1
|
Khandelwal A, Cushman J, Choi J, Zhuravka I, Rajbhandari A, Valiulahi P, Li X, Zhou C, Comai L, Reddy S. Mbnl2 loss alters novel context processing and impairs object recognition memory. iScience 2023; 26:106732. [PMID: 37216102 PMCID: PMC10193234 DOI: 10.1016/j.isci.2023.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/13/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Patients with myotonic dystrophy type I (DM1) demonstrate visuospatial dysfunction and impaired performance in tasks requiring recognition or memory of figures and objects. In DM1, CUG expansion RNAs inactivate the muscleblind-like (MBNL) proteins. We show that constitutive Mbnl2 inactivation in Mbnl2ΔE2/ΔE2 mice selectively impairs object recognition memory in the novel object recognition test. When exploring the context of a novel arena in which the objects are later encountered, the Mbnl2ΔE2/ΔE2 dorsal hippocampus responds with a lack of enrichment for learning and memory-related pathways, mounting instead transcriptome alterations predicted to impair growth and neuron viability. In Mbnl2ΔE2/ΔE2 mice, saturation effects may prevent deployment of a functionally relevant transcriptome response during novel context exploration. Post-novel context exploration alterations in genes implicated in tauopathy and dementia are observed in the Mbnl2ΔE2/ΔE2 dorsal hippocampus. Thus, MBNL2 inactivation in patients with DM1 may alter novel context processing in the dorsal hippocampus and impair object recognition memory.
Collapse
Affiliation(s)
- Abinash Khandelwal
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jesse Cushman
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Irina Zhuravka
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Abha Rajbhandari
- UCLA Behavioral Testing Core, University of California Los Angeles, Los Angeles, CA 90095-1563, USA
| | - Parvin Valiulahi
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xiandu Li
- . Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chenyu Zhou
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lucio Comai
- . Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sita Reddy
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
2
|
Ryan DP, Henzel KS, Pearson BL, Siwek ME, Papazoglou A, Guo L, Paesler K, Yu M, Müller R, Xie K, Schröder S, Becker L, Garrett L, Hölter SM, Neff F, Rácz I, Rathkolb B, Rozman J, Ehninger G, Klingenspor M, Klopstock T, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabě de Angelis M, Sidiropoulou K, Weiergräber M, Zhou Y, Ehninger D. A paternal methyl donor-rich diet altered cognitive and neural functions in offspring mice. Mol Psychiatry 2018; 23:1345-1355. [PMID: 28373690 PMCID: PMC5984088 DOI: 10.1038/mp.2017.53] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
Dietary intake of methyl donors, such as folic acid and methionine, shows considerable intra-individual variation in human populations. While it is recognized that maternal departures from the optimum of dietary methyl donor intake can increase the risk for mental health issues and neurological disorders in offspring, it has not been explored whether paternal dietary methyl donor intake influences behavioral and cognitive functions in the next generation. Here, we report that elevated paternal dietary methyl donor intake in a mouse model, transiently applied prior to mating, resulted in offspring animals (methyl donor-rich diet (MD) F1 mice) with deficits in hippocampus-dependent learning and memory, impaired hippocampal synaptic plasticity and reduced hippocampal theta oscillations. Gene expression analyses revealed altered expression of the methionine adenosyltransferase Mat2a and BK channel subunit Kcnmb2, which was associated with changes in Kcnmb2 promoter methylation in MD F1 mice. Hippocampal overexpression of Kcnmb2 in MD F1 mice ameliorated altered spatial learning and memory, supporting a role of this BK channel subunit in the MD F1 behavioral phenotype. Behavioral and gene expression changes did not extend into the F2 offspring generation. Together, our data indicate that paternal dietary factors influence cognitive and neural functions in the offspring generation.
Collapse
Affiliation(s)
- D P Ryan
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - K S Henzel
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - B L Pearson
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - M E Siwek
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - A Papazoglou
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - L Guo
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - K Paesler
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - M Yu
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - R Müller
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine, Cologne, Germany
| | - K Xie
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - S Schröder
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - L Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - L Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - S M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - F Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - I Rácz
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - B Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Chair of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany,Member of German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - J Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Member of German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - G Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - M Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan, Germany
| | - T Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Munich, Germany,DZNE, German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,DZNE, German Center for Neurodegenerative Diseases, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany,Chair of Developmental Genetics, Technische Universität München, c/o Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - A Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn, Germany
| | - H Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - V Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - M Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany,Member of German Center for Diabetes Research (DZD), München-Neuherberg, Germany,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - K Sidiropoulou
- Department of Biology, University of Crete, Vassilika Vouton, Heraklio, Greece
| | - M Weiergräber
- Department of Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | - Y Zhou
- Department of Physiology, Medical College of Qingdao University, Qingdao, Shandong, China
| | - D Ehninger
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany,Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn 53127, Germany. E-mail:
| |
Collapse
|