1
|
Adedayo AD, Aderinola AA, Adekilekun TA, Olaolu OO, Olanike AM, Olayemi IK. Morphine-alcohol treatment impairs cognitive functions and increases neuro-inflammatory responses in the medial prefrontal cortex of juvenile male rats. Anat Cell Biol 2018; 51:41-51. [PMID: 29644109 PMCID: PMC5890016 DOI: 10.5115/acb.2018.51.1.41] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/04/2017] [Accepted: 12/13/2017] [Indexed: 02/01/2023] Open
Abstract
In the developed and developing world, opioid consumption in combination with alcohol has become one of the substances abused. In this experiment, we examined the effects of alcohol, morphine, and morphine+alcohol combination on cognitive functions and neuroinflammatory responses in the medial prefrontal cortex (mPFC) of juvenile male rats. Alcohol (1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart), morphine (0.5 ml/kg of 0.4 mg/kg morphine chlorate twice daily, subcutaneously, 7 hours apart), morphine+alcohol co-treatment (0.5 ml/kg of 0.4 mg/kg morphine chlorate+1.0 ml of 15% v/v ethanol twice daily, subcutaneously, 7 hours apart) were administered for 21 days. Treatment with morphine+alcohol significantly impairs cognition functions in the Morris water maze, passive avoidance, and novel object recognition tests, furthermore, the treatment significantly increased the quantitative count of astrocytic cells and also conferred marked neuronal cell death in the mPFC, which were studied by glial fibrillary acidic protein immunochemistry for astrocytes and Cresyl violet for Nissl's substance distribution in neurons respectively. These results suggest that alcohol, morphine, and morphine+alcohol co-treatment may trigger cognitive deficits and neuroinflammatory responses in the brain.
Collapse
Affiliation(s)
| | | | | | - Olaniyan Olayinka Olaolu
- Department of Medical Biochemistry (Chemical Pathology Unit), Osun State University (Osogbo Campus), Osogbo, Nigeria
| | | | - Ijomone Kafilat Olayemi
- Department of Anatomy, Faculty of Basic Medical Science, University of Medical Sciences, Ondo, Nigeria
| |
Collapse
|
2
|
Kawakami SE, Quadros IMH, Suchecki D. Naltrexone Prevents in Males and Attenuates in Females the Expression of Behavioral Sensitization to Ethanol Regardless of Maternal Separation. Front Endocrinol (Lausanne) 2016; 7:135. [PMID: 27803689 PMCID: PMC5067536 DOI: 10.3389/fendo.2016.00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/20/2016] [Indexed: 02/04/2023] Open
Abstract
Maternal separation alters the activity of the opioid system, which modulates ethanol-induced stimulation and behavioral sensitization. This study examined the effects of an opioid antagonist, naltrexone (NTX), on the expression of behavioral sensitization to ethanol in adult male and female mice submitted to maternal separation from postnatal days (PNDs) 2 to 14. Whole litters of Swiss mice were either not separated [animal facility rearing (AFR)] or separated from their mothers for 3 h [long maternal separation (LMS)]. Starting on PND 90, male and female AFR and LMS mice received daily i.p. injections of saline (SAL) or ethanol (EtOH, 2.2 g/kg) for 21 days. Locomotor activity was assessed in cages containing photoelectric beams, once a week, to examine the development of behavioral sensitization. Five days after the end of the chronic treatment, animals were submitted to four locomotor activity tests spaced by 48 h, to assess the expression of behavioral sensitization. In all tests, animals received two i.p. injections with a 30-min interval and were then assessed for locomotor response to different treatment challenges, which were: SAL/SAL, SAL/EtOH (2.2 g/kg), NTX 2.0 mg/kg (NTX2)/EtOH, and NTX 4.0 mg/kg (NTX4)/EtOH. Regardless of maternal separation, EtOH-treated male and female mice displayed increased locomotor responses to EtOH during the 21-day treatment, indicating the development of behavioral sensitization. In the SAL/EtOH challenge, EtOH-treated LMS and AFR male and female mice exhibited higher locomotor activity than their SAL-treated counterparts, indicating the expression of sensitization. The coadministration of either dose of NTX blocked the expression of locomotor sensitization in both AFR and LMS male mice with a history of EtOH sensitization. In females, a significant attenuation of EtOH sensitization was promoted by both NTX doses, while still maintaining an augmented stimulant response to EtOH. Importantly, maternal separation did not interfere in this phenomenon. These results indicate that expression of behavioral sensitization was importantly modulated by opioidergic mechanisms both in male and female mice and that maternal separation did not play a major role in either development or expression of this EtOH sensitization.
Collapse
Affiliation(s)
- Suzi E. Kawakami
- Department of Psychobiology, Escola Paulista de Medicina – Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| | - Isabel M. H. Quadros
- Department of Psychobiology, Escola Paulista de Medicina – Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Isabel M. H. Quadros,
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina – Universidade Federal de São Paulo (UNIFESP), Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Induction of brain cytochrome P450 2E1 boosts the locomotor-stimulating effects of ethanol in mice. Neuropharmacology 2014; 85:36-44. [PMID: 24863043 DOI: 10.1016/j.neuropharm.2014.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/14/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
Abstract
In the central nervous system ethanol (EtOH) is metabolized into acetaldehyde by different enzymes. Brain catalase accounts for 60% of the total production of EtOH-derived acetaldehyde, whereas cerebral cytochrome P450 2E1 (CYP 2E1) produces 20% of this metabolite. Acetaldehyde formed by the activity of central catalase has been implicated in some of the neurobehavioral properties of EtOH, yet the contribution of CYP 2E1 to the pharmacological actions of this drug has not been investigated. Here we assessed the possible participation of CYP 2E1 in the behavioral effects of EtOH. Thus, we induced CYP 2E1 activity and expression by exposing mice to chronic acetone intake (1% v/v for 10 days) and examined its consequences on the stimulating and uncoordinating effects of EtOH (0-3.2 g/kg) injected intraperitoneally. Our data showed that 24 h after withdrawal of acetone brain expression and activity of CYP 2E1 was induced. Furthermore, the locomotion produced by EtOH was boosted over the same interval of time. Locomotor stimulation produced by amphetamine or tert-butanol was unchanged by previous treatment with acetone. EtOH-induced motor impairment as evaluated in a Rota-Rod apparatus was unaffected by the preceding exposure to acetone. These results indicate that cerebral CYP 2E1 activity could contribute to the locomotor-stimulating effects of EtOH, and therefore we suggest that centrally produced acetaldehyde might be a possible mediator of some EtOH-induced pharmacological effects.
Collapse
|
4
|
Font L, Luján MÁ, Pastor R. Involvement of the endogenous opioid system in the psychopharmacological actions of ethanol: the role of acetaldehyde. Front Behav Neurosci 2013; 7:93. [PMID: 23914161 PMCID: PMC3728478 DOI: 10.3389/fnbeh.2013.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Significant evidence implicates the endogenous opioid system (EOS) (opioid peptides and receptors) in the mechanisms underlying the psychopharmacological effects of ethanol. Ethanol modulates opioidergic signaling and function at different levels, including biosynthesis, release, and degradation of opioid peptides, as well as binding of endogenous ligands to opioid receptors. The role of β-endorphin and µ-opioid receptors (OR) have been suggested to be of particular importance in mediating some of the behavioral effects of ethanol, including psychomotor stimulation and sensitization, consumption and conditioned place preference (CPP). Ethanol increases the release of β-endorphin from the hypothalamic arcuate nucleus (NArc), which can modulate activity of other neurotransmitter systems such as mesolimbic dopamine (DA). The precise mechanism by which ethanol induces a release of β-endorphin, thereby inducing behavioral responses, remains to be elucidated. The present review summarizes accumulative data suggesting that the first metabolite of ethanol, the psychoactive compound acetaldehyde, could participate in such mechanism. Two lines of research involving acetaldehyde are reviewed: (1) implications of the formation of acetaldehyde in brain areas such as the NArc, with high expression of ethanol metabolizing enzymes and presence of cell bodies of endorphinic neurons and (2) the formation of condensation products between DA and acetaldehyde such as salsolinol, which exerts its actions via OR.
Collapse
Affiliation(s)
- Laura Font
- Area de Psicobiología, Universitat Jaume I Castellón, Spain
| | | | | |
Collapse
|
5
|
Varaschin RK, Morato GS. Selective mu- and kappa-opioid receptor antagonists administered into the nucleus accumbens interfere with rapid tolerance to ethanol in rats. Psychopharmacology (Berl) 2009; 206:85-96. [PMID: 19506836 DOI: 10.1007/s00213-009-1582-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Accepted: 05/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Previous findings have shown that intra-accumbens injection of naltrexone, a non-selective opioid antagonist, blocks the acquisition of rapid tolerance to ethanol in rats. This study investigates the effects of intra-accumbens injection of the selective mu-, delta-, and kappa-opioid antagonists, respectively, naloxonazine, naltrindole, and nor-binaltorphimine, on rapid tolerance to ethanol. METHODS Male Wistar rats with guide cannulae directed to the shell or the core portions of the nucleus accumbens received a microinjection of naloxonazine (2-4 microg), naltrindole (2-4 microg), nor-binaltorphimine (2.5-5 microg), or vehicle. After 5 min, each group was divided in two groups that received ethanol (2.7 g/kg i.p.) or saline. Rats were then tested for motor coordination on the tilting plane apparatus. Twenty four hours later, all rats received a challenge dose of ethanol (2.7 g/kg i.p.) and were tested on the tilt plane again. RESULTS Repeated injections of ethanol caused a reduction in motor impairment suggesting the development of tolerance. However, rats injected with 4 microg naloxonazine into either core or shell portions of the nucleus accumbens did not exhibit tolerance when challenged with ethanol on day 2. Rats treated with 5 microg nor-binaltorphimine into accumbens core plus intraperitoneal saline on day 1 showed reduced motor impairment when challenged with ethanol on day 2, suggesting cross-tolerance to ethanol. CONCLUSIONS Taken together, our results suggests that mu-opioid receptors in both shell and core portions of the nucleus accumbens, and possibly kappa-opioid in the core, participate in the modulation of rapid tolerance to ethanol.
Collapse
Affiliation(s)
- Rafael Koerich Varaschin
- Departamento de Farmacologia, Centro de Ciências Biológicas, CCB, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88049-900, Florianópolis, Santa Catarina, Brazil.
| | | |
Collapse
|
6
|
Sánchez-Catalán MJ, Hipólito L, Zornoza T, Polache A, Granero L. Motor stimulant effects of ethanol and acetaldehyde injected into the posterior ventral tegmental area of rats: role of opioid receptors. Psychopharmacology (Berl) 2009; 204:641-53. [PMID: 19238363 DOI: 10.1007/s00213-009-1495-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE A recently published study has shown that microinjections of ethanol, or its metabolite, acetaldehyde into the substantia nigra pars reticulata, are able to produce behavioral activation in rats. Another brain site that could participate in such effects is the ventral tegmental area (VTA). OBJECTIVES We have investigated the locomotor-activating effects of local microinjections of ethanol and acetaldehyde into the posterior VTA of rats and the role of opioid receptors in such effects. MATERIALS Cannulae were placed into the posterior VTA to perform microinjections of ethanol (75 or 150 nmol) or acetaldehyde (25 or 250 nmol) in animals not previously microinjected or microinjected with either the nonselective opioid antagonist naltrexone (13.2 nmol) or the irreversible antagonist of the micro-opioid receptors beta-funaltrexamine (beta-FNA; 2.5 nmol). After injections, spontaneous activity was monitored for 60 min. RESULTS Injections of ethanol or acetaldehyde into the VTA increased the locomotor activity of rats with maximal effects at doses of 150 nmol for ethanol and 250 nmol for acetaldehyde. These locomotor-activating effects were reduced by previously administering naltrexone (13.2 nmol) or beta-FNA (2.5 nmol) into the VTA. CONCLUSIONS The posterior VTA is another brain region involved in the locomotor activation after the intracerebroventricular administration of ethanol or acetaldehyde. Our data indicate that opioid receptors, particularly the micro-opioid receptors, could be the target of the actions of these compounds in the VTA. These results are consistent with the hypothesis that acetaldehyde could be a mediator of some ethanol effects.
Collapse
Affiliation(s)
- María José Sánchez-Catalán
- Departament de Farmàcia i Tecnología Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100, Burjassot, Spain
| | | | | | | | | |
Collapse
|
7
|
Pastor R, Aragon CMG. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone. Behav Pharmacol 2009; 19:698-705. [PMID: 18797246 DOI: 10.1097/fbp.0b013e328315ecd7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Castelló, Spain
| | | |
Collapse
|
8
|
Abrahao KP, Quadros IM, Souza-Formigoni MLO. Morphine attenuates the expression of sensitization to ethanol, but opioid antagonists do not. Neuroscience 2008; 156:857-64. [PMID: 18804151 DOI: 10.1016/j.neuroscience.2008.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 08/08/2008] [Accepted: 08/09/2008] [Indexed: 01/30/2023]
Abstract
Behavioral sensitization to ethanol is characterized by an increased locomotor activity after repeated exposure. A great variability exists among species and strains in the development of sensitization. There is a growing amount of evidence to indicate that the opioid system is involved in alcoholism; it is possible, therefore, that this system also modulates the sensitization to ethanol. In this study we evaluated the role of the opioid system in determining the variability of the sensitized response to ethanol. Mice received repeated administrations of ethanol (2.2 g/kg) or saline every other day for 10 days. According to their locomotor response on the last day of treatment, ethanol-treated animals were classified into two groups: sensitized or non-sensitized mice. After the treatment, mice were submitted to four challenges 48 h apart. In experiments 1 and 2, mice were challenged, respectively, with i.p. administration of opioid antagonists (naloxone or naltrexone) or an opioid agonist (morphine), followed immediately by 2.2 g/kg ethanol. In experiment 3, animals received morphine by i.c.v., followed by 2.2 g/kg of ethanol (i.p.). Pretreatment with opioid antagonists (naloxone or naltrexone) did not block the expression of ethanol sensitization; however pretreatment with morphine attenuated the increased locomotor activity after ethanol administration in sensitized mice. In experiment 4, after the ethanol or saline treatment, mice brains were processed and brain mu opioid binding was assessed by autoradiography using [3H]D-Ala2,N-mePhe4, Gly-ol5-enkephalin ([3H]DAMGO). No differences were seen between any of the groups of mice, so the agonist effect is not likely to be mediated by differences in binding to mu opioid receptors.
Collapse
Affiliation(s)
- K P Abrahao
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | |
Collapse
|
9
|
Ojanen SP, Palmén M, Hyytiä P, Kiianmaa K. Extracellular glutamate and GABA in the ventral tegmental area of alcohol-preferring AA and alcohol-avoiding ANA rats treated repeatedly with morphine. Eur J Pharmacol 2007; 559:38-45. [PMID: 17198699 DOI: 10.1016/j.ejphar.2006.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/30/2006] [Accepted: 11/20/2006] [Indexed: 10/23/2022]
Abstract
Glutamate and gamma-amino-butyric acid (GABA) have been implicated in neuronal plasticity related to behavioral sensitization. In the present study, we examined morphine-induced changes in the extracellular concentrations of glutamate and GABA in the ventral tegmental area in alcohol-preferring Alko Alcohol (AA) and alcohol-avoiding Alko Non-Alcohol (ANA) rats that have previously been shown to differ in morphine-induced sensitization. The rats were given escalating doses (5-20 mg/kg) of morphine every other day for five days. This treatment produced behavioral sensitization to locomotor effects of morphine in AA, but not in ANA rats, when challenged with an additional injection of morphine (10 mg/kg) 10 days later. Morphine also increased the levels of glutamate in the ventral tegmental area only in AA rats, while no significant changes were found in the extracellular concentrations of GABA between the lines. Challenging the morphine-treated AA rats with ethanol (1.5 g/kg) did not modify the levels of glutamate or GABA. No changes in the concentrations of glutamate or GABA were seen in saline-treated AA and ANA rats after morphine challenge. These results render increased glutamate transmission in the ventral tegmental area a potential contributor to the higher susceptibility of AA rats to morphine-induced behavioral and neurochemical effects relative to ANA rats.
Collapse
Affiliation(s)
- Sami P Ojanen
- Department of Mental Health and Alcohol Research, National Public Health Institute, POB 33, 00251 Helsinki, Finland
| | | | | | | |
Collapse
|
10
|
Pastor R, Aragon CMG. The role of opioid receptor subtypes in the development of behavioral sensitization to ethanol. Neuropsychopharmacology 2006; 31:1489-99. [PMID: 16237389 DOI: 10.1038/sj.npp.1300928] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonspecific blockade of opioid receptors has been found to prevent development of behavioral sensitization to ethanol. Whether this effect is achieved through a specific opioid receptor subtype, however, is not clear. The present study investigated, for the first time, the role of specific opioid receptor subtypes in the development of ethanol-(2.5 g/kg/day; six sessions) induced locomotor sensitization in mice. We confirmed previous results showing that the nonspecific antagonism of opioid receptors (naltrexone; 0-2 mg/kg) prevented the development of behavioral sensitization to ethanol, an effect attained at doses presumed to occupy only mu opioid receptors. This was confirmed by using the selective mu opioid receptor antagonist CTOP (0-1.5 mg/kg), which also blocked sensitization to ethanol. The selective delta receptor antagonist, naltrindole (0-10 mg/kg), however, did not alter sensitization. We further assessed the role of mu opioid receptors in sensitization to ethanol by exploring the involvement of mu(1), mu(1+2), and mu(3) opioid receptor subtypes. Results of these experiments revealed that the blockade of mu(1) (naloxonazine; 0-30 mg/kg) or mu(3) opioid receptors (3-methoxynaltrexone; 0-6 mg/kg) did not prevent locomotor sensitization to ethanol. Using naloxonazine under treatment conditions that block mu(1+2) opioid receptor subtypes we observed a retarded sensitization. The present data suggest that the concurrent inactivation of all mu opioid receptor subtypes may be required to prevent the neural adaptations underlying the development of behavioral sensitization to ethanol. In addition, these results support previous data suggesting a putative role for the mu opioid receptor endogenous ligand, beta-endorphin, and the hypothalamic arcuate nucleus in ethanol sensitization.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Castelló, Spain
| | | |
Collapse
|
11
|
Arizzi-LaFrance MN, Correa M, Aragon CMG, Salamone JD. Motor stimulant effects of ethanol injected into the substantia nigra pars reticulata: importance of catalase-mediated metabolism and the role of acetaldehyde. Neuropsychopharmacology 2006; 31:997-1008. [PMID: 16123765 DOI: 10.1038/sj.npp.1300849] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A series of experiments was conducted to investigate the locomotor effects of local injections of ethanol and the ethanol metabolite, acetaldehyde, into substantia nigra pars reticulata (SNr). Infusions of ethanol into SNr resulted in a dose-related increase in locomotor activity, with maximal effects at a dose of 1.4 micromol. Ethanol injected into a control site dorsal to substantia nigra failed to stimulate locomotion, and another inactive site was identified in brainstem areas posterior to substantia nigra. The locomotor effects of intranigral ethanol (1.4 micromol) were reduced by coadministration of 10 mg/kg sodium azide, a catalase inhibitor that acts to reduce the metabolism of ethanol into acetaldehyde in the brain. SNr infusions of acetaldehyde, which is the first metabolite of ethanol, also increased locomotion. Taken together, these results indicate that SNr is one of the sites at which ethanol and acetaldehyde may be acting to induce locomotor activity. These results are consistent with the hypothesis that acetaldehyde is a centrally active metabolite of ethanol, and provide further support for the idea that catalase activity is a critical step in the regulation of ethanol-induced motor activity. These studies have implications for understanding the brain mechanisms involved in mediating the ascending limb of the biphasic dose-response curve for the effect of ethanol on locomotor activity.
Collapse
|
12
|
Ojanen SP, Hyytiä P, Kiianmaa K. Enhanced Morphine-Induced Ethanol Drinking in Alcohol-Preferring Alko Alcohol Rats Sensitized to Morphine. Alcohol Clin Exp Res 2006; 30:621-9. [PMID: 16573579 DOI: 10.1111/j.1530-0277.2006.00072.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Alcohol-preferring alko alcohol (AA) rats are more susceptible to morphine-induced behavioral and neurochemical sensitization than alcohol nonpreferring alko nonalcohol (ANA) rats. Alko alcohol rats sensitized to morphine, however, do not show enhanced acquisition of ethanol drinking. The purpose of the present study was to clarify further interactions between morphine-induced behavioral sensitization and voluntary ethanol drinking in the AA rats. METHODS Alko alcohol rats drinking ethanol in a limited 6-hour access paradigm were sensitized to morphine with repeated injections of morphine (5-15 mg/kg). Injection days alternated with days of ethanol access. Controls had access only to water and/or were given injections of saline. After a 5-day washout period from ethanol and morphine, the rats were challenged with morphine or saline and subsequent ethanol drinking or locomotor activity was recorded. RESULTS Ethanol intake was suppressed during the repeated treatment with morphine, and the morphine-treated rats did not differ in ethanol intake from the controls when given access to ethanol after the washout. Intake of ethanol was, however, increased when the rats were challenged with morphine [1 or 10 mg/kg, subcutaneously (s.c.)], while in the controls an increase in ethanol intake was seen only after 1 mg/kg morphine. Sensitization to the locomotor stimulating effects of morphine was revealed in the morphine-treated rats after a challenge with morphine (3 or 10 mg/kg, s.c.). The controls that had been drinking ethanol also showed a sensitized response after morphine (3 mg/kg). CONCLUSIONS Ethanol did not interfere with the development of sensitization to morphine. Furthermore, the neuroadaptations induced by repeated exposure to ethanol were sufficient to cause behavioral cross-sensitization to morphine. Sensitization to the behavioral effects of morphine alone, however, neither enhances the reinforcing properties of voluntarily consumed ethanol nor contributes to increase in its intake. The increase in ethanol intake found after an acute dose of morphine was augmented in rats withdrawn from repeated treatment with morphine. The data suggest that the neuronal mechanisms underlying behavioral sensitization to morphine probably are distinct from those mediating reinforcement from ethanol and that the morphine-induced neuroadaptations contribute to the enhancement of increase in ethanol intake by morphine.
Collapse
Affiliation(s)
- Sami P Ojanen
- Department of Mental Health and Alcohol Research, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|
13
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
14
|
Egli M. Can experimental paradigms and animal models be used to discover clinically effective medications for alcoholism? Addict Biol 2005; 10:309-19. [PMID: 16318951 DOI: 10.1080/13556210500314550] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Evaluating medications in animal laboratory paradigms can reveal whether the compound is effective in an established alcoholism model, at clinically relevant doses and exposure conditions, when administered orally (or transdermally) and without serious limiting side effects. Positive outcomes constitute a possible discovery for relevance to alcoholism and, under favorable marketing conditions, encourage further development. Medication testing using animal models of alcoholism might also guide clinical testing by discriminating clinically effective from clinically ineffective compounds. This ability rests on whether there are tests or, more reasonably, batteries of tests having this discriminative ability. The present paper examines this possibility. Effects of naltrexone and acamprosate in animal paradigms which model behavioral aspects of alcoholism are reviewed and compared with the effects of compounds which have limited effects in alcoholics. It is not clear at present whether any single paradigm or combination of paradigms differentiates clinically effective from clinically limited compounds. Steps are suggested to improve the use of preclinical laboratory tests to predict which compounds are likely to be effective medications for reducing drinking and sustaining abstinence in human alcoholics.
Collapse
Affiliation(s)
- Mark Egli
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services Bethesda, MD 20892-9304, USA.
| |
Collapse
|
15
|
Pastor R, Miquel M, Aragon CMG. Habituation to test procedure modulates the involvement of dopamine D2- but not D1-receptors in ethanol-induced locomotor stimulation in mice. Psychopharmacology (Berl) 2005; 182:436-46. [PMID: 16133139 DOI: 10.1007/s00213-005-0115-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
RATIONALE Novelty associated with behavioral testing has been shown to enhance psychostimulant- and morphine-induced locomotor stimulation. Evidence has demonstrated that novelty increases dopamine (DA) activity, and habituation to a novel environment reduces such activation. However, it is not clear whether novelty modulates ethanol-induced behavioral stimulation and whether DA plays a role in this effect. OBJECTIVES The present work sought to demonstrate a role of habituation to test procedure as a factor that could modulate the involvement of DA in ethanol-induced locomotor stimulation. METHODS Non-habituated (NH) and habituated (H) Swiss mice pretreated with DA D1- (SCH23390; 0-0.045 mg/kg) or D2-receptor (sulpiride; 0-50 mg/kg) antagonists were tested for ethanol (0-2.5 g/kg)-induced locomotor stimulation. Experiments with amphetamine (0-4 mg/kg), morphine (0-5 mg/kg) and caffeine (0-15 mg/kg)were designed to compare their results to those obtained with ethanol. The effect of the non-selective opioid receptor antagonist naltrexone (0-1.5 mg/kg) was also tested on ethanol-induced locomotor stimulation. RESULTS NH and H animals did not differ in their locomotor response to ethanol or caffeine; however, amphetamine- and morphine-induced stimulation was greater in NH than in H mice. SCH23390 only reduced ethanol-induced stimulation at doses that also reduced spontaneous activity in both NH and H mice. Sulpiride decreased ethanol-stimulated behavior only in the NH condition. Habituation did not modify the effect of sulpiride on amphetamine-, morphine- or caffeine-induced activation. Naltrexone (0-1.5 mg/kg) reduced ethanol-induced stimulation regardless of habituation. CONCLUSIONS The present data suggest that the participation of DA D2-receptors in ethanol-induced behavioral stimulation requires the presence of novelty. Results also support the involvement of neurotransmitter systems other than DA (i.e., endogenous opioid system) as important substrates mediating ethanol-induced locomotor activation.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universtitat Jaume I. Campus de Riu Sec, Avda. Sos Baynat s/n, 12071 Castelló, Spain
| | | | | |
Collapse
|
16
|
Holstein SE, Pastor R, Meyer PJ, Phillips TJ. Naloxone does not attenuate the locomotor effects of ethanol in FAST, SLOW, or two heterogeneous stocks of mice. Psychopharmacology (Berl) 2005; 182:277-89. [PMID: 15990998 DOI: 10.1007/s00213-005-0066-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE Previous studies suggest that some behavioral effects of ethanol and morphine are genetically correlated. For example, mice bred for sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effects of ethanol differ in their locomotor response to morphine. OBJECTIVE To evaluate a possible common mechanism for these traits, we examined the effect of naloxone, an opioid receptor antagonist, on ethanol- and morphine-induced locomotion in FAST and SLOW mice, as well as on ethanol-induced locomotion in two heterogeneous stocks of mice. METHOD In experiments 1 and 2, naloxone was given to FAST and SLOW mice 30 min prior to 2 g/kg ethanol or 32 mg/kg morphine, and locomotor activity was measured for 15 min (ethanol) or 30 min (morphine). In experiments 3 and 4, naloxone was administered 30 min prior to 1.25 g/kg ethanol, and locomotor activity was assessed in FAST mice and in a heterogeneous line of mice [Withdrawal Seizure Control (WSC)]. Experiment 5 assessed the effect of naloxone on ethanol-induced stimulation in outbred National Institutes of Health (NIH) Swiss mice. RESULTS There was no effect of naloxone on the locomotor response to ethanol in FAST, SLOW, WSC, or NIH Swiss mice. However, naloxone did significantly attenuate the locomotor effects of morphine in FAST and SLOW mice. CONCLUSIONS These results suggest that a common opioidergic mechanism is not responsible for the correlated locomotor responses to ethanol and morphine in FAST and SLOW mice, and that activation of the endogenous opioid system is not critical for the induction of ethanol-induced alterations in activity.
Collapse
Affiliation(s)
- Sarah E Holstein
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
17
|
Role of the Endogenous Opioid System on the Neuropsychopharmacological Effects of Ethanol: New Insights About an Old Question. Alcohol Clin Exp Res 2005; 29:1522-7. [DOI: 10.1097/01.alc.0000174913.60384.e8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Pastor R, Sanchis-Segura C, Aragon CMG. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation. Alcohol Clin Exp Res 2005; 28:1898-906. [PMID: 15608607 DOI: 10.1097/01.alc.0000148107.64739.76] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. METHODS Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. RESULTS The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. CONCLUSIONS This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are discussed together with previous findings suggesting a putative linkage between brain ethanol metabolism and the endogenous opioid system to explain some of the neuroendocrine effects of ethanol.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Campus de Riu Sec, 12071 Castelló, Spain
| | | | | |
Collapse
|
19
|
Bahi A, Boyer F, Kolira M, Dreyer JL. In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. J Neurochem 2005; 92:1243-55. [PMID: 15715673 DOI: 10.1111/j.1471-4159.2004.02961.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The tetraspanin CD81 is induced in the mesolimbic dopaminergic pathway after cocaine administration. To further investigate its role, a regulatable lentivirus (Lenti-CD81) bearing the CD81 gene under the control of a tetracycline-inducible promoter and lentiviruses expressing short hairpin RNA (shRNA) targeted against CD81 (Lenti-CD81-shRNAs) have been prepared. Infection of HEK293T cells in vitro with Lenti-CD81-shRNAs resulted in 96.5% gene silencing (from quantitative real-time PCR(qRT-PCR) and immunocytochemistry). In vivo delivery of Lenti-CD81-shRNA into the nucleus accumbens or ventral tegmental area resulted in 91.3 and 94% silencing of endogenous CD81, respectively. Stereotaxic injection of Lenti-CD81 into these regions, resulting in CD81 overexpression, induced a four- to fivefold increase in locomotor activity after chronic cocaine administration, which returned to basal levels when Lenti-CD81-shRNA had been coinjected or when CD81 expression was blocked by doxycycline. Furthermore, silencing endogenous CD81 in vivo resulted in a significant decrease in locomotor activity over controls, again suppressing cocaine-induced behaviour.
Collapse
MESH Headings
- Anesthetics, Local/toxicity
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Behavior, Animal
- Blotting, Northern/methods
- Cell Count/methods
- Cell Line
- Cocaine/toxicity
- Cocaine-Related Disorders/therapy
- Drug Interactions
- Gene Expression Regulation/drug effects
- Gene Silencing/drug effects
- Gene Silencing/physiology
- Genetic Vectors/physiology
- Humans
- Immunohistochemistry/methods
- Lentivirus/genetics
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/virology
- RNA, Messenger/biosynthesis
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/pharmacology
- RNA, Small Interfering/therapeutic use
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tetraspanin 28
- Transfection/methods
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
- Ventral Tegmental Area/virology
Collapse
Affiliation(s)
- Amine Bahi
- Institute of Biochemistry, University of Fribourg, Fribourg, Switzerland
| | | | | | | |
Collapse
|
20
|
Sanchis-Segura C, Correa M, Miquel M, Aragon CMG. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats. Neurosci Lett 2004; 376:66-70. [PMID: 15694276 DOI: 10.1016/j.neulet.2004.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/01/2004] [Accepted: 11/11/2004] [Indexed: 11/28/2022]
Abstract
Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.
Collapse
Affiliation(s)
- Carles Sanchis-Segura
- Area de Psicobiologia, Universitat Jaume I, Campus de Riu Sec, Apartat. 8029 AP, Castelló 12071, Spain
| | | | | | | |
Collapse
|