1
|
Shankey NT, Cohen RE. Neural control of reproduction in reptiles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:307-321. [PMID: 38247297 DOI: 10.1002/jez.2783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Reptiles display considerable diversity in reproductive behavior, making them great models to study the neuroendocrine control of reproductive behavior. Many reptile species are seasonally breeding, such that they become reproductively active during their breeding season and regress to a nonreproductive state during their nonbreeding season, with this transition often prompted by environmental cues. In this review, we will focus on summarizing the neural and neuroendocrine mechanisms controlling reproductive behavior. Three major areas of the brain are involved in reproductive behavior: the preoptic area (POA), amygdala, and ventromedial hypothalamus (VMH). The POA and VMH are sexually dimorphic areas, regulating behaviors in males and females respectively, and all three areas display seasonal plasticity. Lesions to these areas disrupt the onset and maintenance of reproductive behaviors, but the exact roles of these regions vary between sexes and species. Different hormones influence these regions to elicit seasonal transitions. Circulating testosterone (T) and estradiol (E2) peak during the breeding season and their influence on reproduction is well-documented across vertebrates. The conversion of T into E2 and 5α-dihydrotestosterone can also affect behavior. Melatonin and corticosterone have generally inhibitory effects on reproductive behavior, while serotonin and other neurohormones seem to stimulate it. In general, there is relatively little information on the neuroendocrine control of reproduction in reptiles compared to other vertebrate groups. This review highlights areas that should be considered for future areas of research.
Collapse
Affiliation(s)
- Nicholas T Shankey
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, Minnesota, USA
| |
Collapse
|
2
|
Munley KM, Wade KL, Pradhan DS. Uncovering the seasonal brain: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a biochemical approach for studying seasonal social behaviors. Horm Behav 2022; 142:105161. [PMID: 35339904 DOI: 10.1016/j.yhbeh.2022.105161] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Many animals show pronounced changes in physiology and behavior across the annual cycle, and these adaptations enable individuals to prioritize investing in the neuroendocrine mechanisms underlying reproduction and/or survival based on the time of year. While prior research has offered valuable insight into how seasonal variation in neuroendocrine processes regulates social behavior, the majority of these studies have investigated how a single hormone influences a single behavioral phenotype. Given that hormones are synthesized and metabolized via complex biochemical pathways and often act in concert to control social behavior, these approaches provide a limited view of how hormones regulate seasonal changes in behavior. In this review, we discuss how seasonal influences on hormones, the brain, and social behavior can be studied using liquid chromatography-tandem mass spectrometry (LC-MS/MS), an analytical chemistry technique that enables researchers to simultaneously quantify the concentrations of multiple hormones and the activities of their synthetic enzymes. First, we examine studies that have investigated seasonal plasticity in brain-behavior interactions, specifically by focusing on how two groups of hormones, sex steroids and nonapeptides, regulate sexual and aggressive behavior. Then, we explain the operations of LC-MS/MS, highlight studies that have used LC-MS/MS to study the neuroendocrine mechanisms underlying social behavior, both within and outside of a seasonal context, and discuss potential applications for LC-MS/MS in the field of behavioral neuroendocrinology. We propose that this cutting-edge technology will provide a more comprehensive understanding of how the multitude of hormones that comprise complex neuroendocrine networks affect seasonal variation in the brain and behavior.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kristina L Wade
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
3
|
Connahs H, Tan EJ, Ter YT, Dion E, Matsuoka Y, Bear A, Monteiro A. The yellow gene regulates behavioural plasticity by repressing male courtship in Bicyclus anynana butterflies. Proc Biol Sci 2022; 289:20212665. [PMID: 35382598 PMCID: PMC8984812 DOI: 10.1098/rspb.2021.2665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Seasonal plasticity in male courtship in Bicyclus anynana butterflies is due to variation in levels of the steroid hormone 20E (20-hydroxyecdysone) during pupation. Wet season (WS) males have high levels of 20E and become active courters. Dry season (DS) males have lower levels of 20E and reduced courtship rates. However, WS courtship rates can be achieved if DS male pupae are injected with 20E at 30% of pupation. Here, we investigated the genes involved in male courtship plasticity and examined whether 20E plays an organizational role in the pupal brain that later influences the sexual behaviour of adults. We show that DS pupal brains have a sevenfold upregulation of the yellow gene relative to the WS brains, and that knocking out yellow leads to increased male courtship. We find that injecting 20E into DS pupa reduced yellow expression although not significantly. Our results show that yellow is a repressor of the neural circuity for male courtship behaviour in B. anynana. 20E levels experienced during pupation could play an organizational role during pupal brain development by regulating yellow expression, however, other factors might also be involved. Our findings are in striking contrast to Drosophila where yellow is required for male courtship.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Eunice Jingmei Tan
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Yale-NUS College, 16 College Avenue West, Singapore 138527
| | - Yi Ting Ter
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Emilie Dion
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Yuji Matsuoka
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Ashley Bear
- Department of Ecology and Evolutionary Biology, Yale University, CT 06511, USA
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Yale-NUS College, 16 College Avenue West, Singapore 138527
| |
Collapse
|
4
|
Tao CY, Harley JZ, Spencer SL, Cohen RE. Characterizing seasonal transitions: Breeding-like morphology and behavior during the late non-breeding season in green anole lizards. Horm Behav 2022; 139:105106. [PMID: 34995849 DOI: 10.1016/j.yhbeh.2021.105106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/03/2021] [Accepted: 12/22/2021] [Indexed: 11/19/2022]
Abstract
Seasonally breeding animals, such as green anole lizards (Anolis carolinensis), allow for the examination of the control of reproduction during different reproductive states. During the breeding season, the gonads are large and reproductively active. Following the breeding season, gonads regress and become less active, and the lizards enter a refractory period where breeding is inhibited. After this stage, a post-refractory period occurs during which the lizards are still in a non-breeding state, but environmental changes can trigger the onset of breeding. However, it is unclear what causes these changes in reproductive state and we hypothesized that this may be due to alterations in gonadotropin-releasing hormone (GnRH) signaling. The present study aimed to identify morphological and behavioral differences in GnRH- and saline-injected refractory and post-refractory male anoles when housed under the same non-breeding environmental conditions. We found that post-refractory anoles had increased testicular weight, recrudescence, sperm presence, and reproductive behavior, with no impact of GnRH injection. Renal sex segment size and steroidogenic acute regulatory protein (StAR) mRNA levels did not differ among groups, indicating that testosterone levels likely had not increased in post-refractory lizards. Post-refractory anoles in this study were beginning to transition towards a breeding state without exposure to changing environmental conditions, and GnRH was not necessary for these changes. These data reveal a complex interaction between the activation of breeding, changing environmental conditions, and the underlying physiology regulating reproduction in seasonally breeding lizards. Future studies are needed to further elucidate the mechanisms that regulate this relationship.
Collapse
Affiliation(s)
- Cai Y Tao
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Jada Z Harley
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Savannah L Spencer
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
5
|
Martínez-Torres M, Sánchez-Rivera UÁ, Cruz-Cano NB, Castro-Camacho YJ, Luis J, Medrano A. A non-invasive method for semen collection and evaluation in small and median size lizards. Reprod Domest Anim 2020; 54 Suppl 4:54-58. [PMID: 31625233 DOI: 10.1111/rda.13536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022]
Abstract
The aim of this study was to develop a non-invasive procedure to stimulate ejaculation in median and small lizards for semen collection. After semen collection, we applied a battery of tests to assess the motility (wave and progressive), viability (eosin-nigrosin stain), morphology (normal/abnormal), sperm concentration and ejaculate number, seminal volume and colour. We obtained this fluid from all males of the four species of sceloporine lizards (n = 30) and one species of Mexican horned lizards (n = 7). We found that semen from all males had a liquid-like consistency and a milky-white appearance. Ejaculate volume and sperm concentration varied among the males and the species studied. We also observed that although the mobility, viability and normal sperm morphology showed a wide variability, their average value in each species was high. We conclude that "genital papilla pressure" was an efficient and non-invasive semen obtaining method for small- and medium-sized lizards that does not imply damage to donors and could be used in other lizard species.
Collapse
Affiliation(s)
- Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Uriel Ángel Sánchez-Rivera
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Norma Berenice Cruz-Cano
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Yabín Josué Castro-Camacho
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Juana Luis
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, México
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| |
Collapse
|
6
|
Peek CE, Cohen RE. Seasonal regulation of steroidogenic enzyme expression within the green anole lizard (Anolis carolinensis) brain and gonad. Gen Comp Endocrinol 2018; 268:88-95. [PMID: 30077794 DOI: 10.1016/j.ygcen.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
Steroid hormones, such as testosterone and estradiol, are necessary for reproductive behavior. Seasonally breeding animals have increased sex steroid hormone levels during the breeding compared to non-breeding season, with increased reproductive behaviors and altered brain morphology in breeding individuals. Similar to other seasonally breeding animals, green anole lizards (Anolis carolinensis) have high sex steroid hormone levels and increased reproductive behaviors in the breeding season. Relatively less is known regarding the regulation of steroidogenesis in reptiles and this experiment examined whether enzymes involved in sex steroid hormone synthesis vary seasonally within the brain and gonads in wild-caught anole lizards. Specifically, we examined mRNA expression of steroidogenic acute regulatory protein (StAR), P450 17α-hydroxylase/C17-20lyase (Cyp17α1), 17 beta-hydroxysteroid dehydrogenase type 3 (17βHSD 3), and aromatase (Cyp19α1). We found that the mRNA for each of these genes was expressed in the lizard brain. Interestingly, Cyp19α1 mRNA expression in the brain was increased during the non-breeding season, potentially revealing a role for aromatase expression in the non-breeding brain. In the anole gonads, StAR mRNA expression levels were increased in both males and females during the breeding season, while the mRNA expression levels of CYP17α1 and 17βHSD 3 are increased when StAR mRNA expression was decreased, suggesting that the enzymes in the steroidogenic pathway are potentially regulated independently of StAR. This work reveals the seasonal regulation of steroidogenesis in the reptilian brain and gonad, although more work is necessary to determine the regulatory mechanisms that control these expression patterns.
Collapse
Affiliation(s)
- Christine E Peek
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA
| | - Rachel E Cohen
- Department of Biological Sciences, Minnesota State University, Mankato, Mankato, MN 56001-6062, USA.
| |
Collapse
|
7
|
Armbruster D, Brocke B, Strobel A. Winter is coming: Seasonality and the acoustic startle reflex. Physiol Behav 2016; 169:178-183. [PMID: 27940142 DOI: 10.1016/j.physbeh.2016.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
Circannual rhythms and seasonality have long been in the interest of research. In humans, seasonal changes in mood have been extensively investigated since a substantial part of the population experiences worsening of mood during winter. Questions remain regarding accompanying physiological phenomena. We report seasonal effects on the acoustic startle response in a cross-sectional (n=124) and a longitudinal sample (n=23). Startle magnitudes were larger in winter (sample 1: p=0.026; sample 2: p=0.010) compared to summer months. Although the findings need to be replicated they may have implications regarding the timing of startle experiments.
Collapse
Affiliation(s)
- Diana Armbruster
- Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany.
| | - Burkhard Brocke
- Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany
| | - Alexander Strobel
- Personality and Individual Differences, Institute of Psychology I, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Wade J. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150112. [PMID: 26833833 DOI: 10.1098/rstb.2015.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Kerver HN, Wade J. Sexually dimorphic expression of CREB binding protein in the green anole brain. Gen Comp Endocrinol 2016; 225:55-60. [PMID: 26363452 DOI: 10.1016/j.ygcen.2015.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/10/2023]
Abstract
Green anoles are seasonally breeding lizards in which male sexual behavior is primarily regulated by an annual increase in testosterone. This hormone activates stereotyped behaviors, as well as morphological and biochemical changes in the brain, with greater effect in the breeding season than in the non-breeding season. This study is the first description of CREB binding protein (CBP) in the reptilian brain, and investigates the possibility that changes in CBP, an androgen receptor coactivator, may facilitate differences in responsiveness to testosterone across seasons. A portion of this gene was cloned for the green anole, and in situ hybridization was performed to examine the expression of CBP in the brains of gonadally intact male and female green anoles across breeding states. Additionally, hormonal regulation of CBP was evaluated across sex and season in animals that were gonadectomized and treated with testosterone or a control. Similar to other vertebrates, CBP was expressed at relatively high levels in steroid-sensitive brain regions. In the anole ventromedial amygdala, CBP mRNA levels were nearly twice as high in gonadally intact females compared to males. In contrast, CBP expression did not differ across seasons or hormone manipulation in this brain region. No significant effects were detected in the preoptic area or ventromedial hypothalamus. This pattern suggests that CBP might influence female-biased functions controlled by the ventromedial amygdala, but is not consistent with a role in mediating seasonal differences in responsiveness to testosterone in these areas associated with reproductive function.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States.
| | - Juli Wade
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States; Department of Psychology, Michigan State University, East Lansing, MI 48824-1101, United States
| |
Collapse
|
10
|
Kerver HN, Wade J. Hormonal regulation of steroid receptor coactivator-1 mRNA in the male and female green anole brain. J Neuroendocrinol 2015; 27:223-33. [PMID: 25557947 DOI: 10.1111/jne.12249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/02/2023]
Abstract
Green anole lizards are seasonal breeders, with male sexual behaviour primarily regulated by an annual increase in testosterone. Morphological, biochemical and behavioural changes associated with reproduction are activated by testosterone, generally with a greater effect in the breeding season (BS) than in the nonbreeding season (NBS). The present study investigates the possibility that differences in a steroid receptor coactivator may regulate this seasonal difference in responsiveness to testosterone. In situ hybridisation was used to examine the expression of steroid receptor coactivator-1 (SRC-1) in the brains of gonadally intact male and female green anoles across breeding states. A second experiment examined gonadectomised animals with and without testosterone treatment. Gonadally intact males had more SRC-1 expressing cells in the preoptic area and larger volumes of this region as defined by these cells than females. Main effects of both sex and season (males > females and BS > NBS) were present in cell number and volume of the ventromedial hypothalamus. An interaction between sex and season suggested that high expression in BS males was driving these effects. In hormone-manipulated animals, testosterone treatment increased both the number of SRC-1 expressing cells in and volumes of the preoptic area and amygdala. These results suggest that testosterone selectively regulates SRC-1, and that this coactivator may play a role in facilitating reproductive behaviours across both sexes. However, changes in SRC-1 expression are not likely responsible for the seasonal change in responsiveness to testosterone.
Collapse
Affiliation(s)
- H N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | | |
Collapse
|
11
|
Kerver HN, Wade J. Relationships among sex, season and testosterone in the expression of androgen receptor mRNA and protein in the green anole forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:303-14. [PMID: 25471151 DOI: 10.1159/000368388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022]
Abstract
Sexual behavior in male green anole lizards is regulated by a seasonal increase in testosterone (T). However, T is much more effective at activating behavioral, morphological and biochemical changes related to reproduction in the breeding season (BS; spring) compared to nonbreeding season (NBS; fall). An increase in androgen receptor (AR) during the BS is one potential mechanism for this differential responsiveness. AR expression has not been investigated in specific brain regions across seasons in anoles. The present studies were designed to determine relative AR expression in areas important for male (preoptic area, ventromedial amygdala) and female (ventromedial hypothalamus) sexual behavior, as well as whether T upregulates AR in the anole brain. In situ hybridization and Western blot analyses were performed in unmanipulated animals across sex and season, as well as in gonadectomized animals with and without T treatment. Among hormone-manipulated animals, more cells expressing AR mRNA were detected in females than males in the amygdala. T treatment increased the volume of the ventromedial hypothalamus of gonadectomized animals in the BS, but not the NBS. AR protein in dissections of the hypothalamus and preoptic area was increased in males compared to females specifically in the BS. Additionally, among females, it was increased in the NBS compared to the BS. Collectively, these results indicate that differences in central AR expression probably do not facilitate a seasonal responsiveness to T. However, they are consistent with a role for AR in regulating some differences between sexes in the display of reproductive behaviors.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, Mich., USA
| | | |
Collapse
|
12
|
Golinski A, Kubička L, John-Alder H, Kratochvíl L. Elevated testosterone is required for male copulatory behavior and aggression in Madagascar ground gecko (Paroedura picta). Gen Comp Endocrinol 2014; 205:133-41. [PMID: 24852349 DOI: 10.1016/j.ygcen.2014.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/01/2014] [Accepted: 05/06/2014] [Indexed: 11/22/2022]
Abstract
Elevated levels of gonadal androgens are often required for the expression of male-specific behavioral and morphological traits in all classes of vertebrates, including reptiles. Here, we tested the role of male gonadal androgens in the control of male sexual behavior, aggressive behavior, and size of the hemipenes in the gecko Paroedura picta. We performed hormonal manipulations involving castration with and without testosterone (T) replacement in males and application of exogenous T and ovariectomy in females. Castration suppressed sexual behavior and hemipenes size in males, and these effects were fully rescued by exogenous T. Sexual behavior and growth of the hemipenes were masculinized by male-typical levels of T in females, while ovariectomized females retained female-typical expression of these traits. These results indicate that the development of male sexual behavior in adult females does not require early or pubertal organization. Elevated T increased the likelihood of aggressive behavior directed toward a male intruder, but aggression occurred only rarely. Elevated T is necessary and sufficient for enlargement of the hemipenes and the expression of male sexual behavior in both males and females of Paroedura picta. In contrast to sexual behavior, the expression of aggressive behavior is apparently more dependent on other factors in addition to T itself.
Collapse
Affiliation(s)
- Alison Golinski
- Graduate Program in Endocrinology and Animal Biosciences, Rutgers University, 84 Lipman Drive, New Brunswick, NJ 08901, USA
| | - Lukáš Kubička
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Praha 2, Czech Republic.
| | - Henry John-Alder
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Praha 2, Czech Republic
| |
Collapse
|
13
|
Kerver HN, Wade J. Seasonal and sexual dimorphisms in expression of androgen receptor and its coactivators in brain and peripheral copulatory tissues of the green anole. Gen Comp Endocrinol 2013; 193:56-67. [PMID: 23892016 DOI: 10.1016/j.ygcen.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 06/14/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022]
Abstract
Green anoles are seasonally breeding lizards, with an annual rise in testosterone (T) being the primary activator of male sexual behaviors. Responsiveness to T is decreased in the non-breeding season (NBS) compared to breeding season (BS) on a variety of levels, including displays of reproductive behavior and the morphology and biochemistry of associated tissues. To evaluate the possibility that seasonal changes in responsiveness to T are regulated by androgen receptors (AR) and/or two of its coactivators, CREB binding protein (CBP) and steroid receptor coactivator-1 (SRC-1), we tested whether they differ in expression across season in brains of both sexes and in peripheral copulatory tissues of males (hemipenis and retractor penis magnus muscle). AR mRNA was increased in the brains of males compared to females and in copulatory muscle in the BS compared to NBS. In the hemipenis, transcriptional activity appeared generally diminished in the NBS. T-treatment increased AR mRNA in the copulatory muscle and AR protein in the hemipenis, the latter to a greater extent in the BS than the NBS. T also decreased SRC-1 protein in hemipenis. Interpretations are complicated, in part because levels of mRNA and protein expression were not correlated and multiple sizes of the AR and CBP proteins were detected, with some tissue specificity. However, the results are consistent with the idea that differences in receptor and coactivator expression at central and peripheral levels may play roles in regulating sex and seasonal differences in the motivation or physical ability to engage in sexual behavior.
Collapse
Affiliation(s)
- Halie N Kerver
- Neuroscience Program, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
14
|
Wade J. Sculpting reproductive circuits: relationships among hormones, morphology and behavior in anole lizards. Gen Comp Endocrinol 2012; 176:456-60. [PMID: 22202602 DOI: 10.1016/j.ygcen.2011.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/09/2011] [Accepted: 12/11/2011] [Indexed: 11/15/2022]
Abstract
Morphology parallels function on a variety of levels in reproductive circuits in anole lizards, as in many vertebrate groups. For example, across species within the anole genus the muscle fibers regulating extension of a throat fan used in courtship are larger in males than females. Endocrine factors controlling behavior and morphology have been studied in detail in one species, the green anole (Anolis carolinensis). This review briefly describes the results that have been obtained and highlights key areas for future investigation that will provide insights on mechanisms from a comparative perspective.
Collapse
Affiliation(s)
- Juli Wade
- Department of Psychology, Program in Neuroscience, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824-1101, USA.
| |
Collapse
|
15
|
Cohen RE, Wade J. Aromatase and 5α-reductase type 2 mRNA in the green anole forebrain: an investigation of the effects of sex, season and testosterone manipulation. Gen Comp Endocrinol 2012; 176:377-84. [PMID: 22326351 PMCID: PMC3334470 DOI: 10.1016/j.ygcen.2012.01.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/21/2022]
Abstract
Aromatase and 5α-reductase (5αR) catalyze the synthesis of testosterone (T) metabolites: estradiol and 5α-dihydrotestosterone, respectively. These enzymes are important in controlling sexual behaviors in male and female vertebrates. To investigate factors contributing to their regulation in reptiles, male and female green anole lizards were gonadectomized during the breeding and non-breeding seasons and treated with a T-filled or blank capsule. In situ hybridization was used to examine main effects of and interactions among sex, season, and T on expression of aromatase and one isozyme of 5αR (5αR2) in three brain regions that control reproductive behaviors: the preoptic area, ventromedial nucleus of the amygdala and ventromedial hypothalamus (VMH). Patterns of mRNA generally paralleled previous evaluations of intact animals. Although no main effects of T were detected, interactions were present in the VMH. Specifically, the density of 5αR2 expressing cells was greater in T-treated than control females in this region, regardless of season. Among breeding males, blank-treated males had a denser population of 5αR2 positive cells than T-treated males. Overall, T appears to have less of a role in the regulation of these enzymes than in other vertebrate groups, which is consistent with the primary role of T (rather than its metabolites) in regulation of reproductive behaviors in lizards. However, further investigation of protein and enzyme activity levels are needed before specific conclusions can be drawn.
Collapse
Affiliation(s)
- Rachel E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1101, United States.
| | | |
Collapse
|
16
|
Uhrig EJ, Lutterschmidt DI, Mason RT, LeMaster MP. Pheromonal Mediation of Intraseasonal Declines in the Attractivity of Female Red-Sided Garter Snakes, Thamnophis sirtalis parietalis. J Chem Ecol 2012; 38:71-80. [DOI: 10.1007/s10886-011-0054-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/06/2011] [Accepted: 12/19/2011] [Indexed: 11/30/2022]
|
17
|
Johnson MA, Cohen RE, Vandecar JR, Wade J. Relationships among reproductive morphology, behavior, and testosterone in a natural population of green anole lizards. Physiol Behav 2011; 104:437-45. [DOI: 10.1016/j.physbeh.2011.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/11/2011] [Accepted: 05/03/2011] [Indexed: 10/18/2022]
|
18
|
O’Connor JL, McBrayer LD, Higham TE, Husak JF, Moore IT, Rostal DC. Effects of Training and Testosterone on Muscle Fiber Types and Locomotor Performance in Male Six-Lined Racerunners (Aspidoscelis sexlineata). Physiol Biochem Zool 2011; 84:394-405. [DOI: 10.1086/660850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Wade J. Relationships among hormones, brain and motivated behaviors in lizards. Horm Behav 2011; 59:637-44. [PMID: 20816970 DOI: 10.1016/j.yhbeh.2010.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/25/2010] [Indexed: 11/22/2022]
Abstract
Lizards provide a rich opportunity for investigating the mechanisms associated with arousal and the display of motivated behaviors. They exhibit diverse mating strategies and modes of conspecific communication. This review focuses on anole lizards, of which green anoles (Anolis carolinensis) have been most extensively studied. Research from other species is discussed in that context. By considering mechanisms collectively, we can begin to piece together neural and endocrine factors mediating the stimulation of sexual and aggressive behaviors in this group of vertebrates.
Collapse
Affiliation(s)
- Juli Wade
- Michigan State University, Department of Psychology, East Lansing, MI 48824, USA.
| |
Collapse
|
20
|
Oxford J, Ponzi D, Geary DC. Hormonal responses differ when playing violent video games against an ingroup and outgroup. EVOL HUM BEHAV 2010. [DOI: 10.1016/j.evolhumbehav.2009.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Cohen RE, Wade J. Testosterone selectively affects aromatase and 5alpha-reductase activities in the green anole lizard brain. Gen Comp Endocrinol 2010; 166:128-33. [PMID: 19917285 PMCID: PMC3036945 DOI: 10.1016/j.ygcen.2009.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/29/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
Testosterone (T) and its metabolites are important in the regulation of reproductive behavior in males of a variety of vertebrate species. Aromatase converts T to estradiol and 5alpha-reductase converts T to 5alpha-dihydrotestosterone (DHT). Male green anole reproduction depends on androgens, yet 5alpha-reductase in the brain is not sexually dimorphic and does not vary with season. In contrast, aromatase activity in the male brain is increased during the breeding compared to non-breeding season, and males have higher levels than females during the breeding season. Aromatase is important for female, but not male, sexual behaviors. The present experiment was conducted to determine whether 5alpha-reductase and aromatase are regulated by T. Enzyme activity was quantified in whole brain homogenates in both the breeding and non-breeding seasons in males and females that had been treated with either a T or blank implant. In males only, T increased 5alpha-reductase activity regardless of season and up-regulated aromatase during the breeding season specifically. Thus, regulation of both enzymes occurs in males, whereas females do not show parallel sensitivity to T. When considered with previous results, the data suggest that aromatase might influence a male function associated with the breeding season other than sexual behavior. 5alpha-Reductase can be mediated by T availability, but this regulation may not serve a sex- or season-specific purpose.
Collapse
Affiliation(s)
- Rachel E Cohen
- Department of Zoology, Michigan State University, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|
22
|
Johnson MA, Wade J. Behavioural display systems across nine Anolis lizard species: sexual dimorphisms in structure and function. Proc Biol Sci 2010; 277:1711-9. [PMID: 20129985 DOI: 10.1098/rspb.2009.2323] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Relationships between structure and function are a primary focus in biology, yet they are most often considered within individual species. Sexually dimorphic communication behaviours and the morphology of associated structures can vary widely, even among closely related species, and these traits provide an ideal opportunity to investigate the evolution of structure-function patterns. Using nine Anolis lizard species, we addressed a series of questions regarding sex differences in and the evolution of relationships between extension of the throat fan (dewlap) and morphology of the muscles and cartilage controlling it. The main results indicated that within species, males displayed the dewlap more often than females and consistently exhibited larger associated structures. These data are consistent with work in other vertebrates in which corresponding sex differences in reproductive morphology and behaviour have been documented. Across species, however, we found no evidence that the rate of dewlap extension evolved in association with dewlap morphology. Thus, we provide an example of traits that, when considered in a phylogenetic framework, exhibited limited associations between behaviour and morphology, perhaps as the result of constraints imposed by the ecological contexts in which different species occur.
Collapse
Affiliation(s)
- Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA.
| | | |
Collapse
|
23
|
Latham S, Wade J. Estradiol facilitates mounting behavior in male green anole lizards. Physiol Behav 2010; 99:78-81. [DOI: 10.1016/j.physbeh.2009.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/13/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
|
24
|
Beck LA, Wade J. Morphology and estrogen receptor alpha mRNA expression in the developing green anole forebrain. ACTA ACUST UNITED AC 2009; 311:162-71. [PMID: 19065643 DOI: 10.1002/jez.514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sex differences in forebrain morphology arise during development and are often linked to hormonal changes. These dimorphisms frequently occur in regions related to reproductive behaviors. Little is known about the normal ontogeny of reproductive nuclei in the green anole lizard, including whether steroid hormones influence their development. To address this issue, brain region volume, cell density, soma size, and estrogen receptor alpha (ERalpha) mRNA expression were characterized in the preoptic area (POA), ventromedial amygdala (AMY), and ventromedial hypothalamus (VMH) of late embryonic and early post-hatchling anoles. In adulthood, the POA and AMY are associated with male-specific reproductive behaviors and the VMH is implicated in female receptivity. Although soma size decreased in all brain regions with age, brain region volume diminished only in the POA, with a transient sex difference appearing before hatching. Cell density increased with age only in the female AMY. ERalpha mRNA expression was up to four times greater in the developing VMH than POA and AMY, peaking in the VMH around the day of hatching. These results are consistent with the idea that estradiol may influence differentiation of the VMH in particular. However, other factors are likely important to the development of these three brain regions, some of which exert their effects at later developmental stages.
Collapse
Affiliation(s)
- Laurel Amanda Beck
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
25
|
Beck L, Wade J. Effects of estradiol, sex, and season on estrogen receptor alpha mRNA expression and forebrain morphology in adult green anole lizards. Neuroscience 2009; 160:577-86. [DOI: 10.1016/j.neuroscience.2009.02.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/10/2009] [Accepted: 02/25/2009] [Indexed: 11/27/2022]
|
26
|
Fusani L. Testosterone control of male courtship in birds. Horm Behav 2008; 54:227-33. [PMID: 18502420 DOI: 10.1016/j.yhbeh.2008.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/15/2022]
Abstract
A sequence of behaviours which we call courtship initiates reproduction in a large number of species. In vertebrates, as a component of male sexual behaviour courtship is strongly influenced by testicular androgen. Here I will review some salient issues about the regulation of courtship by testosterone in birds. The first section will briefly summarize the first 100 years of research on this topic. The specific role of testosterone or its oestrogenic metabolites in the control of different components of courtship will be the subject of the second section. Then, I will discuss how behavioural patterns can be recruited into courtship and modified in their structure by testosterone action. In the following section, the role of sexual selection and female choice in shaping the link between testosterone and courtship will be addressed. The problematic nature of the quantitative relationships between testosterone and behaviour will be topic of the fifth section. Finally, I will discuss how courtship traits that are activated by testosterone can be apparently independent of hormone blood concentrations. These issues will be examined in an evolutionary perspective, in an attempt to understand how natural and sexual selection have shaped the links between the hormone and the behaviour.
Collapse
Affiliation(s)
- Leonida Fusani
- Department of Biology and Evolution, University of Ferrara Via Luigi Borsari 46, 44100 Ferrara, Italy.
| |
Collapse
|
27
|
Vitousek MN, Rubenstein DR, Nelson KN, Wikelski M. Are hotshots always hot? A longitudinal study of hormones, behavior, and reproductive success in male marine iguanas. Gen Comp Endocrinol 2008; 157:227-32. [PMID: 18571171 DOI: 10.1016/j.ygcen.2008.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/28/2008] [Indexed: 11/27/2022]
Abstract
Polygynous lek-mating systems are characterized by high reproductive skew, with a small number of males gaining a disproportionate share of copulations. In lekking species, where female choice drives male mating success and patterns of reproductive skew, female preferences for 'good genes' should lead to preferred males having high reproductive success in all years. Here we investigate whether these 'hotshot' males have steroid hormone patterns that are consistent over time (between two mating seasons), and whether hormone levels consistently predict display behavior. We test these questions in the Galápagos marine iguana (Amblyrhynchus cristatus), a lekking vertebrate with high male reproductive skew. We found that male mating success and testosterone levels were not consistent across years. The most successful males showed an inverse relationship in copulation success between years. Similarly, territorial males that had high testosterone in one year had low levels in the next. Across years, testosterone was strongly associated with head-bob display, suggesting that this steroid plays a key role in mate attraction. These results suggest that female marine iguanas are not choosing the same 'hotshot' males in every year, but instead base their reproductive decisions on male behavioral traits that are hormonally mediated and variable across years. By using testosterone to regulate their costly display behaviors male marine iguanas appear to have a mechanism that allows them to adjust their reproductive effort depending on extrinsic and/or intrinsic factors.
Collapse
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
28
|
Sex and seasonal differences in morphology of limbic forebrain nuclei in the green anole lizard. Brain Res 2008; 1227:68-75. [PMID: 18598684 DOI: 10.1016/j.brainres.2008.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/10/2008] [Accepted: 06/11/2008] [Indexed: 12/29/2022]
Abstract
Sex and seasonal differences in the brain occur in many species and are often related to behavioral expression. For example, morphology of limbic regions involved in male sex behavior are larger in males than in females, and sometimes are larger in the breeding than non-breeding season. Morphology can often be altered in adulthood by manipulating levels of steroid hormones. In untreated green anole lizards, previous work indicated that neuron soma size and density did not differ between the sexes in the preoptic area (POA) or ventromedial nucleus of the amygdala (AMY), two brain regions involved in the control of male reproductive behaviors [O'Bryant, E.L., Wade, J., 2002. Seasonal and sexual dimorphisms in the green anole forebrain. Horm. Behav. 41, 384-395.]. However, soma size was larger in both areas in breeding than non-breeding animals. The current study examined sex and seasonal differences in estimated brain region volume and total neuron number in the POA, AMY, and the ventromedial hypothalamus (VMH), a region typically involved in female reproductive behaviors. The volume of the POA was larger in males, and the POA and VMH of breeding animals were larger than those of non-breeding individuals. Differences in cell number did not exist in either of these two regions. In contrast, neuron counts in the AMY were greater in non-breeding than breeding animals, but the volume did not differ between the seasons. These data suggest that the structure of limbic brain regions is dynamic in adulthood and that parallels between morphology and the expression of masculine behavior exist for the POA, whereas other relationships are more complicated.
Collapse
|
29
|
Korzan WJ, Summers CH. Behavioral diversity and neurochemical plasticity: selection of stress coping strategies that define social status. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:257-66. [PMID: 17914257 DOI: 10.1159/000105489] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Social interactions include a variety of stimulating but challenging factors that are the basis for strategies that allow individuals to cope with novel or familiar stressful situations. Evolutionarily conserved strategies have been identified that reflect specific behavioral and physiological identities. In this review we discuss a unique model for social stress in the lizard Anolis carolinensis, which has characteristics amenable to an investigation of individual differences in behavioral responses via central and sympathetic neurochemical adaptation. Profiles of proactive and reactive phenotypes of male A. carolinensis are relatively stable, yet retain limited flexibility that allows for the development of the social system over time. For male A. carolinensis, the celerity of social signal expression and response translate into future social standing. In addition, proactive aggressive, courtship, and feeding behaviors also predict social rank, but are not as important as prior interactions and memories of previous opponents to modify behavioral output and affect social status. The central neurotransmitters dopamine and serotonin, and the endocrine stress axis (HPA) appear to be the fundamental link to adaptive stress coping strategies during social interactions. Only small adaptations to these neural and endocrine systems are necessary to produce the variability measured in behavioral responses to stressful social interactions. These neuroendocrine factors are also manifest in responses to other stimuli and form the basis of heritable strategies for coping with stress.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biological Sciences, Neuroscience Program, Stanford University, Stanford, CA 94305-5020, USA.
| | | |
Collapse
|
30
|
Holmes MM, Bartrem CL, Wade J. Androgen dependent seasonal changes in muscle fiber type in the dewlap neuromuscular system of green anoles. Physiol Behav 2007; 91:601-8. [PMID: 17477939 DOI: 10.1016/j.physbeh.2007.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/16/2007] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
Green anoles (Anolis carolinensis) possess two sexually dimorphic neuromuscular systems involved in reproductive behaviors. One controls extension of a red throat fan (dewlap), which males employ during courtship, and the other controls intromission of copulatory organs (hemipenes). Although seasonal changes in circulating androgens mediate both courtship and copulatory behaviors, testosterone has differential effects on the underlying neuromuscular morphology. The present experiments were designed to test whether changes in muscle fiber type correspond to seasonal and androgenic regulation of reproductive behaviors in gonadally intact males (Experiment 1) or castrated males treated with either testosterone propionate or vehicle (Experiment 2). Gonadally intact males housed in breeding environmental conditions had a higher percentage of fast oxidative glycolytic fibers in the dewlap muscle than non-breeding males, but no effect of season on copulatory fibers was detected. Interestingly, testosterone treatment increased the percentage of fast oxidative glycolytic dewlap fibers independent of season, suggesting that routine changes in this hormone may mediate fiber type in gonadally intact males. In contrast, testosterone manipulation had little to no effect on copulatory muscle fiber type, demonstrating that a change in this feature is not the primary mediator for seasonal changes in male copulatory behaviors.
Collapse
Affiliation(s)
- Melissa M Holmes
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
31
|
Neal JK, Wade J. Androgen receptor expression and morphology of forebrain and neuromuscular systems in male green anoles displaying individual differences in sexual behavior. Horm Behav 2007; 52:228-36. [PMID: 17531996 PMCID: PMC2882099 DOI: 10.1016/j.yhbeh.2007.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/09/2007] [Accepted: 04/19/2007] [Indexed: 11/30/2022]
Abstract
Investigating individual differences in sexual performance in unmanipulated males is important for understanding natural relationships between behavior and morphology, and the mechanisms regulating them. Among male green anole lizards, some court and copulate frequently (studs) and others do not (duds). To evaluate potential factors underlying differences in the level of these behaviors, morphology and androgen receptor expression in neuromuscular courtship and copulatory structures, as well as in the preoptic area and amygdala, were compared in males displaying varying degrees of sexual function. This study revealed that individual differences in behavior among unmanipulated males, in particular the extension of a throat fan (dewlap) used during courtship, were positively correlated with the size of fibers in the associated muscle and with soma size in the amygdala. The physiological response to testosterone, as indicated by the height of cells in an androgen-sensitive portion of the kidney, was also correlated with male sexual behavior, and predicted it better than plasma androgen levels. Androgen receptor expression was not related to the display of courtship or copulation in any of the tissues examined. The present data indicate that higher levels of male courtship behavior result in (or are the result of) enhanced courtship muscle and amygdala morphology, and that androgen-sensitive tissue in studs may be more responsive to testosterone than duds. However, some mechanism(s) other than androgen receptor expression likely confer this difference in responsiveness.
Collapse
Affiliation(s)
- Jennifer K Neal
- Michigan State University, Neuroscience Program, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | | |
Collapse
|
32
|
Neal JK, Wade J. Effects of season, testosterone and female exposure on c-fos expression in the preoptic area and amygdala of male green anoles. Brain Res 2007; 1166:124-31. [PMID: 17673187 PMCID: PMC2885698 DOI: 10.1016/j.brainres.2007.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/04/2007] [Accepted: 07/01/2007] [Indexed: 01/02/2023]
Abstract
Expression of the immediate early gene, c-fos, was used to investigate changes in neuronal activity in forebrain regions involved in male sexual behavior following social, hormonal and/or seasonal manipulations in the male green anole. These factors all influence behavior, yet it is unclear how they interact to modify neuronal activity in forebrain regions, including the preoptic area (POA) and ventromedial nucleus of the amygdala (AMY). These regions are involved in the display of sexual behaviors in male green anoles as in many other vertebrates. To determine the effects of seasonal, hormonal and social cues on these brain areas, we investigated c-fos under environmental conditions typical of the breeding or non-breeding season in adult male green anoles that were castrated and implanted with either testosterone (T) or blank (Bl) capsules. We also manipulated social cues by exposing only half of the animals in each group to females. T enhanced courtship and copulatory behaviors, but decreased c-fos expression in the AMY. A similar, although not statistically significant, pattern was observed in the POA, and the density of c-fos+ cells was negatively correlated in that region with the number of extensions of a throat fan (dewlap) used during courtship. Therefore, it appears that in the male green anole, T may diminish c-fos expression (likely in inhibitory neurons) in the POA and AMY to create a permissive environment in which the appropriate behavioral response can be displayed.
Collapse
Affiliation(s)
- Jennifer K Neal
- Michigan State University, Neuroscience Program, 108 Giltner Hall, East Lansing, MI 48824-1101, USA.
| | | |
Collapse
|