high mortality rate (>80%). The development of SOS/VOD can be rapid and unpredictable. Therefore, early identification and severity assessment is crucial in facilitating prompt diagnosis and timely treatment. Effective treatment and potential prophylaxis with defibrotide highlight the need for characterizing a sub-group of patients at high risk for SOS/VOD. Moreover, antibodies that are conjugated with calicheamicin, gemtuzumab, and inotuzumab ozogamicin, have led to renewed interest in this syndrome. Evaluation and management of serious adverse events associated with gemtuzumab and inotuzumab ozogamicin are recommended. We review hepatic-, transplant- and patient-related risk factors, criteria for diagnosis and grading classification, and SOS/VOD potential biomarkers. Furthermore, we examine pathogenesis, clinical presentation, diagnostic criteria, risk factors, prophylaxis, and treatment of SOS/VOD occurring post HSCT. Moreover, we aim to provide an up-to-date summary of molecular advances in the diagnosis and management of SOS/VOD. We performed a comprehensive review of the literature and examined the recently available data, mostly using the PubMed and Medline search engines for original articles published over the last decade. In the era of precision medicine, our review provides up-to-date knowledge of genetic or sera markers for SOS/VOD with the goal of identifying a subset of high-risk patients.
Collapse
|
11
|
Thrombotic microangiopathy following chimeric antigen receptor T-cell therapy. Clin Nephrol Case Stud 2023; 11:17-21. [PMID: 36844260 PMCID: PMC9948748 DOI: 10.5414/cncs111045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/09/2022] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Thrombotic microangiopathy (TMA) is characterized by microangiopathic hemolytic anemia and is associated with a variety of conditions and following hematopoietic stem cell transplantation. Chimeric antigen receptor T-cell (CAR-T) therapy is a novel immunotherapeutic approach using genetically modified autologous T cells. CAR-T therapy has been linked with injuries to vascular endothelium, but a direct association between CAR-T and TMA has not been reported. CASE REPORTS Two cases of TMAs following CAR-T treatment are reported here. In each case, clinical evidence of kidney injury, thrombocytopenia, and hemolytic anemia became apparent 2 - 3 months following CAR-T infusion. We describe the clinical course, management, and outcome of these experiences. DISCUSSION/CONCLUSION CAR-T cell therapy-associated TMA (CAR-T TMA) appear to be an entity that shares overlapping clinical features with transplant-associated TMA (TA-TMA). Based on our preliminary clinical observations, we discuss the best clinical diagnosis/classification criteria, underlying pathophysiology, and the implication of the apparently self-limiting course. With increasing use of CAR-T cell treatment in hematologic malignancies, systematic studies will be necessary to improve management of CAR-T TMA.
Collapse
|
12
|
Sabulski A, Jodele S. Peering into the darkness of drug-induced thrombotic microangiopathy: complement, are you in there? J Gastrointest Oncol 2023; 14:468-471. [PMID: 36915433 PMCID: PMC10007918 DOI: 10.21037/jgo-2022-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 03/03/2023] Open
Affiliation(s)
- Anthony Sabulski
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
13
|
Schoettler ML, Saldana BD, Berkenkamp L, Chonat S, Watkins B, Rotz SJ, Simons D, Graf E, Rossi C, Cheng J, Hammers YA, Rytting H, Williams KM. Pulmonary Manifestations and Vascular Changes in Pediatric Transplantation-Associated Thrombotic Microangiopathy. Transplant Cell Ther 2023; 29:45.e1-45.e8. [PMID: 36202334 PMCID: PMC11003462 DOI: 10.1016/j.jtct.2022.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/08/2022]
Abstract
Although transplant-associated thrombotic microangiopathy (TA-TMA) commonly complicates pediatric hematopoietic cellular therapy (HCT), pulmonary manifestations and histology of TA-TMA (pTA-TMA) are rarely reported, with scant data available on timing, risk factors, pathogenesis, and outcomes. Pulmonary hypertension (PH) and diffuse alveolar hemorrhage (DAH) are recognized manifestations of pTA-TMA. The objective of this study was to characterize the pathologic findings, outcomes, and coincident diagnoses preceding biopsy-proven pTA-TMA. In Institutional Review Board- approved retrospective studies, available lung tissue was reviewed at 2 institutions between January 2016 and August 2021 to include those with pulmonary vascular pathology. Histologic features of pTA-TMA were present in 10 children with prior respiratory decline after an allogeneic HCT (allo-HCT; n = 9) or autologous HCT (n = 1). Pathologic lesions included muscular medialization, microthrombi, and red cell fragments, in addition to perivasculitis and intimal arteritis. Parenchymal findings included diffuse alveolar damage, organizing pneumonia, and plasmocytic infiltrates. Six children were clinically diagnosed with TA-TMA, and all were treated with eculizumab, at a median of 2.5 days after clinical diagnosis (range, 0 to 11 days). Four were identified postmortem. Coincident pulmonary infection was confirmed in 8 of the 10 patients. Five allo-HCT recipients (56%) experienced graft-versus-host disease (GVHD; 4 acute, 1 chronic) prior to the onset of respiratory symptoms. Two patients (20%) had clinically recognized DAH, although 9 (90%) had evidence of DAH on histology. Although all 10 patients underwent echocardiography at the time of symptom onset and 9 had serial echocardiograms, only 2 patients had PH detected. Treatments varied and included sildenafil (n = 3), steroids (n = 1), and eculizumab (n = 6). One patient was alive at the time of this report; the remaining 9 died, at a median of 52 days after onset of respiratory symptoms (range 4 to 440 days) and a median of 126 days post-HCT (range, 13 to 947 days). pTA-TMA is a heterogeneous histologic disease characterized by arteriolar inflammation, microthrombi, and often DAH. pTA-TMA presented with respiratory decline with systemic TA-TMA in all patients. Clinicians should maintain a high degree of suspicion for DAH in patients with TA-TMA and pulmonary symptoms. Coincident rates of GVHD and pulmonary infections were high, whereas the rate of PH identified by echocardiography was 20%. Outcomes were poor despite early use of eculizumab and other therapies. Our data merit consideration of pTA-TMA in patients with acute respiratory decline in the setting of systemic TA-TMA, GVHD, and infection. Investigation of additional therapies for pTA-TMA is needed as well. © 2022 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.
Collapse
Affiliation(s)
- Michelle L Schoettler
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia.
| | - Blachy D Saldana
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC
| | - Lisa Berkenkamp
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Benjamin Watkins
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| | - Seth J Rotz
- Department of Pediatric Hematology, Oncology and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Dawn Simons
- Children's Healthcare of Atlanta, Emory University, Pediatric Pulmonology, Atlanta, Georgia
| | - Emily Graf
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC
| | | | - Jinjun Cheng
- Division of Pathology, Children's National Hospital, Washington, DC
| | - Yuki A Hammers
- Children's Healthcare of Atlanta, Department of Pathology, Atlanta, Georgia
| | - Heather Rytting
- Children's Healthcare of Atlanta, Department of Pathology, Atlanta, Georgia
| | - Kirsten M Williams
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, Georgia
| |
Collapse
|
14
|
Michael M, Bagga A, Sartain SE, Smith RJH. Haemolytic uraemic syndrome. Lancet 2022; 400:1722-1740. [PMID: 36272423 DOI: 10.1016/s0140-6736(22)01202-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/05/2022]
Abstract
Haemolytic uraemic syndrome (HUS) is a heterogeneous group of diseases that result in a common pathology, thrombotic microangiopathy, which is classically characterised by the triad of non-immune microangiopathic haemolytic anaemia, thrombocytopenia, and acute kidney injury. In this Seminar, different causes of HUS are discussed, the most common being Shiga toxin-producing Escherichia coli HUS. Identifying the underlying thrombotic microangiopathy trigger can be challenging but is imperative if patients are to receive personalised disease-specific treatment. The quintessential example is complement-mediated HUS, which once carried an extremely high mortality but is now treated with anti-complement therapies with excellent long-term outcomes. Unfortunately, the high cost of anti-complement therapies all but precludes their use in low-income countries. For many other forms of HUS, targeted therapies are yet to be identified.
Collapse
Affiliation(s)
- Mini Michael
- Division of Pediatric Nephrology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sarah E Sartain
- Pediatrics-Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Richard J H Smith
- Department of Otolaryngology, Pediatrics and Molecular Physiology & Biophysics, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Yang LP, Liu X, Zhang XH. [Advances in the diagnosis and management of transplant-associated thrombotic microangiopathy]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:693-699. [PMID: 34547882 PMCID: PMC8501284 DOI: 10.3760/cma.j.issn.0253-2727.2021.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/02/2022]
Affiliation(s)
- L P Yang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China
| | - X Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China
| | - X H Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing 100044, China
| |
Collapse
|
16
|
Jodele S, Sabulski A. Transplant-associated thrombotic microangiopathy: elucidating prevention strategies and identifying high-risk patients. Expert Rev Hematol 2021; 14:751-763. [PMID: 34301169 DOI: 10.1080/17474086.2021.1960816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (TA-TMA) is a severe complication of transplant. TA-TMA is a multifactorial disease where generalized endothelial dysfunction leads to microangiopathic hemolytic anemia, intravascular platelet activation, and formation of microthrombi leading to end-organ injury. It is essential to identify patients at risk for this complication and to implement early interventions to improve TA-TMA associated transplant outcomes. AREAS COVERED Recognition of TA-TMA and associated multi-organ injury, risk predictors, contributing factors, differential diagnosis and targeting complement pathway in TA-TMA by summarizing peer reviewed manuscripts. EXPERT OPINION TA-TMA is an important transplant complication. Diagnostic and risk criteria are established in children and young adults and risk-based targeted therapies have been proposed using complement blockers. The immediate goal is to extend this work into adult stem cell transplant recipients by implementing universal TA-TMA screening practices. This will facilitate early TA-TMA diagnosis and targeted interventions, which will further improve survival. While complement blocking therapy is effective, about one third of patients are refractory to treatment and those patients commonly die. The next hurdle for the field is identifying reasons for failure, optimizing strategies for complement modifying therapy and searching for additional targetable pathways of endothelial injury.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Anthony Sabulski
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
17
|
A pragmatic multi-institutional approach to understanding transplant-associated thrombotic microangiopathy after stem cell transplant. Blood Adv 2021; 5:1-11. [PMID: 33570619 DOI: 10.1182/bloodadvances.2020003455] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/22/2020] [Indexed: 12/26/2022] Open
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is a severe complication of hematopoietic stem cell transplantation (HSCT). A single-center prospective screening study has shown that the incidence of TA-TMA is much higher than prior retrospective studies that did not systematically screen. These data have not been replicated in a multicenter study. Our objective was to determine the incidence and risk factors for TA-TMA and compare outcomes of pediatric HSCT patients with and without TA-TMA. Patients were prospectively screened for TA-TMA at participating centers using a simple to implement and inexpensive strategy from the start of the preparative regimen through day +100. TA-TMA was diagnosed if ≥4 of 7 laboratory/clinical markers diagnostic for TA-TMA were present concurrently or if tissue histology showed TA-TMA. A total of 614 patients (359 males; 58%) received prospective TA-TMA screening at 13 pediatric centers. TA-TMA was diagnosed in 98 patients (16%) at a median of 22 days (interquartile range, 14-44) posttransplant. Patients with TA-TMA had significantly increased bloodstream infections (38% [37/98] vs 21% [107/51], P ≤ .001), mean total hospitalization days (68; 95% confidence interval [CI], 63-74 vs 43; 95% CI, 41-45; P ≤ .001), and number of days spent in the intensive care unit (10.1; 95% CI, 6.4-14; vs 1.6; 95% CI, 1.1-2.2; P ≤ .001) in the first 100 days after HSCT compared with patients without TA-TMA. Overall survival was significantly higher in patients without TA-TMA (93%; 490/516) compared with patients with TA-TMA (78%; 76/98) (P ≤ .001). These data support the need for systematic screening for TA-TMA and demonstrate the feasibility and efficacy of an easy to implement strategy to do so.
Collapse
|
18
|
Risk factors for transplant-associated thrombotic microangiopathy and mortality in a pediatric cohort. Blood Adv 2021; 4:2536-2547. [PMID: 32516415 DOI: 10.1182/bloodadvances.2019001242] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/28/2020] [Indexed: 11/20/2022] Open
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is a well-recognized complication of hematopoietic cell transplantation (HCT). Diagnosis is challenging and in the absence of a tissue biopsy, TA-TMA is provisionally diagnosed by meeting clinical criteria. In this study, we describe the prevalence, outcomes, and risk factors for meeting 2 different diagnostic criteria for TA-TMA and for increased transplant-related mortality (TRM). In this retrospective study of 307 pediatric HCT patients, records were reviewed for the first 100 days after HCT. Patients who were diagnosed with TA-TMA by a provider during this time were included. In addition, the Cho et al criteria (2010) and Jodele et al (2014) TA-TMA criteria were applied retrospectively. Eight patients (2.6%) were diagnosed with TA-TMA by their provider. However, on retrospective review, 20% and 36% met the Cho and Jodele criteria for TA-TMA, respectively. Overall survival was significantly worse (P < .0001) and TRM was significantly higher in patients who met criteria for TA-TMA (MC-TA-TMA) (P < .0001). After controlling for comorbid conditions, MC-TA-TMA (hazard ratio [HR], 10.9; P = .0001) and grade 3/4 acute graft-versus-host-disease (aGVHD) (HR 3.5; P = .01) remained independently associated with increased TRM. Among allogeneic HCT recipients, features associated with an increased risk for MC-TA-TMA included ≥2 HCT, concurrent grade 3/4 aGVHD and concurrent infections. Among patients who MC-TA-TMA, LDH ≥2 times the upper limit of normal (P = .001), the need for ≥2 antihypertensive medications (P < .0001), and acute kidney injury (P = .003) were associated with significantly increased TRM.
Collapse
|
19
|
Valério P, Barreto JP, Ferreira H, Chuva T, Paiva A, Costa JM. Thrombotic microangiopathy in oncology - a review. Transl Oncol 2021; 14:101081. [PMID: 33862523 PMCID: PMC8065296 DOI: 10.1016/j.tranon.2021.101081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Thrombotic microangiopathy is a syndrome triggered by a wide spectrum of situations, some of which are specific to the Oncology setting. It is characterized by a Coombs-negative microangiopathic haemolytic anemia, thrombocytopenia and organ injury, with characteristic pathological features, resulting from platelet microvascular occlusion. TMA is rare and its cancer-related subset even more so. TMA triggered by drugs is the most common within this group, including classic chemotherapy and the latest targeted therapies. The neoplastic disease itself and hematopoietic stem-cell transplantation could also be potential triggers. Evidence-based medical guidance in the management of cancer-related TMA is scarce and the previous knowledge about primary TMA is valuable to understand the disease mechanisms and the potential treatments. Given the wide spectrum of potential causes for TMA in cancer patients, the aim of this review is to gather the vast information available. For each entity, pathophysiology, clinical features, therapeutic approaches and prognosis will be covered.
Collapse
Affiliation(s)
- Patrícia Valério
- Nephrology Department, Setúbal Hospital Center, Portugal Rua Camilo Castelo Branco 175, 2910-549 Setúbal, Portugal.
| | - João Pedro Barreto
- Laboratory Diagnosis Department, Portuguese Oncology Institute of Porto, Portugal Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Hugo Ferreira
- Nephrology Department, Portuguese Oncology Institute of Porto, Portugal Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Teresa Chuva
- Nephrology Department, Portuguese Oncology Institute of Porto, Portugal Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Ana Paiva
- Nephrology Department, Portuguese Oncology Institute of Porto, Portugal Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - José Maximino Costa
- Nephrology Department, Portuguese Oncology Institute of Porto, Portugal Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
20
|
Zhang R, Zhou M, Qi J, Miao W, Zhang Z, Wu D, Han Y. Efficacy and Safety of Eculizumab in the Treatment of Transplant-Associated Thrombotic Microangiopathy: A Systematic Review and Meta-Analysis. Front Immunol 2021; 11:564647. [PMID: 33552043 PMCID: PMC7856300 DOI: 10.3389/fimmu.2020.564647] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
Background Transplant-associated thrombotic microangiopathy (TA-TMA) is a dangerous and life-threatening complication in patients undergoing hematopoietic stem cell transplantation (HSCT). Eculizumab has been used in the treatment of TA-TMA, and several studies have confirmed the benefit of Eculizumab in patients with TA-TMA. However, the results remain controversial. We conducted a systematic review and meta-analysis to evaluate the efficacy and safety of Eculizumab for TA-TMA. Materials and Methods We searched PubMed and Embase for studies on the efficacy and safety of Eculizumab in TA-TMA patients. Efficacy outcomes consisted of overall response rate (ORR), complete response rate (CRR), and survival rate at the last follow-up (SR). Safety outcomes were adverse events (AEs), including infection, sepsis, impaired liver function, infusion reactions, and death. Results A total of 116 patients from six studies were subjected to meta-analysis. The pooled estimates of ORR, CRR, and SR for TA-TMA patients were 71% (95% CI: 58-82%), 32% (95% CI: 11-56%), and 52% (95% CI: 40-65%), respectively. Only one patient presented with a severe rash, and infection was the most common AEs. The main causes of death were infection and GvHD. Conclusion Current evidence suggests that Eculizumab improves SR and ORR in patients with TA-TMA and that Eculizumab is well tolerated. However, the number of studies is limited, and the findings are based mainly on data from observational studies. Higher quality randomized controlled trials and more extensive prospective cohort studies are needed.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Meng Zhou
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Jiaqian Qi
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Wenjing Miao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Ziyan Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, Suzhou, China
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Suzhou, China.,Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,National Clinical Research Center for Hematologic Diseases, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Gavriilaki E, Sakellari I, Gavriilaki M, Anagnostopoulos A. A New Era in Endothelial Injury Syndromes: Toxicity of CAR-T Cells and the Role of Immunity. Int J Mol Sci 2020; 21:E3886. [PMID: 32485958 PMCID: PMC7312228 DOI: 10.3390/ijms21113886] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T cells) has been recently approved for patients with relapsed/refractory B-lymphoproliferative neoplasms. Along with great efficacy in patients with poor prognosis, CAR-T cells have been also linked with novel toxicities in a significant portion of patients. Cytokine release syndrome (CRS) and neurotoxicity present with unique clinical phenotypes that have not been previously observed. Nevertheless, they share similar characteristics with endothelial injury syndromes developing post hematopoietic cell transplantation (HCT). Evolution in complement therapeutics has attracted renewed interest in these life-threatening syndromes, primarily concerning transplant-associated thrombotic microangiopathy (TA-TMA). The immune system emerges as a key player not only mediating cytokine responses but potentially contributing to endothelial injury in CAR-T cell toxicity. The interplay between complement, endothelial dysfunction, hypercoagulability, and inflammation seems to be a common denominator in these syndromes. As the indications for CAR-T cells and patient populations expand, there in an unmet clinical need of better understanding of the pathophysiology of CAR-T cell toxicity. Therefore, this review aims to provide state-of-the-art knowledge on cellular therapies in clinical practice (indications and toxicities), endothelial injury syndromes and immunity, as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| | - Ioanna Sakellari
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| | - Maria Gavriilaki
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Achilles Anagnostopoulos
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| |
Collapse
|
22
|
Jodele S, Medvedovic M, Luebbering N, Chen J, Dandoy CE, Laskin BL, Davies SM. Interferon-complement loop in transplant-associated thrombotic microangiopathy. Blood Adv 2020; 4:1166-1177. [PMID: 32208488 PMCID: PMC7094010 DOI: 10.1182/bloodadvances.2020001515] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
Transplant-associated thrombotic microangiopathy (TA-TMA) is an important cause of morbidity and mortality after hematopoietic stem cell transplantation (HSCT). The complement inhibitor eculizumab improves TA-TMA, but not all patients respond to therapy, prompting a search for additional targetable pathways of endothelial injury. TA-TMA is relatively common after HSCT and can serve as a model to study mechanisms of tissue injury in other thrombotic microangiopathies. In this work, we performed transcriptome analyses of peripheral blood mononuclear cells collected before HSCT, at onset of TA-TMA, and after resolution of TA-TMA in children with and without TA-TMA after HSCT. We observed significant upregulation of the classical, alternative, and lectin complement pathways during active TA-TMA. Essentially all upregulated genes and pathways returned to baseline expression levels at resolution of TA-TMA after eculizumab therapy, supporting the clinical practice of discontinuing complement blockade after resolution of TA-TMA. Further analysis of the global transcriptional regulatory network showed a notable interferon signature associated with TA-TMA with increased STAT1 and STAT2 signaling that resolved after complement blockade. In summary, we observed activation of multiple complement pathways in TA-TMA, in contrast to atypical hemolytic uremic syndrome (aHUS), where complement activation occurs largely via the alternative pathway. Our data also suggest a key relationship between increased interferon signaling, complement activation, and TA-TMA. We propose a model of an "interferon-complement loop" that can perpetuate endothelial injury and thrombotic microangiopathy. These findings open opportunities to study novel complement blockers and combined anti-complement and anti-interferon therapies in patients with TA-TMA and other microangiopathies like aHUS and lupus-associated TMAs.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Mario Medvedovic
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH; and
| | - Nathan Luebbering
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jenny Chen
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH; and
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Benjamin L Laskin
- Division of Nephrology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|