1
|
Alveal-Mellado D, Giménez-Llort L. Use of Ordered Beta Regression Unveils Cognitive Flexibility Index and Longitudinal Cognitive Training Signatures in Normal and Alzheimer's Disease Pathological Aging. Brain Sci 2024; 14:501. [PMID: 38790478 PMCID: PMC11119991 DOI: 10.3390/brainsci14050501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Generalized linear mixed models (GLMMs) are a cornerstone data analysis strategy in behavioral research because of their robustness in handling non-normally distributed variables. Recently, their integration with ordered beta regression (OBR), a novel statistical tool for managing percentage data, has opened new avenues for analyzing continuous response data. Here, we applied this combined approach to investigate nuanced differences between the 3xTg-AD model of Alzheimer's disease (AD) and their C57BL/6 non-transgenic (NTg) counterparts with normal aging in a 5-day Morris Water Maze (MWM) test protocol. Our longitudinal study included 22 3xTg-AD mice and 15 NTg mice (both male and female) assessed at 12 and 16 months of age. By identifying and analyzing multiple swimming strategies during three different paradigms (cue, place task, and removal), we uncovered genotypic differences in all paradigms. Thus, the NTg group exhibited a higher percentage of direct search behaviors, while an association between circling episodes and 3xTg-AD animals was found. Furthermore, we also propose a novel metric-the "Cognitive Flexibility Index"-which proved sensitive in detecting sex-related differences. Overall, our integrated GLMMs-OBR approach provides a comprehensive insight into mouse behavior in the MWM test, shedding light on the effects of aging and AD pathology.
Collapse
Affiliation(s)
- Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
2
|
Glutathione depletion: Starting point of brain metabolic stress, neuroinflammation and cognitive impairment in rats. Brain Res Bull 2018; 137:120-131. [DOI: 10.1016/j.brainresbull.2017.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022]
|
3
|
Skotte NH, Sanders SS, Singaraja RR, Ehrnhoefer DE, Vaid K, Qiu X, Kannan S, Verma C, Hayden MR. Palmitoylation of caspase-6 by HIP14 regulates its activation. Cell Death Differ 2017; 24:433-444. [PMID: 27911442 PMCID: PMC5344205 DOI: 10.1038/cdd.2016.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Caspase-6 (CASP6) has an important role in axonal degeneration during neuronal apoptosis and in the neurodegenerative diseases Alzheimer and Huntington disease. Decreasing CASP6 activity may help to restore neuronal function in these and other diseases such as stroke and ischemia, where increased CASP6 activity has been implicated. The key to finding approaches to decrease CASP6 activity is a deeper understanding of the mechanisms regulating CASP6 activation. We show that CASP6 is posttranslationally palmitoylated by the palmitoyl acyltransferase HIP14 and that the palmitoylation of CASP6 inhibits its activation. Palmitoylation of CASP6 is decreased both in Hip14-/- mice, where HIP14 is absent, and in YAC128 mice, a model of Huntington disease, where HIP14 is dysfunctional and where CASP6 activity is increased. Molecular modeling suggests that palmitoylation of CASP6 may inhibit its activation via steric blockage of the substrate-binding groove and inhibition of CASP6 dimerization, both essential for CASP6 function. Our studies identify palmitoylation as a novel CASP6 modification and as a key regulator of CASP6 activity.
Collapse
Affiliation(s)
- Niels H Skotte
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Shaun S Sanders
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Medicine at Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138648, Singapore
| | - Dagmar E Ehrnhoefer
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Kuljeet Vaid
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofan Qiu
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Srinivasaragavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
- Translational Laboratories in Genetic Medicine, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
4
|
Cañete T, Blázquez G, Tobeña A, Giménez-Llort L, Fernández-Teruel A. Cognitive and emotional alterations in young Alzheimer's disease (3xTgAD) mice: effects of neonatal handling stimulation and sexual dimorphism. Behav Brain Res 2014; 281:156-71. [PMID: 25446741 DOI: 10.1016/j.bbr.2014.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/30/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
Abstract
Alzheimer disease is the most common neurodegenerative disorder and cause of senile dementia. It is characterized by an accelerated memory loss, and alterations of mood, reason, judgment and language. The main neuropathological hallmarks of the disorder are β-amyloid (βA) plaques and neurofibrillary Tau tangles. The triple transgenic 3xTgAD mouse model develops βA and Tau pathologies in a progressive manner which mimicks the pattern that takes place in the human brain with AD, and showing cognitive alterations characteristic of the disease. The present study intended to examine whether 3xTgAD mice of both sexes present cognitive, emotional and other behavioral alterations at the early age of 4 months, an age in which only some intraneuronal amyloid accumulation is found. Neonatal handling (H) is an early-life treatment known to produce profound and long-lasting behavioral and neurobiological effects in rodents, as well as improvements in cognitive functions. Therefore, we also aimed at evaluating the effects of H on the behavioral/cognitive profile of 4-month-old male and female 3xTgAD mice. The results indicate that, (1) 3xTgAD mice present spatial learning/memory deficits and emotional alterations already at the early age of 4 months, (2) there exists sexual dimorphism effects on several behavioral variables at this age, (3) neonatal handling exerts a preventive effect on some cognitive (spatial learning) and emotional alterations appearing in 3xTgAD mice already at early ages, and 4) H treatment appears to produce stronger positive effects in females than in males in several spatial learning measures and in the open field test.
Collapse
Affiliation(s)
- T Cañete
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | - G Blázquez
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - A Tobeña
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - L Giménez-Llort
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - A Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Forensic Medicine, Institute of Neurosciences, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2014; 55:553-72. [PMID: 25340928 DOI: 10.1146/annurev-pharmtox-010814-124414] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is classified as an apoptotic effector, and it mediates nuclear shrinkage during apoptosis, but it possesses unique activation and regulation mechanisms that differ from those of other effector caspases. Furthermore, increasing evidence has shown that caspase-6 is highly involved in axon degeneration and neurodegenerative diseases, such as Huntington's disease and Alzheimer's disease. Cleavage at the caspase-6 site in mutated huntingtin protein is a prerequisite for the development of the characteristic behavioral and neuropathological features of Huntington's disease. Active caspase-6 is present in early stages of Alzheimer's disease, and caspase-6 activity is associated with the disease's pathological lesions. In this review, we discuss the evidence relevant to the role of caspase-6 in neurodegenerative diseases and summarize its activation and regulation mechanisms. In doing so, we provide new insight about potential therapeutic approaches that incorporate the modulation of caspase-6 function for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- State Key Laboratory of Protein and Plant Gene Research and
| | | | | | | |
Collapse
|
6
|
Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YYI, Muir E, Solano Fonseca R, Strong R, Richardson AG, Lechleiter JD, Fox PT, Galvan V. Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer's disease. J Cereb Blood Flow Metab 2013; 33:1412-21. [PMID: 23801246 PMCID: PMC3764385 DOI: 10.1038/jcbfm.2013.82] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/04/2013] [Accepted: 04/23/2013] [Indexed: 12/14/2022]
Abstract
Vascular pathology is a major feature of Alzheimer's disease (AD) and other dementias. We recently showed that chronic administration of the target-of-rapamycin (TOR) inhibitor rapamycin, which extends lifespan and delays aging, halts the progression of AD-like disease in transgenic human (h)APP mice modeling AD when administered before disease onset. Here we demonstrate that chronic reduction of TOR activity by rapamycin treatment started after disease onset restored cerebral blood flow (CBF) and brain vascular density, reduced cerebral amyloid angiopathy and microhemorrhages, decreased amyloid burden, and improved cognitive function in symptomatic hAPP (AD) mice. Like acetylcholine (ACh), a potent vasodilator, acute rapamycin treatment induced the phosphorylation of endothelial nitric oxide (NO) synthase (eNOS) and NO release in brain endothelium. Administration of the NOS inhibitor L-NG-Nitroarginine methyl ester reversed vasodilation as well as the protective effects of rapamycin on CBF and vasculature integrity, indicating that rapamycin preserves vascular density and CBF in AD mouse brains through NOS activation. Taken together, our data suggest that chronic reduction of TOR activity by rapamycin blocked the progression of AD-like cognitive and histopathological deficits by preserving brain vascular integrity and function. Drugs that inhibit the TOR pathway may have promise as a therapy for AD and possibly for vascular dementias.
Collapse
Affiliation(s)
- Ai-Ling Lin
- Research Imaging Institute, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
LeBlanc AC. Caspase-6 as a novel early target in the treatment of Alzheimer's disease. Eur J Neurosci 2013; 37:2005-18. [DOI: 10.1111/ejn.12250] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/01/2013] [Accepted: 04/06/2013] [Indexed: 12/16/2022]
|
8
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
9
|
Pierce A, Podlutskaya N, Halloran JJ, Hussong SA, Lin PY, Burbank R, Hart MJ, Galvan V. Over-expression of heat shock factor 1 phenocopies the effect of chronic inhibition of TOR by rapamycin and is sufficient to ameliorate Alzheimer's-like deficits in mice modeling the disease. J Neurochem 2013; 124:880-93. [PMID: 23121022 PMCID: PMC6762020 DOI: 10.1111/jnc.12080] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023]
Abstract
Rapamycin, an inhibitor of target-of-rapamycin, extends lifespan in mice, possibly by delaying aging. We recently showed that rapamycin halts the progression of Alzheimer's (AD)-like deficits, reduces amyloid-beta (Aβ) and induces autophagy in the human amyloid precursor protein (PDAPP) mouse model. To delineate the mechanisms by which chronic rapamycin delays AD we determined proteomic signatures in brains of control- and rapamycin-treated PDAPP mice. Proteins with reported chaperone-like activity were overrepresented among proteins up-regulated in rapamycin-fed PDAPP mice and the master regulator of the heat-shock response, heat-shock factor 1, was activated. This was accompanied by the up-regulation of classical chaperones/heat shock proteins (HSPs) in brains of rapamycin-fed PDAPP mice. The abundance of most HSP mRNAs except for alpha B-crystallin, however, was unchanged, and the cap-dependent translation inhibitor 4E-BP was active, suggesting that increased expression of HSPs and proteins with chaperone activity may result from preferential translation of pre-existing mRNAs as a consequence of inhibition of cap-dependent translation. The effects of rapamycin on the reduction of Aβ, up-regulation of chaperones, and amelioration of AD-like cognitive deficits were recapitulated by transgenic over-expression of heat-shock factor 1 in PDAPP mice. These results suggest that, in addition to inducing autophagy, rapamycin preserves proteostasis by increasing chaperones. We propose that the failure of proteostasis associated with aging may be a key event enabling AD, and that chronic inhibition of target-of-rapamycin may delay AD by maintaining proteostasis in brain. Read the Editorial Highlight for this article on doi: 10.1111/jnc.12098.
Collapse
Affiliation(s)
- Anson Pierce
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Natalia Podlutskaya
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jonathan J. Halloran
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Stacy A. Hussong
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Pei-Yi Lin
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Raquel Burbank
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Matthew J. Hart
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Veronica Galvan
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, Austad SN, Strong R, Richardson A, Hart MJ, Galvan V. Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 2012; 223:102-13. [PMID: 22750207 DOI: 10.1016/j.neuroscience.2012.06.054] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 11/29/2022]
Abstract
Aging is, by far, the greatest risk factor for most neurodegenerative diseases. In non-diseased conditions, normal aging can also be associated with declines in cognitive function that significantly affect quality of life in the elderly. It was recently shown that inhibition of Mammalian TOR (mTOR) activity in mice by chronic rapamycin treatment extends lifespan, possibly by delaying aging {Harrison, 2009 #4}{Miller, 2011 #168}. To explore the effect of chronic rapamycin treatment on normal brain aging we determined cognitive and non-cognitive components of behavior throughout lifespan in male and female C57BL/6 mice that were fed control- or rapamycin-supplemented chow. Our studies show that rapamycin enhances cognitive function in young adult mice and blocks age-associated cognitive decline in older animals. In addition, mice fed with rapamycin-supplemented chow showed decreased anxiety and depressive-like behavior at all ages tested. Levels of three major monoamines (norepinephrine, dopamine and 5-hydroxytryptamine) and their metabolites (3,4-dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindolacetic acid) were significantly augmented in midbrain of rapamycin-treated mice compared to controls. Our results suggest that chronic, partial inhibition of mTOR by oral rapamycin enhances learning and memory in young adults, maintains memory in old C57BL/6J mice, and has concomitant anxiolytic and antidepressant-like effects, possibly by stimulating major monoamine pathways in brain.
Collapse
Affiliation(s)
- J Halloran
- Barshop Institute, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Uribe V, Wong BK, Graham RK, Cusack CL, Skotte NH, Pouladi MA, Xie Y, Feinberg K, Ou Y, Ouyang Y, Deng Y, Franciosi S, Bissada N, Spreeuw A, Zhang W, Ehrnhoefer DE, Vaid K, Miller FD, Deshmukh M, Howland D, Hayden MR. Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice. Hum Mol Genet 2012; 21:1954-67. [PMID: 22262731 PMCID: PMC3315204 DOI: 10.1093/hmg/dds005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 01/09/2012] [Indexed: 11/13/2022] Open
Abstract
Apoptosis, or programmed cell death, is a cellular pathway involved in normal cell turnover, developmental tissue remodeling, embryonic development, cellular homeostasis maintenance and chemical-induced cell death. Caspases are a family of intracellular proteases that play a key role in apoptosis. Aberrant activation of caspases has been implicated in human diseases. In particular, numerous findings implicate Caspase-6 (Casp6) in neurodegenerative diseases, including Alzheimer disease (AD) and Huntington disease (HD), highlighting the need for a deeper understanding of Casp6 biology and its role in brain development. The use of targeted caspase-deficient mice has been instrumental for studying the involvement of caspases in apoptosis. The goal of this study was to perform an in-depth neuroanatomical and behavioral characterization of constitutive Casp6-deficient (Casp6-/-) mice in order to understand the physiological function of Casp6 in brain development, structure and function. We demonstrate that Casp6-/- neurons are protected against excitotoxicity, nerve growth factor deprivation and myelin-induced axonal degeneration. Furthermore, Casp6-deficient mice show an age-dependent increase in cortical and striatal volume. In addition, these mice show a hypoactive phenotype and display learning deficits. The age-dependent behavioral and region-specific neuroanatomical changes observed in the Casp6-/- mice suggest that Casp6 deficiency has a more pronounced effect in brain regions that are involved in neurodegenerative diseases, such as the striatum in HD and the cortex in AD.
Collapse
Affiliation(s)
- Valeria Uribe
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Bibiana K.Y. Wong
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Rona K. Graham
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Corey L. Cusack
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, NC27599-7250, USA
| | - Niels H. Skotte
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
- Department of Medical Genetics, Institute of Cellular and Molecular Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark
| | - Mahmoud A. Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Yuanyun Xie
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Konstantin Feinberg
- Developmental and Stem Cell Biology Group, Hospital for Sick Children, Toronto, OntarioM5G1L7, Canada
| | - Yimiao Ou
- Developmental and Stem Cell Biology Group, Hospital for Sick Children, Toronto, OntarioM5G1L7, Canada
| | | | - Yu Deng
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sonia Franciosi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Nagat Bissada
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Amanda Spreeuw
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Weining Zhang
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Dagmar E. Ehrnhoefer
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Kuljeet Vaid
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Freda D. Miller
- Developmental and Stem Cell Biology Group, Hospital for Sick Children, Toronto, OntarioM5G1L7, Canada
- Department of Molecular Genetics and
- Department of Physiology, University of Toronto, Toronto, OntarioM5G1X5, Canada
| | - Mohanish Deshmukh
- Department of Cell and Developmental Biology and Neuroscience Center, University of North Carolina, Chapel Hill, NC27599-7250, USA
| | | | - Michael R. Hayden
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
12
|
The amyloid precursor protein intracellular domain-fe65 multiprotein complexes: a challenge to the amyloid hypothesis for Alzheimer's disease? Int J Alzheimers Dis 2012; 2012:353145. [PMID: 22506131 PMCID: PMC3296194 DOI: 10.1155/2012/353145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/14/2011] [Indexed: 01/25/2023] Open
Abstract
Since its proposal in 1994, the amyloid cascade hypothesis has prevailed as the mainstream research subject on the molecular mechanisms leading to the Alzheimer's disease (AD). Most of the field had been historically based on the role of the different forms of aggregation of β-amyloid peptide (Aβ). However, a soluble intracellular fragment termed amyloid precursor protein (APP) intracellular domain (AICD) is produced in conjunction with Aβ fragments. This peptide had been shown to be highly toxic in both culture neurons and transgenic mice models. With the advent of this new toxic fragment, the centerpiece for the ethiology of the disease may be changed. This paper discusses the potential role of multiprotein complexes between the AICD and its adapter protein Fe65 and how this could be a potentially important new agent in the neurodegeneration observed in the AD.
Collapse
|
13
|
Hart MJ, Glicksman M, Liu M, Sharma MK, Cuny G, Galvan V. Development of a high-throughput screen targeting caspase-8-mediated cleavage of the amyloid precursor protein. Anal Biochem 2012; 421:467-76. [DOI: 10.1016/j.ab.2011.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/11/2011] [Accepted: 11/19/2011] [Indexed: 01/17/2023]
|
14
|
Bredesen DE, John V, Galvan V. Importance of the caspase cleavage site in amyloid-β protein precursor. J Alzheimers Dis 2011; 22:57-63. [PMID: 20847422 DOI: 10.3233/jad-2010-100537] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Reports from multiple laboratories have now been published analyzing the critical nature of the caspase cleavage site of amyloid-β protein precursor (AβPP) for cell death induction, synaptic loss, hippocampal atrophy, long-term potentiation, memory loss, neophobia, and other aspects of the Alzheimer's phenotype. Here we review the results and implications of these studies for the understanding of Alzheimer's disease pathophysiology and the potential development of therapeutics that target this site in AβPP.
Collapse
|
15
|
Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J Neurosci 2010; 30:15019-29. [PMID: 21068307 DOI: 10.1523/jneurosci.2071-10.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Caspase cleavage of huntingtin (htt) and nuclear htt accumulation represent early neuropathological changes in brains of patients with Huntington's disease (HD). However, the relationship between caspase cleavage of htt and caspase activation patterns in the pathogenesis of HD remains poorly understood. The lack of a phenotype in YAC mice expressing caspase-6-resistant (C6R) mutant htt (mhtt) highlights proteolysis of htt at the 586 aa caspase-6 (casp6) site as a key mechanism in the pathology of HD. The goal of this study was to investigate how proteolysis of htt at residue 586 plays a role in the pathogenesis of HD and determine whether inhibiting casp6 cleavage of mhtt alters cell-death pathways in vivo. Here we demonstrate that activation of casp6, and not caspase-3, is observed before onset of motor abnormalities in human and murine HD brain. Active casp6 levels correlate directly with CAG size and inversely with age of onset. In contrast, in vivo expression of C6R mhtt attenuates caspase activation. Increased casp6 activity and apoptotic cell death is evident in primary striatal neurons expressing caspase-cleavable, but not C6R, mhtt after NMDA application. Pretreatment with a casp6 inhibitor rescues the apoptotic cell death observed in this paradigm. These data demonstrate that activation of casp6 is an early marker of disease in HD. Furthermore, these data provide a clear link between excitotoxic pathways and proteolysis and suggest that C6R mhtt protects against neurodegeneration by influencing the activation of neuronal cell-death and excitotoxic pathways operative in HD.
Collapse
|
16
|
Spilman P, Podlutskaya N, Hart MJ, Debnath J, Gorostiza O, Bredesen D, Richardson A, Strong R, Galvan V. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 2010; 5:e9979. [PMID: 20376313 PMCID: PMC2848616 DOI: 10.1371/journal.pone.0009979] [Citation(s) in RCA: 769] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/09/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Reduced TOR signaling has been shown to significantly increase lifespan in a variety of organisms [1], [2], [3], [4]. It was recently demonstrated that long-term treatment with rapamycin, an inhibitor of the mTOR pathway[5], or ablation of the mTOR target p70S6K[6] extends lifespan in mice, possibly by delaying aging. Whether inhibition of the mTOR pathway would delay or prevent age-associated disease such as AD remained to be determined. METHODOLOGY/PRINCIPAL FINDINGS We used rapamycin administration and behavioral tools in a mouse model of AD as well as standard biochemical and immunohistochemical measures in brain tissue to provide answers for this question. Here we show that long-term inhibition of mTOR by rapamycin prevented AD-like cognitive deficits and lowered levels of Abeta(42), a major toxic species in AD[7], in the PDAPP transgenic mouse model. These data indicate that inhibition of the mTOR pathway can reduce Abeta(42) levels in vivo and block or delay AD in mice. As expected from the inhibition of mTOR, autophagy was increased in neurons of rapamycin-treated transgenic, but not in non-transgenic, PDAPP mice, suggesting that the reduction in Abeta and the improvement in cognitive function are due in part to increased autophagy, possibly as a response to high levels of Abeta. CONCLUSIONS/SIGNIFICANCE Our data suggest that inhibition of mTOR by rapamycin, an intervention that extends lifespan in mice, can slow or block AD progression in a transgenic mouse model of the disease. Rapamycin, already used in clinical settings, may be a potentially effective therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Patricia Spilman
- The Buck Institute for Age Research, Novato, California, United States of America
| | - Natalia Podlutskaya
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Matthew J. Hart
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jayanta Debnath
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Olivia Gorostiza
- The Buck Institute for Age Research, Novato, California, United States of America
| | - Dale Bredesen
- The Buck Institute for Age Research, Novato, California, United States of America
| | - Arlan Richardson
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Randy Strong
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas, United States of America
| | - Veronica Galvan
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Harris JA, Devidze N, Halabisky B, Lo I, Thwin MT, Yu GQ, Bredesen DE, Masliah E, Mucke L. Many neuronal and behavioral impairments in transgenic mouse models of Alzheimer's disease are independent of caspase cleavage of the amyloid precursor protein. J Neurosci 2010; 30:372-81. [PMID: 20053918 PMCID: PMC3064502 DOI: 10.1523/jneurosci.5341-09.2010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 11/21/2022] Open
Abstract
Previous studies suggested that cleavage of the amyloid precursor protein (APP) at aspartate residue 664 by caspases may play a key role in the pathogenesis of Alzheimer's disease. Mutation of this site (D664A) prevents caspase cleavage and the generation of the C-terminal APP fragments C31 and Jcasp, which have been proposed to mediate amyloid-beta (Abeta) neurotoxicity. Here we compared human APP transgenic mice with (B254) and without (J20) the D664A mutation in a battery of tests. Before Abeta deposition, hAPP-B254 and hAPP-J20 mice had comparable hippocampal levels of Abeta(1-42). At 2-3 or 5-7 months of age, hAPP-B254 and hAPP-J20 mice had similar abnormalities relative to nontransgenic mice in spatial and nonspatial learning and memory, elevated plus maze performance, electrophysiological measures of synaptic transmission and plasticity, and levels of synaptic activity-related proteins. Thus, caspase cleavage of APP at position D664 and generation of C31 do not play a critical role in the development of these abnormalities.
Collapse
Affiliation(s)
- Julie A. Harris
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | | | - Brian Halabisky
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Iris Lo
- Gladstone Institute of Neurological Disease and
| | | | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease and
| | - Dale E. Bredesen
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
- Buck Institute for Age Research, Novato, California 94945, and
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, San Diego, California 92093
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease and
- Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|