1
|
B Szabo A, Sayegh F, Gauzin S, Lejards C, Guiard B, Valton L, Verret L, Rampon C, Dahan L. No major effect of dopamine receptor 1/5 antagonist SCH-23390 on epileptic activity in the Tg2576 mouse model of amyloidosis. Eur J Neurosci 2024; 59:1558-1566. [PMID: 38308520 DOI: 10.1111/ejn.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Anna B Szabo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France
| | - Farès Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sèbastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France
- Department of Neurology, Hôpital Pierre Paul Riquet - Purpan, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Hurst CD, Dunn AR, Dammer EB, Duong DM, Shapley SM, Seyfried NT, Kaczorowski CC, Johnson ECB. Genetic background influences the 5XFAD Alzheimer's disease mouse model brain proteome. Front Aging Neurosci 2023; 15:1239116. [PMID: 37901791 PMCID: PMC10602695 DOI: 10.3389/fnagi.2023.1239116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/12/2023] [Indexed: 10/31/2023] Open
Abstract
There is an urgent need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable the discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. In this study, we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in the hippocampus and cortex (n = 3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across the hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress responses and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated with AD genotype in the hippocampus compared with the cortex. Our findings suggest that the genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
Collapse
Affiliation(s)
- Cheyenne D. Hurst
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Amy R. Dunn
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Eric B. Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Duc M. Duong
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Sarah M. Shapley
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Nicholas T. Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Catherine C. Kaczorowski
- Department of Mammalian Genetics, The Jackson Laboratory, Bar Harbor, ME, United States
- Department of Neurology, The University of Michigan, Ann Arbor, MI, United States
| | - Erik C. B. Johnson
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Hurst CD, Dunn AR, Dammer EB, Duong DM, Seyfried NT, Kaczorowski CC, Johnson ECB. Genetic background influences the 5XFAD Alzheimer's disease mouse model brain proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544646. [PMID: 37398142 PMCID: PMC10312637 DOI: 10.1101/2023.06.12.544646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
There is a pressing need to improve the translational validity of Alzheimer's disease (AD) mouse models. Introducing genetic background diversity in AD mouse models has been proposed as a way to increase validity and enable discovery of previously uncharacterized genetic contributions to AD susceptibility or resilience. However, the extent to which genetic background influences the mouse brain proteome and its perturbation in AD mouse models is unknown. Here we crossed the 5XFAD AD mouse model on a C57BL/6J (B6) inbred background with the DBA/2J (D2) inbred background and analyzed the effects of genetic background variation on the brain proteome in F1 progeny. Both genetic background and 5XFAD transgene insertion strongly affected protein variance in hippocampus and cortex (n=3,368 proteins). Protein co-expression network analysis identified 16 modules of highly co-expressed proteins common across hippocampus and cortex in 5XFAD and non-transgenic mice. Among the modules strongly influenced by genetic background were those related to small molecule metabolism and ion transport. Modules strongly influenced by the 5XFAD transgene were related to lysosome/stress response and neuronal synapse/signaling. The modules with the strongest relationship to human disease-neuronal synapse/signaling and lysosome/stress response-were not significantly influenced by genetic background. However, other modules in 5XFAD that were related to human disease, such as GABA synaptic signaling and mitochondrial membrane modules, were influenced by genetic background. Most disease-related modules were more strongly correlated to AD genotype in hippocampus compared to cortex. Our findings suggest that genetic diversity introduced by crossing B6 and D2 inbred backgrounds influences proteomic changes related to disease in the 5XFAD model, and that proteomic analysis of other genetic backgrounds in transgenic and knock-in AD mouse models is warranted to capture the full range of molecular heterogeneity in genetically diverse models of AD.
Collapse
Affiliation(s)
- Cheyenne D. Hurst
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Eric B. Dammer
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Duc M. Duong
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T. Seyfried
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Catherine C. Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- The University of Michigan, Ann Arbor, MI 48105 USA
| | - Erik C. B. Johnson
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA 30322 USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
4
|
B Szabo A, Cattaud V, Bezzina C, Dard RF, Sayegh F, Gauzin S, Lejards C, Valton L, Rampon C, Verret L, Dahan L. Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer's disease - the influence of sleep and noradrenergic transmission. Neurobiol Aging 2023; 123:35-48. [PMID: 36634385 DOI: 10.1016/j.neurobiolaging.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.
Collapse
Affiliation(s)
- Anna B Szabo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France; Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France.
| | - Vanessa Cattaud
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Bezzina
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin F Dard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fares Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sebastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France; Department of Neurology, Hôpital Pierre Paul Riquet - Purpan, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
5
|
Ammassari-Teule M. Inbred Mice Again at Stake: How the Cognitive Profile of the Wild-Type Mouse Background Discloses Pathogenic Effects of APP Mutations. Front Behav Neurosci 2022; 16:868473. [PMID: 35813596 PMCID: PMC9260142 DOI: 10.3389/fnbeh.2022.868473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing efforts have been made in the last decades to increase the face validity of Alzheimer's disease (AD) mouse models. Main advancements have consisted in generating AD mutations closer to those identified in humans, enhancing genetic diversity of wild-type backgrounds, and choosing protocols much apt to reveal AD-like cognitive dysfunctions. Nevertheless, two aspects remain less considered: the cognitive specialization of inbred strains used as recipient backgrounds of mutations and the heuristic importance of studying destabilization of memory circuits in pre-symptomatic mice facing cognitive challenges. This article underscores the relevance of these behavioral/experimental aspects by reviewing data which show that (i) inbred mice differ in their innate predisposition to rely on episodic vs. procedural memory, which implicates differential sensitivity to mutations aimed at disrupting temporal lobe-dependent memory, and that (ii) investigating training-driven neural alterations in asymptomatic mutants unveils early synaptic damage, which considerably anticipates detection of AD first signs.
Collapse
Affiliation(s)
- Martine Ammassari-Teule
- Laboratory of Psychobiology, Department of Experimental Neuroscience, Santa Lucia Foundation, Rome, Italy
- National Research Council, Institute of Biochemistry and Cell Biology, Rome, Italy
| |
Collapse
|
6
|
O'Leary TP, Brown RE. Visuo-spatial learning and memory impairments in the 5xFAD mouse model of Alzheimer's disease: Effects of age, sex, albinism, and motor impairments. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12794. [PMID: 35238473 PMCID: PMC9744519 DOI: 10.1111/gbb.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
The 5xFAD mouse model of Alzheimer's disease (AD) rapidly develops AD-related neuro-behavioral pathology. Learning and memory impairments in 5xFAD mice, however, are not always replicated and the size of impairments varies considerably across studies. To examine possible sources of this variability, we analyzed the effects of age, sex, albinism due to background genes (Tyrc , Oca2p ) and motor impairment on learning and memory performance of wild type and 5xFAD mice on the Morris water maze, from 3 to 15 months of age. The 5xFAD mice showed impaired learning at 6-9 months of age, but memory impairments were not detected with the test procedure used in this study. Performance of 5xFAD mice was profoundly impaired at 12-15 months of age, but was accompanied by slower swim speeds than wild-type mice and a frequent failure to locate the escape platform. Overall female mice performed worse than males, and reversal learning impairments in 5xFAD mice were more pronounced in females than males. Albino mice performed worse than pigmented mice, confirming that albinism can impair performance of 5xFAD mice independently of AD-related transgenes. Overall, these results show that 5xFAD mice have impaired learning performance at 6-9 months of age, but learning and memory performance at 12-15 months is confounded with motor impairments. Furthermore, sex and albinism should be controlled to provide an accurate assessment of AD-related transgenes on learning and memory. These results will help reduce variability across pre-clinical experiments with 5xFAD mice, and thus enhance the reliability of studies developing new therapeutics for AD.
Collapse
Affiliation(s)
- Timothy P. O'Leary
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| | - Richard E. Brown
- Department of Psychology and NeuroscienceDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
7
|
Progressive impairments in executive function in the APP/PS1 model of Alzheimer's disease as measured by translatable touchscreen testing. Neurobiol Aging 2021; 108:58-71. [PMID: 34509856 DOI: 10.1016/j.neurobiolaging.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Executive function deficits in Alzheimer's disease (AD) occur early in disease progression and may be predictive of cognitive decline. However, no preclinical studies have identified deficits in rewarded executive function in the commonly used APPSwe/PS1∆E9 (APP/PS1) mouse model. To address this, we assessed 12-26 month old APP/PS1 mice on rewarded reversal and/or extinction tasks. 16-month-old, but not 13- or 26-month-old, APP/PS1 mice showed an attenuated rate of extinction. Reversal deficits were seen in 22-month-old, but not 13-month-old APP/PS1 animals. We then confirmed that impairments in reversal were unrelated to previously reported visual impairments in both AD mouse models and humans. Age, but not genotype, had a significant effect on markers of retinal health, indicating the deficits seen in APP/PS1 mice were directly related to cognition. This is the first characterisation of rewarded executive function in APP/PS1 mice, and has great potential to facilitate translation from preclinical models to the clinic.
Collapse
|
8
|
Del Percio C, Drinkenburg W, Lopez S, Pascarelli MT, Lizio R, Noce G, Ferri R, Bastlund JF, Laursen B, Christensen DZ, Pedersen JT, Forloni G, Frasca A, Noè FM, Fabene PF, Bertini G, Colavito V, Bentivoglio M, Kelley J, Dix S, Infarinato F, Soricelli A, Stocchi F, Richardson JC, Babiloni C. Ongoing Electroencephalographic Rhythms Related to Exploratory Movements in Transgenic TASTPM Mice. J Alzheimers Dis 2020; 78:291-308. [PMID: 32955458 DOI: 10.3233/jad-190351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits. OBJECTIVE Here, we tested the reproducibility of that evidence in TASTPM mice (double mutation in APP KM670/671NL and PSEN1 M146V), which develop brain amyloidosis and cognitive deficits over aging. The reliability of that evidence was examined in four research centers of the PharmaCog study. METHODS Ongoing EEG rhythms were recorded from a frontoparietal bipolar channel in 29 TASTPM and 58 matched "wild type" C57 mice (range of age: 12-24 months). Normalized EEG power was calculated. Frequency and amplitude of individual delta and theta frequency (IDF and ITF) peaks were considered during the passive and active conditions. RESULTS Compared with the "wild type" group, the TASTPM group showed a significantly lower reduction in IDF power during the active over the passive condition (p < 0.05). This effect was observed in 3 out of 4 EEG recording units. CONCLUSION TASTPM mice were characterized by "poor reactivity" of delta EEG rhythms during the cage exploration in line with previous evidence in PDAPP mice. The reliability of that result across the centers was moderate, thus unveiling pros and cons of multicenter preclinical EEG trials in TASTPM mice useful for planning future studies.
Collapse
Affiliation(s)
- Claudio Del Percio
- Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, Rome, Italy
| | | | - Susanna Lopez
- Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, Rome, Italy.,Department of Emergency and Organ Transplantation - Nephrology, Dialysis and Transplantation Unit, Aldo Moro University of Bari, Bari, Italy
| | | | | | | | | | | | | | | | | | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Angelisa Frasca
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesco M Noè
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paolo Francesco Fabene
- Department of Neurological Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Bertini
- Department of Neurological Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Valeria Colavito
- Department of Neurological Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Bentivoglio
- Department of Neurological Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Jonathan Kelley
- Janssen Research and Development, Pharmaceutical Companies of J&J, Beerse, Belgium
| | - Sophie Dix
- Eli Lilly, Erl Wood Manor, Windlesham, Surrey, UK
| | | | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,Department of Motor Sciences and Healthiness, University of Naples Parthenope, Naples, Italy
| | - Fabrizio Stocchi
- Institute for Research and Medical Care, IRCCS San Raffaele Pisana, Roma, Italy
| | - Jill C Richardson
- GlaxoSmithKline R&D Neurotherapeutics Area UK, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V Erspamer", Sapienza University of Rome, Rome, Italy.,San Raffaele Cassino, Cassino (FR), Italy
| | | |
Collapse
|
9
|
Escrig A, Canal C, Sanchis P, Fernández-Gayol O, Montilla A, Comes G, Molinero A, Giralt M, Giménez-Llort L, Becker-Pauly C, Rose-John S, Hidalgo J. IL-6 trans-signaling in the brain influences the behavioral and physio-pathological phenotype of the Tg2576 and 3xTgAD mouse models of Alzheimer's disease. Brain Behav Immun 2019; 82:145-159. [PMID: 31401302 DOI: 10.1016/j.bbi.2019.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/09/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia but its underlying pathological mechanisms still unclear. Neuroinflammation and secretion of cytokines such as interleukin-6 (IL-6) accompany the main hallmarks of the disease: amyloid plaques and neurofibrillary tangles. In this study, we analyzed the role of IL-6 trans-signaling in two mouse models of AD, Tg2576 and 3xTg-AD mice. The inhibition of IL-6 trans-signaling partially rescued the AD-induced mortality in females of both models. Before amyloid plaques deposition, it reversed AD-induced changes in exploration and anxiety (but did not affect locomotion) in Tg2576 female mice. However, after plaque deposition the only behavioral trait affected by the inhibition of IL-6 trans-signaling was locomotion. Results in the Morris water maze suggest that cognitive flexibility was reduced by the blocking of the IL-6 trans-signaling in young and old Tg2576 female mice. The inhibition of IL-6 trans-signaling also decreased amyloid plaque burden in cortex and hippocampus, and Aβ40 and Aβ42 levels in the cortex, of Tg2576 female mice. The aforementioned changes might be correlated with changes in blood vessels and matrix structure and organization rather than changes in neuroinflammation. 3xTgAD mice showed a very mild phenotype regarding amyloid cascade, but results were in accordance with those of Tg2576 mice. These results strongly suggest that the inhibition of the IL-6 trans-signaling could represent a powerful therapeutic target in AD.
Collapse
Affiliation(s)
- Anna Escrig
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Carla Canal
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Paula Sanchis
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Olaya Fernández-Gayol
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Alejandro Montilla
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Gemma Comes
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Amalia Molinero
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Mercedes Giralt
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain
| | - Lydia Giménez-Llort
- Institute of Neurosciences and Department of Psychiatry and Forensic Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193, Spain
| | - Christoph Becker-Pauly
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Stefan Rose-John
- Department of Biochemistry, Medical Faculty, Christian-Albrechts-Universität zu Kiel, 24098, Germany
| | - Juan Hidalgo
- Institute of Neurosciences and Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193, Spain.
| |
Collapse
|
10
|
Kim DH, Jang YS, Jeon WK, Han JS. Assessment of Cognitive Phenotyping in Inbred, Genetically Modified Mice, and Transgenic Mouse Models of Alzheimer's Disease. Exp Neurobiol 2019; 28:146-157. [PMID: 31138986 PMCID: PMC6526110 DOI: 10.5607/en.2019.28.2.146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Genetically modified mouse models are being used predominantly to understand brain functions and diseases. Well-designed and controlled behavioral analyses of genetically modified mice have successfully led to the identification of gene functions, understanding of brain diseases, and development of treatments. Recently, complex and higher cognitive functions have been examined in mice with genetic mutations. Therefore, research strategies for cognitive phenotyping should be sophisticated and evolve to convey the exact meaning of the findings and provide robust translational tools for testing hypotheses and developing treatments. This review addresses issues of experimental design and discusses studies that have examined cognitive function using mouse strain differences, genetically modified mice, and transgenic mice for Alzheimer's disease.
Collapse
Affiliation(s)
- Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Won Kyung Jeon
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea.,Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
11
|
Babic Perhoc A, Osmanovic Barilar J, Knezovic A, Farkas V, Bagaric R, Svarc A, Grünblatt E, Riederer P, Salkovic-Petrisic M. Cognitive, behavioral and metabolic effects of oral galactose treatment in the transgenic Tg2576 mice. Neuropharmacology 2018; 148:50-67. [PMID: 30571958 DOI: 10.1016/j.neuropharm.2018.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder associated with insulin resistance and glucose hypometabolism in the brain. Oral administration of galactose, a nutrient that provides an alternative source of energy, prevents and ameliorates early cognitive impairment in a streptozotocin-induced model (STZ-icv) of the sporadic AD (sAD). Here we explored the influence of 2-month oral galactose treatment (200 mg/kg/day) in the familial AD (fAD) by using 5- (5M) and 10- (10M) month-old transgenic Tg2576 mice mimicking the presymptomatic and the mild stage of fAD, and compared it to that observed in 7-month old STZ-icv rats mimicking mild-to-moderate sAD. Cognitive and behavioral performance was tested by Morris Water Maze, Open Field and Elevated Plus Maze tests, and metabolic status by intraperitoneal glucose tolerance test and fluorodeoxyglucose Positron-Emission Tomography scan. The level of insulin, glucagon-like peptide-1 (GLP-1) and soluble amyloid β1-42 (sAβ1-42) was measured by ELISA and the protein expression of insulin receptor (IR), glycogen synthase kinase-3β (GSK-3β), and pre-/post-synaptic markers by Western blot analysis. Although galactose normalized alterations in cerebral glucose metabolism in all Tg2576 mice (5M+2M; 10M+2M) and STZ-icv rats, it did not improve cognitive impairment in either model. Improvement of reduced grooming behavior and normalization in reduced plasma insulin levels were seen only in 5M+2M Tg2576 mice while in 10M+2M Tg2576 mice oral galactose induced metabolic exacerbation at the level of plasma insulin, GLP-1 homeostasis and glucose intolerance, and additionally increased hippocampal sAβ1-42 level, decreased IR expression and increased GSK-3β activity. The results indicate that therapeutic potential of oral galactose seems to depend on the stage and the type/model of AD and to differ in the absence and the presence of AD-like pathology.
Collapse
Affiliation(s)
- Ana Babic Perhoc
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia
| | - Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia
| | - Vladimir Farkas
- Department of Experimental Physics, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia
| | - Robert Bagaric
- Department of Experimental Physics, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia
| | - Alfred Svarc
- Department of Experimental Physics, Rudjer Boskovic Institute, Bijenicka 54, HR-10 000, Zagreb, Croatia
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Füchsleinstrasse 15, 97080, Würzburg, Germany; Department of Clinical Research and Psychiatry, University of Southern Denmark Odense, Odense, Denmark
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, HR-10 000, Zagreb, Croatia; Research Centre of Excellence of Fundamental, Clinical and Translational Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
12
|
Cattaud V, Bezzina C, Rey CC, Lejards C, Dahan L, Verret L. Early disruption of parvalbumin expression and perineuronal nets in the hippocampus of the Tg2576 mouse model of Alzheimer's disease can be rescued by enriched environment. Neurobiol Aging 2018; 72:147-158. [DOI: 10.1016/j.neurobiolaging.2018.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 11/30/2022]
|
13
|
Schmid S, Rammes G, Blobner M, Kellermann K, Bratke S, Fendl D, Kaichuan Z, Schneider G, Jungwirth B. Cognitive decline in Tg2576 mice shows sex-specific differences and correlates with cerebral amyloid-beta. Behav Brain Res 2018; 359:408-417. [PMID: 30458163 DOI: 10.1016/j.bbr.2018.11.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022]
Abstract
Patients suffering from Alzheimer's disease show a sex-dependent decline of cognitive function. The aim of this investigation was to show these differences in an animal model for Alzheimer's disease and to determine whether this effect is correlated to amyloid-beta-induced pathophysiological changes. Therefore, we assessed cognitive performance with the modified hole-board test in female and male Tg2576 and wild type mice at the age of 6, 8, 10, 12, 14, and 16 months and correlated these findings to the total amount of soluble amyloid-beta and insoluble amyloid deposits in the brain. Tg2576 mice perform worse than wild types. Female Tg2576 mice develop an accentuated cognitive impairment (wrong choice total) beginning at the age of 12 months compared to their male littermates. Alterations in the mice's behaviour do not show interference with these deficits. Cognitive impairment is correlated to the amount of soluble amyloid-beta and insoluble amyloid deposits in the brain in a sex-dependent manner.
Collapse
Affiliation(s)
- Sebastian Schmid
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Manfred Blobner
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Kristine Kellermann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Sebastian Bratke
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Diana Fendl
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Zhu Kaichuan
- German Center for Neurodegenerative Diseases, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Str. 17, 81377 Munich, Germany
| | - Gerhard Schneider
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
14
|
Sakae DY, Ramet L, Henrion A, Poirel O, Jamain S, El Mestikawy S, Daumas S. Differential expression of VGLUT3 in laboratory mouse strains: Impact on drug-induced hyperlocomotion and anxiety-related behaviors. GENES BRAIN AND BEHAVIOR 2018; 18:e12528. [PMID: 30324647 DOI: 10.1111/gbb.12528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 11/28/2022]
Abstract
The atypical vesicular glutamate transporter VGLUT3 is present in subpopulations of GABAergic interneurons in the cortex and the hippocampus, in subgroups of serotoninergic neurons in raphe nuclei, and in cholinergic interneurons in the striatum. C56BL/6N mice that no longer express VGLUT3 (VGLUT3-/- ) display anxiety-associated phenotype, increased spontaneous and cocaine-induced locomotor activity and decreased haloperidol-induced catalepsy. Inbred mouse strains differ markedly in their sensitivity to anxiety and behavioral responses elicited by drugs. The purpose of this study was to investigate strain differences in VGLUT3 expression levels and its potential correlates with anxiety and reward-guided behaviors. Five inbred mouse lines were chosen according to their contrasted anxiety and drugs sensitivity: C57BL/6N, C3H/HeN, DBA/2J, 129/Sv, and BALB/c. VGLUT3 protein expression was measured in different brain areas involved in reward or mood regulation (such as the striatum, the hippocampus, and raphe nuclei) and genetic variations in Slc17a8, the gene encoding for VGLUT3, have been explored. These five inbred mouse strains express very different levels of VGLUT3, which cannot be attributed to the genetic variation of the Slc17a8 locus. Furthermore, mice behavior in the open field, elevated plus maze, spontaneous- and cocaine-induced locomotor was highly heterogeneous and only partially correlated to VGLUT3 levels. These data highlight the fact that one single gene polymorphism could not account for VGLUT3 expression variations, and that region specific VGLUT3 expression level variations might play a key role in the modulation of discrete behaviors.
Collapse
Affiliation(s)
- Diana Y Sakae
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| | - Lauriane Ramet
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| | - Annabelle Henrion
- Inserm U955, Psychiatrie Translationnelle, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Odile Poirel
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| | - Stéphane Jamain
- Inserm U955, Psychiatrie Translationnelle, Créteil, France.,Faculté de Médecine, Université Paris Est, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Salah El Mestikawy
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France.,Douglas Hospital Research Center, Department of Psychiatry, McGill University, Verdun, Québec, Canada
| | - Stéphanie Daumas
- INSERM, CNRS, Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Manso Y, Comes G, López-Ramos JC, Belfiore M, Molinero A, Giralt M, Carrasco J, Adlard PA, Bush AI, Delgado-García JM, Hidalgo J. Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:81-95. [PMID: 26836194 DOI: 10.3233/jad-151025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the most commonly diagnosed dementia, where signs of neuroinflammation and oxidative stress are prominent. In this study we intend to further characterize the roles of the antioxidant, anti-inflammatory, and heavy metal binding protein, metallothionein-1 (MT-1), by crossing Mt1 overexpressing mice with a well-known mouse model of AD, Tg2576 mice, which express the human amyloid-β protein precursor (hAβPP) with the Swedish K670N/M671L mutations. Mt1 overexpression increased overall perinatal survival, but did not affect significantly hAβPP-induced mortality and weight loss in adult mice. Amyloid plaque burden in ∼14-month-old mice was increased by Mt1 overexpression in the hippocampus but not the cortex. Despite full length hAβPP levels and amyloid plaques being increased by Mt1 overexpression in the hippocampus of both sexes, oligomeric and monomeric forms of Aβ, which may contribute more to toxicity, were decreased in the hippocampus of females and increased in males. Several behavioral traits such as exploration, anxiety, and learning were altered in Tg2576 mice to various degrees depending on the age and the sex. Mt1 overexpression ameliorated the effects of hAβPP on exploration in young females, and potentiated those on anxiety in old males, and seemed to improve the rate of spatial learning (Morris water maze) and the learning elicited by a classical conditioning procedure (eye-blink test). These results clearly suggest that MT-1 may be involved in AD pathogenesis.
Collapse
Affiliation(s)
- Yasmina Manso
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Gemma Comes
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mónica Belfiore
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Amalia Molinero
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Mercedes Giralt
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Javier Carrasco
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Victoria, Australia
| | | | - Juan Hidalgo
- Animal Physiology Unit, Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences Bellaterra, Barcelona, Spain.,Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
The selective 5-HT 6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment. Neurobiol Learn Mem 2016; 133:100-117. [DOI: 10.1016/j.nlm.2016.06.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/27/2016] [Accepted: 06/21/2016] [Indexed: 02/05/2023]
|
17
|
Huang H, Nie S, Cao M, Marshall C, Gao J, Xiao N, Hu G, Xiao M. Characterization of AD-like phenotype in aged APPSwe/PS1dE9 mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:303-322. [PMID: 27439903 PMCID: PMC5061676 DOI: 10.1007/s11357-016-9929-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/12/2016] [Indexed: 05/28/2023]
Abstract
Transgenic APPSwe/PS1dE9 (APP/PS1) mice that overproduce amyloid beta (Aβ) are extensively used in the studies of pathogenesis and experimental therapeutics and new drug screening for Alzheimer's disease (AD). However, most of the current literature uses young or adult APP/PS1 mice. In order to provide a broader view of AD-like phenotype of this animal model, in this study, we systematically analyzed behavioral and pathological profiles of 24-month-old male APP/PS1 mice. Aged APP/PS1 mice had reference memory deficits as well as anxiety, hyperactivity, and social interaction impairment. Consistently, there was obvious deposition of amyloid plaques in the dorsal hippocampus with decreased expression of insulin-degrading enzyme, a proteolytic enzyme responsible for degradation of intracellular Aβ. Furthermore, decreases in hippocampal volume, neuronal number and synaptophysin expression, and astrocyte atrophy were also observed in aged APP/PS1 mice. This finding suggests that aged APP/PS1 mice can well replicate cognitive and noncognitive behavioral abnormalities, hippocampal atrophy, and neuronal and astrocyte degeneration in AD patients, to enable more objective and refined preclinical evaluation of therapeutic drugs and strategies for AD treatment.
Collapse
Affiliation(s)
- Huang Huang
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Neurology, Sir Run Run Shaw Hospital, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Sipei Nie
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Min Cao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Charles Marshall
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY, 41701, USA
| | - Junying Gao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Na Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China
| | - Ming Xiao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
18
|
Shah D, Deleye S, Verhoye M, Staelens S, Van der Linden A. Resting-state functional MRI and [18F]-FDG PET demonstrate differences in neuronal activity between commonly used mouse strains. Neuroimage 2015; 125:571-577. [PMID: 26520769 DOI: 10.1016/j.neuroimage.2015.10.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/04/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
The existence of numerous interesting mouse models of neurological disorders enables the investigation of causal relations between pathological events and the effect of treatment regimes. However, mouse models of a specific neurological disease are often generated using different background strains, which raises the question whether the observed effects are specific to pathology or depend on the used strain. This study used two independent in vivo functional imaging techniques to evaluate whether mouse strain differences exist in functional connectivity (FC) and brain glucose metabolism i.e. indirect measures of neuronal activity. For this purpose, C57BL/6, BALB/C and SJL mice (N=15/group, male) were evaluated using resting-state functional MRI (rsfMRI) and static [18F]-fluorodeoxyglucose Positron Emission Tomography ([18F]-FDG PET). RsfMRI and [18F]-FDG PET data were analyzed with independent component analysis (ICA). FC was quantified by calculating the mean network-specific FC strength and [18F]-FDG uptake was quantified by calculating the mean network-specific standard uptake value corrected for plasma glucose levels and body weight (SUVglu). The ICA results showed spatially similar neurological components in the rsfMRI and [18F]-FDG PET data, suggesting that patterns of metabolic covariance in the mouse brain reflect FC networks. Comparing FC and [18F]-FDG data showed that strain-dependent differences in brain activity exist for several brain networks i.e. the frontal, cingulate, (hypo)thalamus, striatum, and sensorimotor networks. The results of this study have implications for the interpretation of in vivo functional imaging data in mouse models of neurological disorders generated on different background strains.
Collapse
Affiliation(s)
- Disha Shah
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium.
| | - Steven Deleye
- Molecular Imaging Center Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp Belgium
| |
Collapse
|
19
|
Choong XY, Tosh JL, Pulford LJ, Fisher EMC. Dissecting Alzheimer disease in Down syndrome using mouse models. Front Behav Neurosci 2015; 9:268. [PMID: 26528151 PMCID: PMC4602094 DOI: 10.3389/fnbeh.2015.00268] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD.
Collapse
Affiliation(s)
- Xun Yu Choong
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Justin L Tosh
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Laura J Pulford
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London London, UK ; The LonDownS Consortium London, UK
| |
Collapse
|
20
|
Bezzina C, Verret L, Juan C, Remaud J, Halley H, Rampon C, Dahan L. Early onset of hypersynchronous network activity and expression of a marker of chronic seizures in the Tg2576 mouse model of Alzheimer's disease. PLoS One 2015; 10:e0119910. [PMID: 25768013 PMCID: PMC4358928 DOI: 10.1371/journal.pone.0119910] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 01/17/2015] [Indexed: 12/29/2022] Open
Abstract
Cortical and hippocampal hypersynchrony of neuronal networks seems to be an early event in Alzheimer’s disease pathogenesis. Many mouse models of the disease also present neuronal network hypersynchrony, as evidenced by higher susceptibility to pharmacologically-induced seizures, electroencephalographic seizures accompanied by spontaneous interictal spikes and expression of markers of chronic seizures such as neuropeptide Y ectopic expression in mossy fibers. This network hypersynchrony is thought to contribute to memory deficits, but whether it precedes the onset of memory deficits or not in mouse models remains unknown. The earliest memory impairments in the Tg2576 mouse model of Alzheimer’s disease have been observed at 3 months of age. We thus assessed network hypersynchrony in Tg2576 and non-transgenic male mice at 1.5, 3 and 6 months of age. As soon as 1.5 months of age, Tg2576 mice presented higher seizure susceptibility to systemic injection of a GABAA receptor antagonist. They also displayed spontaneous interictal spikes on EEG recordings. Some Tg2576 mice presented hippocampal ectopic expression of neuropeptide Y which incidence seems to increase with age among the Tg2576 population. Our data reveal that network hypersynchrony appears very early in Tg2576 mice, before any demonstrated memory impairments.
Collapse
Affiliation(s)
- Charlotte Bezzina
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
| | - Laure Verret
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
| | - Cécile Juan
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
| | - Jessica Remaud
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
| | - Hélène Halley
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
| | - Claire Rampon
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
| | - Lionel Dahan
- Université de Toulouse; UPS; Centre de Recherches sur la Cognition Animale; 118 route de Narbonne, F-31062, Toulouse, Cedex 09, France
- CNRS, Centre de Recherches sur la Cognition Animale, F-31062, Toulouse, France
- * E-mail:
| |
Collapse
|
21
|
Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. Using mice to model Alzheimer's dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 2014; 5:88. [PMID: 24795750 PMCID: PMC4005958 DOI: 10.3389/fgene.2014.00088] [Citation(s) in RCA: 494] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/01/2014] [Indexed: 01/17/2023] Open
Abstract
The goal of this review is to discuss how behavioral tests in mice relate to the pathological and neuropsychological features seen in human Alzheimer's disease (AD), and present a comprehensive analysis of the temporal progression of behavioral impairments in commonly used AD mouse models that contain mutations in amyloid precursor protein (APP). We begin with a brief overview of the neuropathological changes seen in the AD brain and an outline of some of the clinical neuropsychological assessments used to measure cognitive deficits associated with the disease. This is followed by a critical assessment of behavioral tasks that are used in AD mice to model the cognitive changes seen in the human disease. Behavioral tests discussed include spatial memory tests [Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze), recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the strengths and weaknesses of each of these behavioral tasks, and how they may correlate with clinical assessments in humans. Finally, the temporal progression of both cognitive and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8, J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed in detail. Mouse models of AD and the behavioral tasks used in conjunction with those models are immensely important in contributing to our knowledge of disease progression and are a useful tool to study AD pathophysiology and the resulting cognitive deficits. However, investigators need to be aware of the potential weaknesses of the available preclinical models in terms of their ability to model cognitive changes observed in human AD. It is our hope that this review will assist investigators in selecting an appropriate mouse model, and accompanying behavioral paradigms to investigate different aspects of AD pathology and disease progression.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Kentucky Lexington, KY, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Neurology, University of Kentucky Lexington, KY, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky Lexington, KY, USA ; Department of Anatomy and Neurobiology, University of Kentucky Lexington, KY, USA
| |
Collapse
|
22
|
Couch BA, Kerrisk ME, Kaufman AC, Nygaard HB, Strittmatter SM, Koleske AJ. Delayed amyloid plaque deposition and behavioral deficits in outcrossed AβPP/PS1 mice. J Comp Neurol 2013; 521:1395-408. [PMID: 23047754 DOI: 10.1002/cne.23239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/22/2012] [Accepted: 10/02/2012] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative dementia characterized by amyloid plaque accumulation, synapse/dendrite loss, and cognitive impairment. Transgenic mice expressing mutant forms of amyloid-β precursor protein (AβPP) and presenilin-1 (PS1) recapitulate several aspects of this disease and provide a useful model system for studying elements of AD progression. AβPP/PS1 mice have been previously shown to exhibit behavioral deficits and amyloid plaque deposition between 4-9 months of age. We crossed AβPP/PS1 animals with mice of a mixed genetic background (C57BL/6 × 129/SvJ) and investigated the development of AD-like features in the resulting outcrossed mice. The onset of memory-based behavioral impairment is delayed considerably in outcrossed AβPP/PS1 mice relative to inbred mice on a C57BL/6 background. While inbred AβPP/PS1 mice develop deficits in radial-arm water maze performance and novel object recognition as early as 8 months, outcrossed AβPP/PS1 mice do not display defects until 18 months. Within the forebrain, we find that inbred AβPP/PS1 mice have significantly higher amyloid plaque burden at 12 months than outcrossed AβPP/PS1 mice of the same age. Surprisingly, inbred AβPP/PS1 mice at 8 months have low plaque burden, suggesting that plaque burden alone cannot explain the accompanying behavioral deficits. Analysis of AβPP processing revealed that elevated levels of soluble Aβ correlate with the degree of behavioral impairment in both strains. Taken together, these findings suggest that animal behavior, amyloid plaque deposition, and AβPP processing are sensitive to genetic differences between mouse strains.
Collapse
Affiliation(s)
- Brian A Couch
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
23
|
Krezymon A, Richetin K, Halley H, Roybon L, Lassalle JM, Francès B, Verret L, Rampon C. Modifications of hippocampal circuits and early disruption of adult neurogenesis in the tg2576 mouse model of Alzheimer's disease. PLoS One 2013; 8:e76497. [PMID: 24086745 PMCID: PMC3785457 DOI: 10.1371/journal.pone.0076497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
At advanced stages of Alzheimer's disease, cognitive dysfunction is accompanied by severe alterations of hippocampal circuits that may largely underlie memory impairments. However, it is likely that anatomical remodeling in the hippocampus may start long before any cognitive alteration is detected. Using the well-described Tg2576 mouse model of Alzheimer's disease that develops progressive age-dependent amyloidosis and cognitive deficits, we examined whether specific stages of the disease were associated with the expression of anatomical markers of hippocampal dysfunction. We found that these mice develop a complex pattern of changes in their dentate gyrus with aging. Those include aberrant expression of neuropeptide Y and reduced levels of calbindin, reflecting a profound remodeling of inhibitory and excitatory circuits in the dentate gyrus. Preceding these changes, we identified severe alterations of adult hippocampal neurogenesis in Tg2576 mice. We gathered converging data in Tg2576 mice at young age, indicating impaired maturation of new neurons that may compromise their functional integration into hippocampal circuits. Thus, disruption of adult hippocampal neurogenesis occurred before network remodeling in this mouse model and therefore may account as an early event in the etiology of Alzheimer's pathology. Ultimately, both events may constitute key components of hippocampal dysfunction and associated cognitive deficits occurring in Alzheimer's disease.
Collapse
Affiliation(s)
- Alice Krezymon
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Kevin Richetin
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Hélène Halley
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Laurent Roybon
- Multi Park, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Jean-Michel Lassalle
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Bernard Francès
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Laure Verret
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| | - Claire Rampon
- Université de Toulouse (UPS) Centre de Recherches sur la Cognition Animale, Toulouse, France
- Centre National de la Recherche Scientifique (CNRS) Centre de Recherches sur la Cognition Animale, Toulouse, France
| |
Collapse
|
24
|
Ceccom J, Bouhsira E, Halley H, Daumas S, Lassalle JM. Differential needs of zinc in the CA3 area of dorsal hippocampus for the consolidation of contextual fear and spatial memories. Learn Mem 2013; 20:348-51. [PMID: 23772088 DOI: 10.1101/lm.029017.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
One peculiarity of the hippocampal CA3 mossy fiber terminals is the co-release of zinc and glutamate upon synaptic transmission. How these two players act on hippocampal-dependent memories is still unclear. To decipher their respective involvement in memory consolidation, a pharmacological approach was chosen. Using two hippocampal-dependent behavioral paradigms (water maze and contextual fear conditioning) we now report that glutamate at CA3 synapses is necessary and sufficient for the spatial learning consolidation process, whereas glutamate and zinc released by mossy fibers are both mandatory and exert cumulative effects on contextual fear consolidation, a form of learning with a strong emotional component.
Collapse
Affiliation(s)
- Johnatan Ceccom
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
25
|
Webster SJ, Bachstetter AD, Van Eldik LJ. Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer's disease. Alzheimers Res Ther 2013; 5:28. [PMID: 23705774 PMCID: PMC3706792 DOI: 10.1186/alzrt182] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/29/2013] [Accepted: 05/24/2013] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Despite the extensive mechanistic and pathological characterization of the amyloid precursor protein (APP)/presenilin-1 (PS-1) knock-in mouse model of Alzheimer's disease (AD), very little is known about the AD-relevant behavioral deficits in this model. Characterization of the baseline behavioral performance in a variety of functional tasks and identification of the temporal onset of behavioral impairments are important to provide a foundation for future preclinical testing of AD therapeutics. Here we perform a comprehensive behavioral characterization of this model, discuss how the observed behavior correlates with the mechanistic and pathological observations of others, and compare this model with other commonly used AD mouse models. METHODS FOUR DIFFERENT GROUPS OF MICE RANGING ACROSS THE LIFESPAN OF THIS MODEL (TEST GROUPS: 7, 11, 15, and 24 months old) were run in a behavioral test battery consisting of tasks to assess motor function (grip strength, rotor rod, beam walk, open field ambulatory movement), anxiety-related behavior (open field time spent in peripheral zone vs. center zone, elevated plus maze), and cognitive function (novel object recognition, radial arm water maze). RESULTS There were no differences in motor function or anxiety-related behavior between APP/PS-1 knock-in mice and wild-type counterpart mice for any age group. Cognitive deficits in both recognition memory (novel object recognition) and spatial reference memory (radial arm water maze) became apparent for the knock-in animals as the disease progressed. CONCLUSION This is the first reported comprehensive behavioral analysis of the APP/PS1 knock-in mouse model of AD. The lack of motor/coordination deficits or abnormal anxiety levels, coupled with the age/disease-related cognitive decline and high physiological relevance of this model, make it well suited for utilization in preclinical testing of AD-relevant therapeutics.
Collapse
Affiliation(s)
- Scott J Webster
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
- Department of Anatomy and Neurobiology, 800 S. Limestone, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
26
|
Yassine N, Lazaris A, Dorner-Ciossek C, Després O, Meyer L, Maitre M, Mensah-Nyagan AG, Cassel JC, Mathis C. Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice. Neurobiol Aging 2013; 34:716-30. [DOI: 10.1016/j.neurobiolaging.2012.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/30/2012] [Accepted: 06/21/2012] [Indexed: 02/01/2023]
|
27
|
Generation of gene-targeted mice using embryonic stem cells derived from a transgenic mouse model of Alzheimer’s disease. Transgenic Res 2012; 22:537-47. [DOI: 10.1007/s11248-012-9651-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/04/2012] [Indexed: 01/16/2023]
|
28
|
Metabolic parameters and emotionality are little affected in G-protein coupled receptor 12 (Gpr12) mutant mice. PLoS One 2012; 7:e42395. [PMID: 22879962 PMCID: PMC3413656 DOI: 10.1371/journal.pone.0042395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/05/2012] [Indexed: 11/19/2022] Open
Abstract
Background G-protein coupled receptors (GPR) bear the potential to serve as yet unidentified drug targets for psychiatric and metabolic disorders. GPR12 is of major interest given its putative role in metabolic function and its unique brain distribution, which suggests a role in emotionality and affect. We tested Gpr12 deficient mice in a series of metabolic and behavioural tests and subjected them to a well-established high-fat diet feeding protocol. Methodology/Principal Findings Comparing the mutant mice with wild type littermates, no significant differences were seen in body weight, fatness or weight gain induced by a high-fat diet. The Gpr12 mutant mice displayed a modest but significant lowering of energy expenditure and a trend to lower food intake on a chow diet, but no other metabolic parameters, including respiratory rate, were altered. No emotionality-related behaviours (assessed by light-dark box, tail suspension, and open field tests) were affected by the Gpr12 gene mutation. Conclusions/Significance Studying metabolic and emotionality parameters in Gpr12 mutant mice did not reveal a major phenotypic impact of the gene mutation. Compared to previous results showing a metabolic phenotype in Gpr12 mice with a mixed 129 and C57Bl6 background, we suggest that a more pure C57Bl/6 background due to further backcrossing might have reduced the phenotypic penetrance.
Collapse
|
29
|
Transient enriched housing before amyloidosis onset sustains cognitive improvement in Tg2576 mice. Neurobiol Aging 2012; 34:211-25. [PMID: 22727275 DOI: 10.1016/j.neurobiolaging.2012.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/17/2012] [Accepted: 05/22/2012] [Indexed: 01/15/2023]
Abstract
Levels of educational and occupational attainment, as components of cognitive reserve, may modify the relationship between the pathological hallmarks and cognition in Alzheimer's disease (AD). We examined whether exposure of a Tg2576 transgenic mouse model of AD to environmental enrichment (EE) at a specific period during the amyloidogenic process favored the establishment of a cognitive reserve. We found that exposure to EE during early adulthood of Tg2576 mice--before amyloidogenesis has started--reduced the severity of AD-related cognitive deficits more efficiently than exposure later in life, when the pathology is already present. Interestingly, early-life exposure to EE, while slightly reducing forebrain surface covered by amyloid plaques, did not significantly impact aberrant inhibitory remodeling in the hippocampus of Tg2576 mice. Thus, transient early-life exposure to EE exerts long-lasting protection against cognitive impairment during AD pathology. In addition, these data define the existence of a specific life time frame during which stimulatory activity most efficiently builds a cognitive reserve, limiting AD progression and favoring successful aging.
Collapse
|
30
|
Lalonde R, Fukuchi K, Strazielle C. APP transgenic mice for modelling behavioural and psychological symptoms of dementia (BPSD). Neurosci Biobehav Rev 2012; 36:1357-75. [PMID: 22373961 PMCID: PMC3340431 DOI: 10.1016/j.neubiorev.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 12/17/2022]
Abstract
The discovery of gene mutations responsible for autosomal dominant Alzheimer's disease has enabled researchers to reproduce in transgenic mice several hallmarks of this disorder, notably Aβ accumulation, though in most cases without neurofibrillary tangles. Mice expressing mutated and wild-type APP as well as C-terminal fragments of APP exhibit variations in exploratory activity reminiscent of behavioural and psychological symptoms of Alzheimer dementia (BPSD). In particular, open-field, spontaneous alternation, and elevated plus-maze tasks as well as aggression are modified in several APP transgenic mice relative to non-transgenic controls. However, depending on the precise murine models, changes in open-field and elevated plus-maze exploration occur in either direction, either increased or decreased relative to controls. It remains to be determined which neurotransmitter changes are responsible for this variability, in particular with respect to GABA, 5HT, and dopamine.
Collapse
Affiliation(s)
- R Lalonde
- Département de Psychologie, Faculté des Sciences, Université de Rouen, 76821 Mont-Saint-Aignan Cedex, France.
| | | | | |
Collapse
|
31
|
Montgomery KS, Simmons RK, Edwards G, Nicolle MM, Gluck MA, Myers CE, Bizon JL. Novel age-dependent learning deficits in a mouse model of Alzheimer's disease: implications for translational research. Neurobiol Aging 2011; 32:1273-85. [PMID: 19720431 PMCID: PMC4334376 DOI: 10.1016/j.neurobiolaging.2009.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/27/2009] [Accepted: 08/03/2009] [Indexed: 11/28/2022]
Abstract
Computational modeling predicts that the hippocampus plays an important role in the ability to apply previously learned information to novel problems and situations (referred to as the ability to generalize information or simply as 'transfer learning'). These predictions have been tested in humans using a computer-based task on which individuals with hippocampal damage are able to learn a series of complex discriminations with two stimulus features (shape and color), but are impaired in their ability to transfer this information to newly configured problems in which one of the features is altered. This deficit occurs despite the fact that the feature predictive of the reward (the relevant information) is not changed. The goal of the current study was to develop a mouse analog of transfer learning and to determine if this new task was sensitive to pathological changes in a mouse model of AD. We describe a task in which mice were able to learn a series of concurrent discriminations that contained two stimulus features (odor and digging media) and could transfer this learned information to new problems in which the irrelevant feature in each discrimination pair was altered. Moreover, we report age-dependent deficits specific to transfer learning in APP+PS1 mice relative to non-transgenic littermates. The robust impairment in transfer learning may be more sensitive to AD-like pathology than traditional cognitive assessments in that no deficits were observed in the APP+PS1 mice on the widely used Morris water maze task. These data describe a novel and sensitive paradigm to evaluate mnemonic decline in AD mouse models that has unique translational advantages over standard species-specific cognitive assessments (e.g., water maze for rodent and delayed paragraph recall for humans).
Collapse
Affiliation(s)
- K. S. Montgomery
- Behavioral and Cellular Neuroscience, Dept. Psychology, Texas A&M University, College Station, TX 77843-4235, , , ,
| | - R. K. Simmons
- Behavioral and Cellular Neuroscience, Dept. Psychology, Texas A&M University, College Station, TX 77843-4235, , , ,
| | - G. Edwards
- Behavioral and Cellular Neuroscience, Dept. Psychology, Texas A&M University, College Station, TX 77843-4235, , , ,
| | - M. M. Nicolle
- Internal Medicine Gerontology and Dept. of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157,
| | - M. A. Gluck
- Center for Molecular & Behavioral Neuroscience, Rutgers University, Newark, NJ 07102-1896,
| | - C. E. Myers
- Department of Psychology, Rutgers University, Newark, NJ 08854-8020,
| | - J. L. Bizon
- Behavioral and Cellular Neuroscience, Dept. Psychology, Texas A&M University, College Station, TX 77843-4235, , , ,
- Faculty of Neuroscience, Texas A&M University, College Station, TX 77843-4235
| |
Collapse
|
32
|
Subchronic memantine administration on spatial learning, exploratory activity, and nest-building in an APP/PS1 mouse model of Alzheimer’s disease. Neuropharmacology 2011; 60:930-6. [DOI: 10.1016/j.neuropharm.2011.01.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/14/2011] [Accepted: 01/20/2011] [Indexed: 11/22/2022]
|
33
|
Stozicka Z, Zilka N, Novak P, Kovacech B, Bugos O, Novak M. Genetic background modifies neurodegeneration and neuroinflammation driven by misfolded human tau protein in rat model of tauopathy: implication for immunomodulatory approach to Alzheimer's disease. J Neuroinflammation 2010; 7:64. [PMID: 20937161 PMCID: PMC2958906 DOI: 10.1186/1742-2094-7-64] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022] Open
Abstract
Background Numerous epidemiological studies demonstrate that genetic background modifies the onset and the progression of Alzheimer's disease and related neurodegenerative disorders. The efficacious influence of genetic background on the disease pathway of amyloid beta has been meticulously described in rodent models. Since the impact of genetic modifiers on the neurodegenerative and neuroinflammatory cascade induced by misfolded tau protein is yet to be elucidated, we have addressed the issue by using transgenic lines expressing the same human truncated tau protein in either spontaneously hypertensive rat (SHR) or Wistar-Kyoto (WKY) genetic background. Methods Brains of WKY and SHR transgenic rats in the terminal stage of phenotype and their age-matched non-transgenic littermates were examined by means of immunohistochemistry and unbiased stereology. Basic measures of tau-induced neurodegeneration (load of neurofibrillary tangles) and neuroinflammation (number of Iba1-positive microglia, their activated morphology, and numbers of microglia immunoreactive for MHCII and astrocytes immunoreactive for GFAP) were quantified with an optical fractionator in brain areas affected by neurofibrillary pathology (pons, medulla oblongata). The stereological data were evaluated using two-way ANOVA and Student's t-test. Results Tau neurodegeneration (neurofibrillary tangles (NFTs), axonopathy) and neuroinflammation (microgliosis, astrocytosis) appeared in both WKY and SHR transgenic rats. Although identical levels of transgene expression in both lines were present, terminally-staged WKY transgenic rats displayed significantly lower final NFT loads than their SHR transgenic counterparts. Interestingly, microglial responses showed a striking difference between transgenic lines. Only 1.6% of microglia in SHR transgenic rats expressed MHCII in spite of having a robust phagocytic phenotype, whereas in WKY transgenic rats, 23.2% of microglia expressed MHCII despite displaying a considerably lower extent of transformation into phagocytic phenotype. Conclusions These results show that the immune response represents a pivotal and genetically variable modifying factor that is able to influence vulnerability to neurodegeneration. Therefore, targeted immunomodulation could represent a prospective therapeutic approach to Alzheimer's disease.
Collapse
Affiliation(s)
- Zuzana Stozicka
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
34
|
Takahashi H. [Animal models of Alzheimer's disease for preclinical research.]. Nihon Yakurigaku Zasshi 2010; 136:6-10. [PMID: 20628206 DOI: 10.1254/fpj.136.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Abstract
The tremendous advances in transgene animal technology, especially in the area of Alzheimer's disease, have not resulted in a significantly better success rate for drugs entering clinical development. Despite substantial increases in research and development budgets, the number of approved drugs in general has not increased, leading to the so-called innovation gap. While animal models have been very useful in documenting the possible pathological mechanisms in many CNS diseases, they are not very predictive in the area of drug development. This paper reports on a number of under-appreciated fundamental differences between animal models and human patients in the context of drug discovery with special emphasis on Alzheimer's disease and schizophrenia, such as different affinities of the same drug for human versus rodent target subtypes and the absence of many functional genotypes in animal models. I also offer a number of possible solutions to bridge the translational disconnect and improve the predictability of preclinical models, such as more emphasis on good-quality translational studies, more pre-competitive information sharing and the embracing of multi-target pharmacology strategies. Re-engineering the process for drug discovery and development, in a similar way to other more successful industries, is another possible but disrupting solution to the growing innovation gap. This includes the development of hybrid computational models, based upon documented preclinical physiology and pharmacology, but populated and validated with clinical data from actual patients.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences Inc., Berwyn, Pennsylvania 19312, USA.
| |
Collapse
|