1
|
Yeh AC, Koyama M, Waltner OG, Minnie SA, Boiko JR, Shabaneh TB, Takahashi S, Zhang P, Ensbey KS, Schmidt CR, Legg SRW, Sekiguchi T, Nelson E, Bhise SS, Stevens AR, Goodpaster T, Chakka S, Furlan SN, Markey KA, Bleakley ME, Elson CO, Bradley PH, Hill GR. Microbiota dictate T cell clonal selection to augment graft-versus-host disease after stem cell transplantation. Immunity 2024; 57:1648-1664.e9. [PMID: 38876098 PMCID: PMC11236519 DOI: 10.1016/j.immuni.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/16/2024]
Abstract
Allogeneic T cell expansion is the primary determinant of graft-versus-host disease (GVHD), and current dogma dictates that this is driven by histocompatibility antigen disparities between donor and recipient. This paradigm represents a closed genetic system within which donor T cells interact with peptide-major histocompatibility complexes (MHCs), though clonal interrogation remains challenging due to the sparseness of the T cell repertoire. We developed a Bayesian model using donor and recipient T cell receptor (TCR) frequencies in murine stem cell transplant systems to define limited common expansion of T cell clones across genetically identical donor-recipient pairs. A subset of donor CD4+ T cell clonotypes differentially expanded in identical recipients and were microbiota dependent. Microbiota-specific T cells augmented GVHD lethality and could target microbial antigens presented by gastrointestinal epithelium during an alloreactive response. The microbiota serves as a source of cognate antigens that contribute to clonotypic T cell expansion and the induction of GVHD independent of donor-recipient genetics.
Collapse
MESH Headings
- Graft vs Host Disease/immunology
- Graft vs Host Disease/microbiology
- Animals
- Mice
- Mice, Inbred C57BL
- CD4-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Microbiota/immunology
- Clonal Selection, Antigen-Mediated
- Transplantation, Homologous
- Bayes Theorem
- Stem Cell Transplantation/adverse effects
- Mice, Inbred BALB C
- Gastrointestinal Microbiome/immunology
- Hematopoietic Stem Cell Transplantation/adverse effects
Collapse
Affiliation(s)
- Albert C Yeh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| | - Motoko Koyama
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Olivia G Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Simone A Minnie
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tamer B Shabaneh
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shuichiro Takahashi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ping Zhang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kathleen S Ensbey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christine R Schmidt
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel R W Legg
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tomoko Sekiguchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ethan Nelson
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shruti S Bhise
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew R Stevens
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Tracy Goodpaster
- Experimental Histopathology Core, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Saranya Chakka
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Scott N Furlan
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kate A Markey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Marie E Bleakley
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Charles O Elson
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Philip H Bradley
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Potential of TCR sequencing in graft-versus-host disease. Bone Marrow Transplant 2023; 58:239-246. [PMID: 36477111 PMCID: PMC10005964 DOI: 10.1038/s41409-022-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Graft-versus-host disease (GvHD) remains one of the major complications following allogeneic haematopoietic stem cell transplantation (allo-HSCT). GvHD can occur in almost every tissue, with the skin, liver, and intestines being the mainly affected organs. T cells are implicated in initiating GvHD. T cells identify a broad range of antigens and mediate the immune response through receptors on their surfaces (T cell receptors, TCRs). The composition of TCRs within a T cell population defines the TCR repertoire of an individual, and this repertoire represents exposure to self and non-self proteins. Monitoring the changes in the TCR repertoire using TCR sequencing can provide an indication of the dynamics of a T cell population. Monitoring the frequency and specificities of specific TCR clonotypes longitudinally in different conditions and specimens (peripheral blood, GvHD-affected tissue samples) can provide insights into factors modulating immune reactions following allogeneic transplantation and will help to understand the underlying mechanisms mediating GvHD. This review provides insights into current studies of the TCR repertoire in GvHD and potential future clinical implications of TCR sequencing.
Collapse
|
3
|
Healthy-like CD4 + Regulatory and CD4 + Conventional T-Cell Receptor Repertoires Predict Protection from GVHD Following Donor Lymphocyte Infusion. Int J Mol Sci 2022; 23:ijms231810914. [PMID: 36142824 PMCID: PMC9505302 DOI: 10.3390/ijms231810914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Donor lymphocyte infusion (DLI) can (re-)induce durable remission in relapsing patients after allogeneic hematopoietic stem-cell transplantation (alloHSCT). However, DLI harbors the risk of increased non-relapse mortality due to the co-occurrence of graft-versus-host disease (GVHD). GVHD onset may be caused or accompanied by changes in the clonal T-cell receptor (TCR) repertoire. To investigate this, we analyzed T cells in a cohort of 21 patients receiving DLI after alloHSCT. We performed deep T-cell receptor β (TRB) sequencing of sorted CD4+CD25+CD127low regulatory T cells (Treg cells) and CD4+ conventional T cells (Tcon cells) in order to track longitudinal changes in the TCR repertoire. GVHD following DLI was associated with less diverse but clonally expanded CD4+CD25+CD127low Treg and CD4+ Tcon TCR repertoires, while patients without GVHD exhibited healthy-like repertoire properties. Moreover, the diversification of the repertoires upon GVHD treatment was linked to steroid-sensitive GVHD, whereas decreased diversity was observed in steroid-refractory GVHD. Finally, the unbiased sample analysis revealed that the healthy-like attributes of the CD4+CD25+CD127low Treg TCR repertoire were associated with reduced GVHD incidence. In conclusion, CD4+CD25+CD127low Treg and CD4+ Tcon TRB repertoire dynamics may provide a helpful real-time tool to improve the diagnosis and monitoring of treatment in GVHD following DLI.
Collapse
|
4
|
Wu Y, Fu J, Wang H, Yu XZ. Donor T-Cell Repertoire Profiling in Recipient Lymphoid and Parenchyma Organs Reveals GVHD Pathogenesis at Clonal Levels After Bone Marrow Transplantation in Mice. Front Immunol 2021; 12:778996. [PMID: 34950143 PMCID: PMC8688739 DOI: 10.3389/fimmu.2021.778996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
The diversity and composition of T-cell receptor (TCR) repertoire, which is the result of V, (D), and J gene recombination in TCR gene locus, has been found to be implicated in T-cell responses in autoimmunity, cancer, and organ transplantation. The correlation of T-cell repertoire with the pathogenesis of graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation remains largely undefined. Here, by utilizing high-throughput sequencing of the genes encoding TCRβ-chain, we comprehensively analyzed the profile of T-cell repertoire in recipient lymphoid and GVHD target organs after bone marrow transplantation (BMT) in mice. In lymphoid organs, TCR diversity was narrowed, accompanied with reduced numbers of unique clones while increased accumulation of dominant clones in allogeneic T cells compared to syngeneic T cells. In an individual allogeneic recipient, donor-derived TCR clones were highly overlapped among tissue sites, and the degree of overlapping was increasing from day 7 to 14 after allogeneic BMT. The top clones in peripheral blood, gut, liver, and lungs were highly mutually shared in an allogenic recipient, indicating that blood has the potential to predict dominant clones in these GVHD target organs. T cells in GVHD target organs from allogeneic recipients had fewer overlapped clones with pre-transplant donor T cells compared to those from syngeneic recipients. Importantly, the top 10 clones in allogeneic recipients were not detectable in pre-transplant donor T cells, indicating clonal expansion of rare rearrangements. Interestingly, even starting from the same pool of donor repertoires, T cells had very few overlapped clones between each allogeneic recipient who developed completely different dominant clones. We were only able to trace a single clone shared by three replicate allogeneic recipients within the top 500 clones. Although dominant clones were different among allogeneic recipients, V26 genes were consistently used more frequently by TCR clones in allogeneic than syngeneic recipients. This is the first study to extensively examine the feature of T-cell repertoire in multiple lymphoid and parenchyma organs, which establishes the association between T-cell activation and GVHD pathogenesis at the level of TCR clones. Immune repertoire sequencing-based methods may represent a novel personalized strategy to guide diagnosis and therapy in GVHD.
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Haizhen Wang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
5
|
Obradovic A, Shen Y, Sykes M, Fu J. Integrated Analysis Toolset for Defining and Tracking Alloreactive T-cell Clones After Human Solid Organ and Hematopoietic Stem Cell Transplantation. SOFTWARE IMPACTS 2021; 10:100142. [PMID: 35291378 PMCID: PMC8920412 DOI: 10.1016/j.simpa.2021.100142] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have developed a suite of tools for integrated analysis of T-Cell-Receptor Sequencing data to define and track alloreactive T-cells in human transplant studies. This has enabled discovery of sequences and patterns of T-cell enrichment and deletion associated with clinical outcomes such as transplant rejection and tolerance. The codebase includes user-friendly default analyses with customizable parameters which greatly accelerate computational workflows and provide robust statistics comparing post-transplant specimens to pre-transplant baseline. It also includes helper functions for robust characterization of T-cell-repertoire diversity, sample-to-sample divergence, resolution of sample-of-origin ambiguity in pooled assays, and functions to output all sequences defined as alloreactive.
Collapse
Affiliation(s)
- Aleksandar Obradovic
- Columbia Center for Translational Immunology, Department of Medicine; Columbia University, New York, NY 10032, United States
- Department of Systems Biology; Columbia University, New York, NY 10032, United States
| | - Yufeng Shen
- Department of Systems Biology; Columbia University, New York, NY 10032, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine; Columbia University, New York, NY 10032, United States
- Department of Surgery; Columbia University, New York, NY 10032, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY 10032, United States
| | - Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine; Columbia University, New York, NY 10032, United States
| |
Collapse
|
6
|
Recipient-specific T-cell repertoire reconstitution in the gut following murine hematopoietic cell transplant. Blood Adv 2021; 4:4232-4243. [PMID: 32898248 DOI: 10.1182/bloodadvances.2019000977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Graft-versus-host disease (GVHD) is a complication of hematopoietic cell transplantation (HCT) caused by alloreactive T cells. Murine models of HCT are used to understand GVHD and T-cell reconstitution in GVHD target organs, most notably the gastrointestinal (GI) tract where the disease contributes most to patient mortality. T-cell receptor (TCR) repertoire sequencing was used to measure T-cell reconstitution from the same donor graft (C57BL/6 H-2b) in the GI tract of different recipients across a spectrum of matching, from syngeneic (C57BL/6), to minor histocompatibility (MHC) antigen mismatch BALB.B (H-2b), to major MHC mismatched B10.BR (H-2k) and BALB/c (H-2d). Although the donor T-cell pools had highly similar TCR, the TCR repertoire after HCT was very specific to recipients in each experiment independent of geography. A single invariant natural killer T clone was identifiable in every recipient group and was enriched in syngeneic recipients according to clonal count and confirmatory flow cytometry. Using a novel cluster analysis of the TCR repertoire, we could classify recipient groups based only on their CDR3 size distribution or TCR repertoire relatedness. Using a method for evaluating the contribution of common TCR motifs to relatedness, we found that reproducible sets of clones were associated with specific recipient groups within each experiment and that relatedness did not necessarily depend on the most common clones in allogeneic recipients. This finding suggests that TCR reconstitution is highly stochastic and likely does not depend on the evaluation of the most expanded TCR clones in any individual recipient but instead depends on a complex polyclonal architecture.
Collapse
|