1
|
O'Tuathaigh CMP, Desbonnet L, Payne C, Petit E, Cox R, Loftus S, Clarke G, Cryan JF, Tighe O, Wilson S, Kirby BP, Dinan TG, Waddington JL. Ethologically based behavioural and neurochemical characterisation of mice with isoform-specific loss of dysbindin-1A in the context of schizophrenia. Neurosci Lett 2020; 736:135218. [PMID: 32615248 DOI: 10.1016/j.neulet.2020.135218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Dysbindin-1 is implicated in several aspects of schizophrenia, including cognition and both glutamatergic and dopaminergic neurotransmission. Targeted knockout of dysbindin-1A (Dys-1A KO), the most abundant and widely expressed isoform in the brain, is associated with deficits in delay/interference-dependent working memory. Using an ethologically based approach, the following behavioural phenotypes were examined in Dys-1A KO mice: exploratory activity, social interaction, anxiety and problem-solving ability. Levels of monoamines and their metabolites were measured in striatum, hippocampus and prefrontal cortex using high-performance liquid chromatography with electrochemical detection. The ethogram of initial exploration in Dys-1A KO mice was characterised by increased rearing from a seated position; over subsequent habituation, stillness was decreased relative to wildtype. In a test of dyadic social interaction with an unfamiliar conspecific in a novel environment, female KO mice showed an increase in investigative social behaviours. Marble burying behaviour was unchanged. Using the puzzle-box test to measure general problem-solving performance, no effect of genotype was observed across nine trials of increasing complexity. Dys-1A KO demonstrated lower levels of 5-HT in ratio to its metabolite 5-HIAA in the prefrontal cortex. These studies elaborate the behavioural and neurochemical phenotype of Dys-1A KO mice, revealing subtle genotype-related differences in non-social and social exploratory behaviours and habituation of exploration in a novel environment, as well as changes in 5-HT activity in brain areas related to schizophrenia.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Medical Education Unit, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland.
| | - Lieve Desbonnet
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Psychology, National University of Ireland, Galway, Galway, Ireland
| | - Christina Payne
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie Petit
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Rachel Cox
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Samim Loftus
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - Orna Tighe
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - Brian P Kirby
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; Neurogastroenterology Laboratory, APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork, Ireland
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Reversal of memory and neuropsychiatric symptoms and reduced tau pathology by selenium in 3xTg-AD mice. Sci Rep 2018; 8:6431. [PMID: 29691439 PMCID: PMC5915484 DOI: 10.1038/s41598-018-24741-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/05/2018] [Indexed: 12/03/2022] Open
Abstract
Accumulation of amyloid-β plaques and tau contribute to the pathogenesis of Alzheimer’s disease (AD), but it is unclear whether targeting tau pathology by antioxidants independently of amyloid-β causes beneficial effects on memory and neuropsychiatric symptoms. Selenium, an essential antioxidant element reduced in the aging brain, prevents development of neuropathology in AD transgenic mice at early disease stages. The therapeutic potential of selenium for ameliorating or reversing neuropsychiatric and cognitive behavioral symptoms at late AD stages is largely unknown. Here, we evaluated the effects of chronic dietary sodium selenate supplementation for 4 months in female 3xTg-AD mice at 12–14 months of age. Chronic sodium selenate treatment efficiently reversed hippocampal-dependent learning and memory impairments, and behavior- and neuropsychiatric-like symptoms in old female 3xTg-AD mice. Selenium significantly decreased the number of aggregated tau-positive neurons and astrogliosis, without globally affecting amyloid plaques, in the hippocampus of 3xTg-AD mice. These results indicate that selenium treatment reverses AD-like memory and neuropsychiatric symptoms by a mechanism involving reduction of aggregated tau and/or reactive astrocytes but not amyloid pathology. These results suggest that sodium selenate could be part of a combined therapeutic approach for the treatment of memory and neuropsychiatric symptoms in advanced AD stages.
Collapse
|
3
|
Wachi T, Cornell B, Toyo-Oka K. Complete ablation of the 14-3-3epsilon protein results in multiple defects in neuropsychiatric behaviors. Behav Brain Res 2016; 319:31-36. [PMID: 27845227 DOI: 10.1016/j.bbr.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 11/28/2022]
Abstract
Previous studies show that mice with Ywhae deficiency show abnormalities in brain development including defects in neuronal migration of post-mitotic pyramidal neurons as well as neuronal differentiation and proliferation in neuronal progenitor cells. Also, our previous research indicated that the Ywhae knockout mice show moderate defects in working memory and anxiety-like behavior. This previous work was performed using heterozygous mutant mice. Here we performed behavioral analyses using homozygous Ywhae knockout mice and found that the homozygous Ywhae knockout mice have increased locomotor activity, decreased working memory, and increased sociability. Taken together with the results obtained from the previous pathophysiological analyses in the Ywhae knockout mice, the Ywhae knockout mouse is useful for pathophysiological analyses of neuropsychiatric disorders caused by defects during neurodevelopment.
Collapse
Affiliation(s)
- Tomoka Wachi
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA; Tokyo Nishi Tokushukai Hospital, Akishima, Tokyo 196-0003, Japan.
| | - Brett Cornell
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
4
|
Jiang L, O'Leary C, Kim HA, Parish CL, Massalas J, Waddington JL, Ehrlich ME, Schütz G, Gantois I, Lawrence AJ, Drago J. Motor and behavioral phenotype in conditional mutants with targeted ablation of cortical D1 dopamine receptor-expressing cells. Neurobiol Dis 2015; 76:137-158. [PMID: 25684539 DOI: 10.1016/j.nbd.2015.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/14/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022] Open
Abstract
D1-dopamine receptors (Drd1a) are highly expressed in the deep layers of the cerebral cortex and the striatum. A number of human diseases such as Huntington disease and schizophrenia are known to have cortical pathology involving dopamine receptor expressing neurons. To illuminate their functional role, we exploited a Cre/Lox molecular paradigm to generate Emx-1(tox) MUT mice, a transgenic line in which cortical Drd1a-expressing pyramidal neurons were selectively ablated. Emx-1(tox) MUT mice displayed prominent forelimb dystonia, hyperkinesia, ataxia on rotarod testing, heightened anxiety-like behavior, and age-dependent abnormalities in a test of social interaction. The latter occurred in the context of normal working memory on testing in the Y-maze and for novel object recognition. Some motor and behavioral abnormalities in Emx-1(tox) MUT mice overlapped with those in CamKIIα(tox) MUT transgenic mice, a line in which both striatal and cortical Drd1a-expressing cells were ablated. Although Emx-1(tox) MUT mice had normal striatal anatomy, both Emx-1(tox) MUT and CamKIIα(tox) MUT mice displayed selective neuronal loss in cortical layers V and VI. This study shows that loss of cortical Drd1a-expressing cells is sufficient to produce deficits in multiple motor and behavioral domains, independent of striatal mechanisms. Primary cortical changes in the D1 dopamine receptor compartment are therefore likely to model a number of core clinical features in disorders such as Huntington disease and schizophrenia.
Collapse
Affiliation(s)
- Luning Jiang
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; St Vincent's Hospital, Melbourne, Victoria, Australia
| | - Claire O'Leary
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hyun Ah Kim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jim Massalas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Michelle E Ehrlich
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Günter Schütz
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Ilse Gantois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; St Vincent's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Falco AM, McDonald CG, Bachus SE, Smith RF. Developmental alterations in locomotor and anxiety-like behavior as a function of D1 and D2 mRNA expression. Behav Brain Res 2013; 260:25-33. [PMID: 24239691 DOI: 10.1016/j.bbr.2013.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 12/27/2022]
Abstract
The majority of smokers start smoking in adolescence, beginning a potentially lifelong struggle with nicotine use and abuse. In rodent models of the effects of nicotine, the drug has been shown to elicit both locomotor and anxiety-like behavioral effects. Research suggests that these behavioral effects may be due in part to dopamine (DA) receptors D1 and D2 in the mesolimbic system, specifically the nucleus accumbens (NAc). We examined early adolescent (P28), late adolescent (P45), and adult (P80) male Long-Evans rats in the elevated plus maze (EPM) under normal conditions and the open field (OF) post-nicotine in order to test locomotor and anxiety-like behavior. These behavioral findings were then correlated with expression of DA D1 and D2 mRNA levels as determined via in situ hybridization. Nicotine-induced locomotor behavior was found to be significantly different between age groups. After a single injection of nicotine, early adolescents exhibited increases in locomotor behavior, whereas both late adolescents and adults responded with decreases in locomotor behavior. In addition, it was found that among, early adolescents, open arm and center time in the EPM were negatively correlated with D2 mRNA expression. In contrast, among adults, distance traveled in the center and center time in the OF were negatively correlated with D2 mRNA expression. This study suggests that DA D2 receptors play a role in anxiety-like behavior and that the relationship between observed anxiety-like behaviors and D2 receptor expression changes through the lifespan.
Collapse
Affiliation(s)
- A M Falco
- Department of Psychology, George Mason University, United States.
| | - C G McDonald
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, United States.
| | - S E Bachus
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, United States.
| | - R F Smith
- Department of Psychology, George Mason University, MSN 3F5, Fairfax, VA 22030, United States.
| |
Collapse
|
6
|
Kim HA, Jiang L, Madsen H, Parish CL, Massalas J, Smardencas A, O'Leary C, Gantois I, O'Tuathaigh C, Waddington JL, Ehrlich ME, Lawrence AJ, Drago J. Resolving pathobiological mechanisms relating to Huntington disease: gait, balance, and involuntary movements in mice with targeted ablation of striatal D1 dopamine receptor cells. Neurobiol Dis 2013; 62:323-37. [PMID: 24135007 DOI: 10.1016/j.nbd.2013.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 08/13/2013] [Accepted: 09/14/2013] [Indexed: 12/01/2022] Open
Abstract
Progressive cell loss is observed in the striatum, cerebral cortex, thalamus, hypothalamus, subthalamic nucleus and hippocampus in Huntington disease. In the striatum, dopamine-responsive medium spiny neurons are preferentially lost. Clinical features include involuntary movements, gait and orofacial impairments in addition to cognitive deficits and psychosis, anxiety and mood disorders. We utilized the Cre-LoxP system to generate mutant mice with selective postnatal ablation of D1 dopamine receptor-expressing striatal neurons to determine which elements of the complex Huntington disease phenotype relate to loss of this neuronal subpopulation. Mutant mice had reduced body weight, locomotor slowing, reduced rearing, ataxia, a short stride length wide-based erratic gait, impairment in orofacial movements and displayed haloperidol-suppressible tic-like movements. The mutation was associated with an anxiolytic profile. Mutant mice had significant striatal-specific atrophy and astrogliosis. D1-expressing cell number was reduced throughout the rostrocaudal extent of the dorsal striatum consistent with partial destruction of the striatonigral pathway. Additional striatal changes included up-regulated D2 and enkephalin mRNA, and an increased density of D2 and preproenkephalin-expressing projection neurons, and striatal neuropeptide Y and cholinergic interneurons. These data suggest that striatal D1-cell-ablation alone may account for the involuntary movements and locomotor, balance and orofacial deficits seen not only in HD but also in HD phenocopy syndromes with striatal atrophy. Therapeutic strategies would therefore need to target striatal D1 cells to ameliorate deficits especially when the clinical presentation is dominated by a bradykinetic/ataxic phenotype with involuntary movements.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Luning Jiang
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Heather Madsen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Jim Massalas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Arthur Smardencas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Claire O'Leary
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia; Molecular and Cellular Therapeutics, RCSI Research Institute, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ilse Gantois
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Colm O'Tuathaigh
- Molecular and Cellular Therapeutics, RCSI Research Institute, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - John L Waddington
- Molecular and Cellular Therapeutics, RCSI Research Institute, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Michelle E Ehrlich
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - John Drago
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
7
|
Smardencas A, Rizkalla K, Kim HA, Massalas J, O'Leary C, Ehrlich ME, Schütz G, Lawrence AJ, Drago J. Phenotyping dividing cells in mouse models of neurodegenerative basal ganglia diseases. BMC Neurosci 2013; 14:111. [PMID: 24090101 PMCID: PMC3851877 DOI: 10.1186/1471-2202-14-111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mice generated by a Cre/LoxP transgenic paradigm were used to model neurodegenerative basal ganglia disease of which Huntington disease (HD) is the prototypical example. In HD, death occurs in striatal projection neurons as well as cortical neurons. Cortical and striatal neurons that express the D1 dopamine receptor (Drd1a) degenerate in HD. The contribution that death of specific neuronal cell populations makes to the HD disease phenotype and the response of the brain to loss of defined cell subtypes is largely unknown. METHODS Drd1a-expressing cells were targeted for cell death and three independent lines generated; a striatal-restricted line, a cortical-restricted line and a global line in which Drd1a cells were deleted from both the striatum and cortex. Two independent experimental approaches were used. In the first, the proliferative marker Ki-67 was used to identify proliferating cells in eighty-week-old mice belonging to a generic global line, a global in which Drd1a cells express green fluorescent protein (GFP-global) and in eighty-week-old mice of a cortical line. In the second experiment, the proliferative response of four-week-old mice belonging to GFP-global and striatal lines was assessed using the thymidine analogue BrdU. The phenotype of proliferating cells was ascertained by double staining for BrdU and Olig2 (an oligodendrocyte marker), Iba1 (a microglial cell marker), S100β (an astroglial cell marker), or NeuN (a neuronal cell marker). RESULTS In the first study, we found that Ki-67-expressing cells were restricted to the striatal side of the lateral ventricles. Control mice had a greater number of Ki-67+ cells than mutant mice. There was no overlap between Ki-67 and GFP staining in control or mutant mice, suggesting that cells did not undergo cell division once they acquired a Drd1a phenotype. In contrast, in the second study we found that BrdU+ cells were identified throughout the cortex, striatum and periventricular region of control and mutant mice. Mutant mice from the GFP-global line showed increased BrdU+ cells in the cortex, striatum and periventricular region relative to control. Striatal line mutant mice had an increased number of BrdU+ cells in the striatum and periventricular region, but not the cortex. The number of microglia, astrocytes, oligodendrocytes and neurons generated from dividing progenitors was increased relative to control mice in most brain regions in mutant mice from the GFP-global line. In contrast, striatal line mutant mice displayed an increase only in the number of dividing microglia in striatal and periventricular regions. CONCLUSIONS Genetically programmed post-natal ablation of Drd1a-expressing neurons is associated with an extensive proliferative response involving multiple cell lineages. The nature of the tissue response has the potential not only to remove cellular debris but also to forge physiologically meaningful brain repair. Age related deficits in proliferation are seen in mutant lines. A blunted endogenous reparative response may underlie the cumulative deficits characteristic of age related neurodegeneration.
Collapse
Affiliation(s)
- Arthur Smardencas
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Babovic D, Jiang L, Goto S, Gantois I, Schütz G, Lawrence AJ, Waddington JL, Drago J. Behavioural and anatomical characterization of mutant mice with targeted deletion of D1 dopamine receptor-expressing cells: response to acute morphine. J Pharmacol Sci 2013; 121:39-47. [PMID: 23337398 DOI: 10.1254/jphs.12214fp] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Considerable topographic overlap exists between brain opioidergic and dopaminergic neurons. Pharmacological blockade of the dopamine D(1) receptor (Drd1a) reverses several behavioural phenomena elicited by opioids. The present study examines the effects of morphine in adult mutant (MUT) mice expressing the attenuated diphtheria toxin-176 gene in Drd1a-expressing cells, a mutant line shown previously to undergo post-natal striatal atrophy and loss of Drd1a-expression. MUT and wild-type mice were assessed behaviourally following acute administration of 10 mg/kg morphine. Treatment with morphine reduced locomotion and rearing similarly in both genotypes but reduced total grooming only in MUT mice. Morphine-induced Straub tail and stillness were heightened in MUT mice. Chewing and sifting were decreased in MUT mice and these effects were not modified by morphine. Loss of striatal Drd1-positive cells and up-regulated D(2)-expression, as reflected in down-regulated D(1)-like and up-regulated D(2)-like binding, respectively, is not uniform along the cranio-caudal extent in this model but appears to be greater in the caudal striatum. Preferential caudal loss of µ-opioid-expression, a marker for the striosomal compartment, was seen. These data indicate that Drd1a-positive cell loss modifies the exploratory behavioural response elicited by morphine, unmasking novel morphine-induced MUT-specific behaviours and generating a hypersensitivity to morphine for others.
Collapse
Affiliation(s)
- Daniela Babovic
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Adamah-Biassi EB, Stepien I, Hudson RL, Dubocovich ML. Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice. Behav Brain Res 2013; 243:306-12. [PMID: 23337734 DOI: 10.1016/j.bbr.2013.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/31/2012] [Accepted: 01/05/2013] [Indexed: 11/29/2022]
Abstract
Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in Activity-Like Behaviors (i.e. walk, hang, jump, come down) (ALB), Exploration-Like Behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), Ingestion-Like Behaviors (i.e. drink, eat) (ILB) and Resting-Like Behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal distribution analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 h magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin.
Collapse
Affiliation(s)
- E B Adamah-Biassi
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo SUNY, Buffalo, NY 14214, United States
| | | | | | | |
Collapse
|
10
|
Walsh J, Desbonnet L, Clarke N, Waddington JL, O'Tuathaigh CMP. Disruption of exploratory and habituation behavior in mice with mutation of DISC1: an ethologically based analysis. J Neurosci Res 2012; 90:1445-53. [PMID: 22388794 DOI: 10.1002/jnr.23024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022]
Abstract
Disrupted-in-schizophrenia-1 (DISC1) is a gene that has been functionally linked with neurodevelopmental processes and structural plasticity in the brain. Clinical genetic investigations have implicated DISC1 as a genetic risk factor for schizophrenia and related psychoses. Studies using mutant mouse models of DISC1 gene function have demonstrated schizophrenia-related anatomical and behavioral endophenotypes. In the present study, ethologically based assessment of exploratory and habituation behavior in the open field was conducted in DISC1 (L100P), wild-type (WT), heterozygous (HET), and homozygous (HOM) mutant mice of both sexes. Ethological assessment was conducted in an open-field environment to explore specific topographies of murine exploratory behavior across the extended course of interaction from initial exploration through subsequent habituation (the ethogram). During initial exploration, HET and HOM DISC1 mutants evidenced increased levels of locomotion and rearing to wall compared with WT. A HOM-specific increase in total rearing and a HET-specific increase in sifting behavior and reduction in rearing seated were also observed. Over subsequent habituation, locomotion, sniffing, total rearing, rearing to wall, rearing free, and rearing seated were increased in HET and HOM mutants vs. WT. Overall, grooming was increased in HOM relative to other genotypes. HET mice displayed a selective decrease in habituation of sifting behavior. These data demonstrate impairment in both initial exploratory and habituation of exploration in a novel environment in mice with mutation of DISC1. This is discussed in the context of the functional role of the gene vis à vis a schizophrenia phenotype as well as the value of ethologically based approaches to behavioral phenotyping.
Collapse
Affiliation(s)
- J Walsh
- School of Physiotherapy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
11
|
Tomiyama K, Kim HA, Kinsella A, Ehrlich ME, Schütz G, Koshikawa N, Lawrence AJ, Waddington JL, Drago J. Phenotypic disruption to orofacial movement topography in conditional mutants with generalized CamKIIa/Cre D1Tox versus striatal-specific DARPP-32/Cre D1Tox ablation of D1 dopamine receptor-expressing cells. Synapse 2011; 65:835-42. [PMID: 21308794 DOI: 10.1002/syn.20910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/21/2010] [Indexed: 01/29/2023]
Abstract
Orofacial movements were quantified in (a) DARPP-32/Cre D1Tox mutants, having progressive loss of D1 dopamine receptor expressing striatal medium spiny neurons and (b) CamKIIa/Cre D1Tox mutants, having progressive, generalized loss of forebrain D1 receptor expressing cells. Horizontal jaw movements and tongue protrusions were reduced in DARPP-32/Cre but not in CamKIIa/Cre mutants; head and vibrissae movements were increased in DARPP-32/Cre but decreased in CamKIIa/Cre mutants. In drug challenge studies, tongue protrusions were increased in CamKIIa/Cre mutants following vehicle, suggesting a stress-related phenotype. These findings indicate that mice with progressive loss of striatal-specific D1 receptor expressing cells have an orofacial phenotype that may be modulated by the loss of extrastriatal D1 receptor expressing cells. As progressive loss of D1 dopamine receptor-expressing cells is a hallmark feature of Huntington's disease (HD), these findings may inform the functional role of loss of this cell population in the overall pathobiology of HD.
Collapse
Affiliation(s)
- Katsunori Tomiyama
- Advanced Research Institute for the Sciences and Humanities, Nihon University, Tokyo 102, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chronic adolescent exposure to Δ-9-tetrahydrocannabinol in COMT mutant mice: impact on psychosis-related and other phenotypes. Neuropsychopharmacology 2010; 35:2262-73. [PMID: 20631688 PMCID: PMC3055315 DOI: 10.1038/npp.2010.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cannabis use confers a two-fold increase in the risk for psychosis, with adolescent use conferring even greater risk. A high-low activity catechol-O-methyltransferase (COMT) polymorphism may modulate the effects of adolescent Δ-9-tetrahydrocannabinol (THC) exposure on the risk for adult psychosis. Mice with knockout of the COMT gene were treated chronically with THC (4.0 and 8.0 mg/kg over 20 days) during either adolescence (postnatal days (PDs) 32-52) or adulthood (PDs 70-90). The effects of THC exposure were then assessed in adulthood across behavioral phenotypes relevant for psychosis: exploratory activity, spatial working memory (spontaneous and delayed alternation), object recognition memory, social interaction (sociability and social novelty preference), and anxiety (elevated plus maze). Adolescent THC administration induced a larger increase in exploratory activity, greater impairment in spatial working memory, and a stronger anti-anxiety effect in COMT knockouts than in wild types, primarily among males. No such effects of selective adolescent THC administration were evident for other behaviors. Both object recognition memory and social novelty preference were disrupted by either adolescent or adult THC administration, independent of genotype. The COMT genotype exerts specific modulation of responsivity to chronic THC administration during adolescence in terms of exploratory activity, spatial working memory, and anxiety. These findings illuminate the interaction between genes and adverse environmental exposures over a particular stage of development in the expression of the psychosis phenotype.
Collapse
|