1
|
Effects of intra-nasal melanocortin-4 receptor antagonist on trigeminal neuropathic pain in male and female rats. Neurosci Lett 2023; 796:137054. [PMID: 36610589 DOI: 10.1016/j.neulet.2023.137054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Treatment of chronic orofacial pain remains a major therapeutic challenge despite available medications. Melanocortins have been implicated in pathologic pain. Intrathecal administration of MC4R antagonists has been shown to alleviate neuropathic pain (NP) in male rats. However, intrathecal delivery is very invasive and requires surgeon's intervention. Intra-nasal rout offers a non-invasive drug delivery method that can be self-administered making it very attractive clinically. In this study, we investigated the effects of intra-nasally delivered MC4R antagonist (HS014) on trigeminal neuropathic pain (TNP) in male and female rats. We also measured the MC4R protein levels in the trigeminal ganglia (TG) and infraorbital nerve (ION) of rats. We used ION chronic constriction injury (ION-CCI) to induce TNP in rats. We used von Frey and pinprick assays to measure the development of hypersensitivity in the face following ION-CCI. At 22 days post-ION-CCI, we delivered HS014 intra-nasally to measure its effects on TNP in rats. We used enzyme linked immunosorbent assay to measure MC4R protein levels in the TG and ION. ION-CCI resulted in a significant increase of MC4R protein levels in the ipsilateral TG and ION of male and female rats. Intra-nasal delivered HS014 resulted in a significant reduction of ION-CCI induced hypersensitivity in male and female rats. These results demonstrate that intranasal delivery of MC4R antagonist alleviated TNP in male and female rats and suggest that such treatment could be beneficial therapeutically for individuals with chronic NP.
Collapse
|
2
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Romano A, Gaetani S, Micioni Di Bonaventura MV, Cifani C. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res 2022; 185:106521. [DOI: 10.1016/j.phrs.2022.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
3
|
Shikdar N, Alghamdi F. Influence of Selective Melanocortin-4 Receptor Antagonist HS014 on Hypersensitivity After Nervous System Injuries in a Model of Rat Neuropathic Pain: A Narrative Review of the Literature. Cureus 2021; 13:e17681. [PMID: 34584810 PMCID: PMC8457013 DOI: 10.7759/cureus.17681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/22/2022] Open
Abstract
Background and Objective: The melanocortin-4 (MC4) receptor has been evaluated as a possible new therapeutic for neuropathic pain treatment. The purpose of this review article was to review and evaluate all recent in vivo studies on the effect of the MC4 receptor antagonist HS014 on rat hypersensitivity caused by neuropathic pain. Methods: An electronic search was carried out using Scopus, Web of Science, PubMed, and Google Scholar. The following inclusion criteria were used: rat models of neuropathic pain-induced hypersensitivity, with investigated effects of the selective antagonist HS014. The included duration of the search was within the last ten years. Data regarding HS014, neuropathic pain model, post-treatment administration time and dose (days post-injury), behavior assessment assays, treatment frequency, and route of delivery were collected and subjected descriptively as complementary data in this narrative review. Results: This narrative review included four papers that fulfilled the eligibility criteria. The findings demonstrate that as compared to vehicle-treated rats, administration of the MC4 receptor antagonist HS014 remarkably raised paw withdrawal threshold (PWT) in three studies and heat withdrawal latency in four studies among rat models subjected to neuropathic pain. Conclusions: In rat neuropathic pain models, the MC4 receptor antagonist HS014 is helpful in reducing hypersensitivity. However, further studies are needed to determine the ideal treatment dosage and timing. In addition, further investigations are required for the role of this selective receptor antagonist (HS014) and compared with other types of MC4 receptors in neuropathic pain in humans.
Collapse
Affiliation(s)
- Narmeen Shikdar
- General Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| | - Faisal Alghamdi
- Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, SAU
| |
Collapse
|
4
|
Korczeniewska OA, Kohli D, Katzmann Rider G, Zaror C, Iturriaga V, Benoliel R. Effects of melanocortin-4 receptor (MC4R) antagonist on neuropathic pain hypersensitivity in rats - A systematic review and meta-analysis. Eur J Oral Sci 2021; 129:e12786. [PMID: 33786877 DOI: 10.1111/eos.12786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Melanocortin-4 receptor (MC4R) has been investigated as a potential drug target for the treatment of neuropathic pain. The objective of the study was to systematically identify the effects of MC4R antagonists on hypersensitivity in rat models of neuropathic pain. A systematic search was conducted using the following databases: WoS, PubMed, SCOPUS, and MEDLINE. Inclusion criteria were: rat hypersensitivity induced by models of neuropathic pain with reported effects of MC4R antagonist. Two researchers performed the selection process and data extraction. SYRCLE risk of bias tool was used. Standard mean differences (SMD) were calculated and pooled by meta-analysis using random effect models. Ten articles met the eligibility criteria and were included in the systematic review and meta-analysis. The results reveal that, in animals exposed to neuropathic pain, administration of MC4R antagonists significantly increased paw withdrawal threshold (SHU9119 SMD = 1.67, 95% CI: [0.91, 2.44], I2 = 0%; HS014 SMD = 2.2, 95% CI: [0.53, 3.87], I2 = 71%) and heat withdrawal latency (HS014 SMD = 3.35, 95% CI: [0.56, 6.14], I2 = 83%) compared to vehicle-treated animals. MC4R antagonists are effective in the alleviation of hypersensitivity in rodent neuropathic pain models. SHU9119 and HS014 antagonists showed the most prominent results. However, further investigation is needed to determine the optimal dose and time of treatment.
Collapse
Affiliation(s)
- Olga A Korczeniewska
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Divya Kohli
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Giannina Katzmann Rider
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - Carlos Zaror
- Center for Research in Epidemiology, Economics and Oral Public Health (CIEESPO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile.,Faculty of Dentistry, Universidad San Sebastian, Puerto Montt, Chile
| | - Veronica Iturriaga
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Rafael Benoliel
- Department of Diagnostic Sciences, Center for Orofacial Pain and Temporomandibular Disorders, Rutgers School of Dental Medicine, Newark, NJ, USA
| |
Collapse
|
5
|
Piotrowska A, Starnowska-Sokół J, Makuch W, Mika J, Witkowska E, Tymecka D, Ignaczak A, Wilenska B, Misicka A, Przewłocka B. Novel bifunctional hybrid compounds designed to enhance the effects of opioids and antagonize the pronociceptive effects of nonopioid peptides as potent analgesics in a rat model of neuropathic pain. Pain 2021; 162:432-445. [PMID: 32826750 PMCID: PMC7808367 DOI: 10.1097/j.pain.0000000000002045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT The purpose of our work was to determine the role of nonopioid peptides derived from opioid prohormones in sensory hypersensitivity characteristics of neuropathic pain and to propose a pharmacological approach to restore the balance of these endogenous opioid systems. Nonopioid peptides may have a pronociceptive effect and therefore contribute to less effective opioid analgesia in neuropathic pain. In our study, we used unilateral chronic constriction injury (CCI) of the sciatic nerve as a neuropathic pain model in rats. We demonstrated the pronociceptive effects of proopiomelanocortin- and proenkephalin-derived nonopioid peptides assessed by von Frey and cold plate tests, 7 to 14 days after injury. The concentration of proenkephalin-derived pronociceptive peptides was increased more robustly than that of Met-enkephalin in the ipsilateral lumbar spinal cord of CCI-exposed rats, as shown by mass spectrometry, and the pronociceptive effect of one of these peptides was blocked by an antagonist of the melanocortin 4 (MC4) receptor. The above results confirm our hypothesis regarding the possibility of creating an analgesic drug for neuropathic pain based on enhancing opioid activity and blocking the pronociceptive effect of nonopioid peptides. We designed and synthesized bifunctional hybrids composed of opioid (OP) receptor agonist and MC4 receptor antagonist (OP-linker-MC4). Moreover, we demonstrated that they have potent and long-lasting antinociceptive effects after a single administration and a delayed development of tolerance compared with morphine after repeated intrathecal administration to rats subjected to CCI. We conclude that the bifunctional hybrids OP-linker-MC4 we propose are important prototypes of drugs for use in neuropathic pain.
Collapse
Affiliation(s)
- Anna Piotrowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Starnowska-Sokół
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewa Witkowska
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Dagmara Tymecka
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Angelika Ignaczak
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Beata Wilenska
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Barbara Przewłocka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| |
Collapse
|
6
|
Starnowska-Sokół J, Piotrowska A, Bogacka J, Makuch W, Mika J, Witkowska E, Godlewska M, Osiejuk J, Gątarz S, Misicka A, Przewłocka B. Novel hybrid compounds, opioid agonist+melanocortin 4 receptor antagonist, as efficient analgesics in mouse chronic constriction injury model of neuropathic pain. Neuropharmacology 2020; 178:108232. [PMID: 32750445 DOI: 10.1016/j.neuropharm.2020.108232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022]
Abstract
When the nerve tissue is injured, endogenous agonist of melanocortin type 4 (MC4) receptor, α-MSH, exerts tonic pronociceptive action in the central nervous system, contributing to sustaining the neuropathic pain state and counteracting the analgesic effects of exogenous opioids. With the intent of enhancing opioid analgesia in neuropathy by blocking the MC4 activation, so-called parent compounds (opioid agonist, MC4 antagonist) were joined together using various linkers to create novel bifunctional hybrid compounds. Analgesic action of four hybrids was tested after intrathecal (i.t.) administration in mouse models of acute and neuropathic pain (chronic constriction injury model, CCI). Under nerve injury conditions, one of the hybrids, UW3, induced analgesia in 1500 times lower i.t. dose than the opioid parent (ED50: 0.0002 nmol for the hybrid, 0.3 nmol for the opioid parent) and in an over 16000 times lower dose than the MC4 parent (ED50: 3.33 nmol) as measured by the von Frey test. Two selected hybrids were tested for analgesic properties in CCI mice after intravenous (i.v.) and intraperitoneal (i.p.) administration. Opioid receptor antagonists and MC4 receptor agonists diminished the analgesic action of these two hybrids studied, though the extent of this effect differed between the hybrids; this suggests that linker is of key importance here. Further results indicate a significant advantage of hybrid compounds over the physical mixture of individual pharmacophores in their analgesic effect. All this evidence justifies the idea of synthesizing a bifunctional opioid agonist-linker-MC4 antagonist compound, as such structure may bring important benefits in neuropathic pain treatment.
Collapse
Affiliation(s)
- Joanna Starnowska-Sokół
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Anna Piotrowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewa Witkowska
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Magda Godlewska
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Jowita Osiejuk
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Sandra Gątarz
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Aleksandra Misicka
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Barbara Przewłocka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
7
|
Adank DN, Lunzer MM, Lensing CJ, Wilber SL, Gancarz AM, Haskell-Luevano C. Comparative in Vivo Investigation of Intrathecal and Intracerebroventricular Administration with Melanocortin Ligands MTII and AGRP into Mice. ACS Chem Neurosci 2018; 9:320-327. [PMID: 28968061 PMCID: PMC5821609 DOI: 10.1021/acschemneuro.7b00330] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Central administration of melanocortin ligands has been used as a critical technique to study energy homeostasis. While intracerebroventricular (ICV) injection is the most commonly used method during these investigations, intrathecal (IT) injection can be equally efficacious for the central delivery of ligands. Importantly, intrathecal administration can optimize exploration of melanocortin receptors in the spinal cord. Herein, we investigate comparative IT and ICV administration of two melanocortin ligands, the synthetic MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2) MC4R agonist and agouti-related peptide [AGRP(87-132)] MC4R inverse agonist/antagonist, on the same batch of age-matched mice in TSE metabolic cages undergoing a nocturnal satiated paradigm. To our knowledge, this is the first study to test how central administration of these ligands directly to the spinal cord affects energy homeostasis. Results showed, as expected, that MTII IT administration caused a decrease in food and water intake and an overall negative energy balance without affecting activity. As anticipated, IT administration of AGRP caused weight gain, increase of food/water intake, and increase respiratory exchange ratio (RER). Unexpectantly, the prolonged activity of AGRP was notably shorter (2 days) compared to mice given ICV injections of the same concentrations in previous studies (7 days or more).1-4 It appears that IT administration results in a more sensitive response that may be a good approach for testing synthetic compound potency values ranging in nanomolar to high micromolar in vitro EC50 values. Indeed, our investigation reveals that the spine influences a different melanocortin response compared to the brain for the AGRP ligand. This study indicates that IT administration can be a useful technique for future metabolic studies using melanocortin ligands and highlights the importance of exploring the role of melanocortin receptors in the spinal cord.
Collapse
MESH Headings
- Agouti-Related Protein/administration & dosage
- Animals
- Body Weight/drug effects
- Catheters, Indwelling
- Cross-Over Studies
- Eating/drug effects
- Homeostasis/drug effects
- Injections, Intraventricular
- Injections, Spinal
- Male
- Mice, 129 Strain
- Mice, Inbred C57BL
- Peptide Fragments/administration & dosage
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/metabolism
- Time Factors
- alpha-MSH/administration & dosage
- alpha-MSH/analogs & derivatives
Collapse
Affiliation(s)
- Danielle N. Adank
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Cody J. Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Amy M. Gancarz
- Department of Psychology, California State University Bakersfield, Bakersfield, CA 93311, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
8
|
Neuropeptides and Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases. Mediators Inflamm 2017; 2017:5048616. [PMID: 28154473 PMCID: PMC5244030 DOI: 10.1155/2017/5048616] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.
Collapse
|
9
|
Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:121-150. [DOI: 10.1016/bs.irn.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
11
|
Abstract
Background:Neuropathic pain is characterised by spontaneous ongoing or shooting pain and evoked amplified pain responses after noxious or non-noxious stimuli. Neuropathic pain develops as a result of lesions or disease affecting the somatosensory nervous system either in the periphery or centrally. Melanocortin 4 receptor (MC4R) plays an important role in the initiation of neuropathic pain but the underlying mechanisms are still unclear.Methods:Adult male Wistar rats were given chronic constriction injury (CCI) or sham operations. Part of CCI rats were intrathecally treated with HS014 (MC4R antagonist) or SB203580 (p38MAPK inhibitor). On the third, seventh and fourteenth day, the thermal threshold of operated paws was tested. In addition, the MC4R or phosphorylated p38MAPK (p-p38MAPK) levels of lumbar spinal cord were tested with ELISA (enzyme-linked immunosorbent assay), western blot and immunohistochemistry.Results:Here we demonstrate that (1) both HS014 and SB203580 reduced CCI reduced hyperalgesia (2) p-p38MAPK was increased after CCI with a time course parallel to that of the MC4R change, (3) The p38 activation was prevented by blocking MC4R with an antagonist HS014, but MC4R-IR was not prevented by SB203580. (4) MC4R and p-p38MAPK were located in the same cells.Conclusion:The mechanisms of neuropathic pain mediated by MC4R is related to the inhibition of p38MAPK activation. P38MAPK may be a downstream of MC4R.
Collapse
|
12
|
Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol 2013; 51:R33-50. [PMID: 23881919 DOI: 10.1530/jme-13-0064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Astrocytes exert a wide variety of functions with paramount importance in brain physiology. After injury or infection, astrocytes become reactive and they respond by producing a variety of inflammatory mediators that help maintain brain homeostasis. Loss of astrocyte functions as well as their excessive activation can contribute to disease processes; thus, it is important to modulate reactive astrocyte response. Melanocortins are peptides with well-recognized anti-inflammatory and neuroprotective activity. Although melanocortin efficacy was shown in systemic models of inflammatory disease, mechanisms involved in their effects have not yet been fully elucidated. Central anti-inflammatory effects of melanocortins and their mechanisms are even less well known, and, in particular, the effects of melanocortins in glial cells are poorly understood. Of the five known melanocortin receptors (MCRs), only subtype 4 is present in astrocytes. MC4R has been shown to mediate melanocortin effects on energy homeostasis, reproduction, inflammation, and neuroprotection and, recently, to modulate astrocyte functions. In this review, we will describe MC4R involvement in anti-inflammatory, anorexigenic, and anti-apoptotic effects of melanocortins in the brain. We will highlight MC4R action in astrocytes and discuss their possible mechanisms of action. Melanocortin effects on astrocytes provide a new means of treating inflammation, obesity, and neurodegeneration, making them attractive targets for therapeutic interventions in the CNS.
Collapse
Affiliation(s)
- Carla Caruso
- School of Medicine, Biomedical Research Institute (UBA-CONICET), University of Buenos Aires, Paraguay 2155 piso 10, 1121ABG Buenos Aires, Argentina IFEC (CONICET) Department of Pharmacology, School of Chemistry, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
13
|
Gautron L, Lee CE, Lee S, Elmquist JK. Melanocortin-4 receptor expression in different classes of spinal and vagal primary afferent neurons in the mouse. J Comp Neurol 2013; 520:3933-48. [PMID: 22592759 DOI: 10.1002/cne.23137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Melanocortin-4 receptor (MC4R) ligands are known to modulate nociception, but the site of action of MC4R signaling on nociception remains to be elucidated. The current study investigated MC4R expression in dorsal root ganglia (DRG) of the MC4R-GFP reporter mouse. Because MC4R is known to be expressed in vagal afferent neurons in the nodose ganglion (NG), we also systematically compared MC4R-expressing vagal and spinal afferent neurons. Abundant green fluorescent protein (GFP) immunoreactivity was found in about 45% of DRG neuronal profiles (at the mid-thoracic level), the majority being small-sized profiles. Immunohistochemistry combined with in situ hybridization confirmed that GFP was genuinely produced in MC4R-expressing neurons in the DRG. While a large number of GFP profiles in the DRG coexpressed Nav1.8 mRNA (84%) and bound isolectin B4 (72%), relatively few GFP profiles were positive for NF200 (16%) or CGRP (13%), suggesting preferential MC4R expression in C-fiber nonpeptidergic neurons. By contrast, GFP in the NG frequently colocalized with Nav1.8 mRNA (64%) and NF200 (29%), but only to a moderate extent with isolectin B4 (16%). Lastly, very few GFP profiles in the NG expressed CGRP (5%) or CART (4%). Together, our findings demonstrate variegated MC4R expression in different classes of vagal and spinal primary afferent neurons, and underscore the role of the melanocortin system in modulating nociceptive and nonnociceptive peripheral sensory modalities.
Collapse
Affiliation(s)
- Laurent Gautron
- Department of Internal Medicine, Division of Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9077, USA.
| | | | | | | |
Collapse
|
14
|
Chu H, Sun J, Xu H, Niu Z, Xu M. Effect of periaqueductal gray melanocortin 4 receptor in pain facilitation and glial activation in rat model of chronic constriction injury. Neurol Res 2012; 34:871-88. [PMID: 22889616 DOI: 10.1179/1743132812y.0000000085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Substantial evidence shows that spinal melanocortin 4 receptor (MC4R) may participate in regulation of central sensitization and chronic pain condition induced by peripheral nerve injury. Periaqueductal gray (PAG) is an important component of descending pain facilitatory system and takes part in spinal nociceptive information. This research will choose PAG to discuss the effect of MC4R in pain facilitation induced by chronic constriction injury (CCI) and further discuss its effect in glial activity and inflammatory factor levels in nerve injury. METHODS Behavior tests (von Frey test and hot-plate test), semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemistry were used in this research. RESULTS PAG injection of HS014 (a selective inhibitor of MC4R), not only significantly reduced the established mechanical allodynia and thermal hyperalgesia, but also delayed the development of pain facilitation. Semi-quantitative RT-PCR analysis revealed that MC4R and proopiomelanocortin (POMC) expression in PAG was significantly increased after CCI, but agouti-related protein (AgRP) expression decreased. Immunohistochemistry analysis showed that protein levels of astrocytic marker (GFAP), microglial marker (OX-42), tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6 were significantly increased, but there was little change of the protein levels of IL-10 following CCI. Furthermore, blockade of MC4R decreased immunoreactivity of glia cells and protein levels of pro-inflammatory cytokines, and increased protein levels of anti-inflammatory cytokine IL-10 after CCI. DISCUSSION This research suggests that activation of MC4R in PAG after peripheral nerve injury participates in pain facilitation by regulating the glial activation and inflammatory cytokines secretion.
Collapse
Affiliation(s)
- Haichen Chu
- Department of Anesthesiology, Affiliated Hospital of Medical College, Qingdao University, China.
| | | | | | | | | |
Collapse
|
15
|
Kapoor S. Letter to the Editor: Melanocortin 4 Receptor Antagonists and Their Emerging Role in Pain Management. Int J Neurosci 2012; 122:547; author reply 548. [DOI: 10.3109/00207454.2012.683221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Chu H, Xia J, Yang Z, Gao J. Melanocortin 4 Receptor Induces Hyperalgesia and Allodynia After Chronic Constriction Injury by Activation of p38 MAPK in DRG. Int J Neurosci 2011; 122:74-81. [DOI: 10.3109/00207454.2011.630542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Involvement of the melanocortin-1 receptor in acute pain and pain of inflammatory but not neuropathic origin. PLoS One 2010; 5:e12498. [PMID: 20856883 PMCID: PMC2938350 DOI: 10.1371/journal.pone.0012498] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/06/2010] [Indexed: 01/22/2023] Open
Abstract
Background Response to painful stimuli is susceptible to genetic variation. Numerous loci have been identified which contribute to this variation, one of which, MC1R, is better known as a gene involved in mammalian hair colour. MC1R is a G protein-coupled receptor expressed in melanocytes and elsewhere and mice lacking MC1R have yellow hair, whilst humans with variant MC1R protein have red hair. Previous work has found differences in acute pain perception, and response to analgesia in mice and humans with mutations or variants in MC1R. Methodology and Principal Findings We have tested responses to noxious and non-noxious stimuli in mutant mice which lack MC1R, or which overexpress an endogenous antagonist of the receptor, as well as controls. We have also examined the response of these mice to inflammatory pain, assessing the hyperalgesia and allodynia associated with persistent inflammation, and their response to neuropathic pain. Finally we tested by a paired preference paradigm their aversion to oral administration of capsaicin, which activates the noxious heat receptor TRPV1. Female mice lacking MC1R showed increased tolerance to noxious heat and no alteration in their response to non-noxious mechanical stimuli. MC1R mutant females, and females overexpressing the endogenous MC1R antagonist, agouti signalling protein, had a reduced formalin-induced inflammatory pain response, and a delayed development of inflammation-induced hyperalgesia and allodynia. In addition they had a decreased aversion to capsaicin at moderate concentrations. Male mutant mice showed no difference from their respective controls. Mice of either sex did not show any effect of mutant genotype on neuropathic pain. Conclusions We demonstrate a sex-specific role for MC1R in acute noxious thermal responses and pain of inflammatory origin.
Collapse
|
18
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
19
|
Starowicz K, Mousa SA, Obara I, Chocyk A, Przewłocki R, Wędzony K, Machelska H, Przewłocka B. Peripheral antinociceptive effects of MC4 receptor antagonists in a rat model of neuropathic pain – a biochemical and behavioral study. Pharmacol Rep 2009; 61:1086-95. [DOI: 10.1016/s1734-1140(09)70171-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 10/19/2009] [Indexed: 10/25/2022]
|
20
|
Trigo JM, Zimmer A, Maldonado R. Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin. Neuropharmacology 2009; 56:1147-53. [PMID: 19376143 DOI: 10.1016/j.neuropharm.2009.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/25/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022]
Abstract
The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, micro-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking beta-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking beta-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of beta-endorphin in these addictive related responses.
Collapse
Affiliation(s)
- José M Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | |
Collapse
|
21
|
Cain JP, Mayorov AV, Cai M, Wang H, Tan B, Chandler K, Lee Y, Petrov RR, Trivedi D, Hruby VJ. Design, synthesis, and biological evaluation of a new class of small molecule peptide mimetics targeting the melanocortin receptors. Bioorg Med Chem Lett 2006; 16:5462-7. [PMID: 16931008 PMCID: PMC1810397 DOI: 10.1016/j.bmcl.2006.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/23/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
A new bicyclic template has been developed for the synthesis of peptide mimetics. Straightforward synthetic steps, starting from amino acids, allow the facile construction of a wide range of analogs. This system was designed to target the melanocortin receptors (MCRs), with functional group selection based on a known pharmacophore and guidance from molecular modeling to rationally identify positional and stereochemical isomers likely to be active. The functions of hMCRs are critical to myriad biological activities, including pigmentation, steroidogenesis, energy homeostasis, erectile activity, and inflammation. These G-protein-coupled receptors (GPCRs) are targets for drug discovery in a number of areas, including cancer, pain, and obesity therapeutics. All compounds from this series tested to date are antagonists which bind with high affinity. Importantly, many are highly selective for a particular MCR subtype, including some of the first completely hMC5R-selective antagonists reported.
Collapse
Affiliation(s)
- James P Cain
- Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tran JA, Pontillo J, Arellano M, Fleck BA, Tucci FC, Marinkovic D, Chen CW, Saunders J, Foster AC, Chen C. Structure–activity relationship of a series of cyclohexylpiperidines bearing an amide side chain as antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 2005; 15:3434-8. [PMID: 15950470 DOI: 10.1016/j.bmcl.2005.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 11/16/2022]
Abstract
A series of cyclohexylpiperazines was synthesized as potent and selective antagonists of the human MC4 receptor. Compound 14t displayed binding affinity (Ki) of 4.2 and 1100 nM at MC4R and MC3R, respectively.
Collapse
Affiliation(s)
- Joseph A Tran
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pontillo J, Tran JA, Markison S, Joppa M, Fleck BA, Marinkovic D, Arellano M, Tucci FC, Lanier M, Nelson J, Saunders J, Hoare SRJ, Foster AC, Chen C. A potent and selective nonpeptide antagonist of the melanocortin-4 receptor induces food intake in satiated mice. Bioorg Med Chem Lett 2005; 15:2541-6. [PMID: 15863313 DOI: 10.1016/j.bmcl.2005.03.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/10/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Optimization on a series of piperazinebenzylamines resulted in analogues with low nanomolar binding at the human MC4 receptor but weak affinity (Ki > 500 nM) at the MC3 receptor. Compound 14c was identified to be a potent MC4R antagonist (Ki = 3.2 nM) with a selectivity of 240-fold over MC3R. It proved to be an insurmountable antagonist in a cAMP assay. Compound 14c potently stimulated food intake in satiated mice when given by intracerebroventricular administration.
Collapse
Affiliation(s)
- Joseph Pontillo
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|