1
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
2
|
Shang W, Dai Z, Zhang J, Shen F, Sui N, Liang J. Embryonic opioid exposure impairs inhibitory transmission of striatum in day‐old chicks. Dev Psychobiol 2022; 64:e22273. [DOI: 10.1002/dev.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/05/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Wen Shang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Zhonghua Dai
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Fang Shen
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Nan Sui
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
| | - Jing Liang
- CAS Key Laboratory of Mental Health Institute of Psychology Beijing China
- Department of Psychology University of Chinese Academy of Sciences Beijing China
- Sino‐Danish Center for Education and Research University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
3
|
Thompson BL, Oscar-Berman M, Kaplan GB. Opioid-induced structural and functional plasticity of medium-spiny neurons in the nucleus accumbens. Neurosci Biobehav Rev 2021; 120:417-430. [PMID: 33152423 PMCID: PMC7855607 DOI: 10.1016/j.neubiorev.2020.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Opioid Use Disorder (OUD) is a chronic relapsing clinical condition with tremendous morbidity and mortality that frequently persists, despite treatment, due to an individual's underlying psychological, neurobiological, and genetic vulnerabilities. Evidence suggests that these vulnerabilities may have neurochemical, cellular, and molecular bases. Key neuroplastic events within the mesocorticolimbic system that emerge through chronic exposure to opioids may have a determinative influence on behavioral symptoms associated with OUD. In particular, structural and functional alterations in the dendritic spines of medium spiny neurons (MSNs) within the nucleus accumbens (NAc) and its dopaminergic projections from the ventral tegmental area (VTA) are believed to facilitate these behavioral sequelae. Additionally, glutamatergic neurons from the prefrontal cortex, the basolateral amygdala, the hippocampus, and the thalamus project to these same MSNs, providing an enriched target for synaptic plasticity. Here, we review literature related to neuroadaptations in NAc MSNs from dopaminergic and glutamatergic pathways in OUD. We also describe new findings related to transcriptional, epigenetic, and molecular mechanisms in MSN plasticity in the different stages of OUD.
Collapse
Affiliation(s)
- Benjamin L Thompson
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06520, USA; Research Service, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA.
| | - Marlene Oscar-Berman
- Research Service, VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA; Department of Anatomy & Neurobiology, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA; Department of Psychiatry, Boston University School of Medicine, 720 Harrison Avenue, Boston, MA, 02118, USA; Department of Neurology, Boston University School of Medicine, Boston University Medical Center, 80 East Concord Street, Boston, MA 02118, USA.
| | - Gary B Kaplan
- Department of Psychiatry, Boston University School of Medicine, 720 Harrison Avenue, Boston, MA, 02118, USA; Mental Health Service, VA Boston Healthcare System, 940 Belmont Street, Brockton, MA, 02301, USA; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA, 02118, USA.
| |
Collapse
|
4
|
Martínez-Rivera FJ, Martínez NA, Martínez M, Ayala-Pagán RN, Silva WI, Barreto-Estrada JL. Neuroplasticity transcript profile of the ventral striatum in the extinction of opioid-induced conditioned place preference. Neurobiol Learn Mem 2019; 163:107031. [PMID: 31173919 PMCID: PMC6689252 DOI: 10.1016/j.nlm.2019.107031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 01/03/2023]
Abstract
Persistent drug-seeking behavior has been associated with deficits in neural circuits that regulate the extinction of addictive behaviors. Although there is extensive data that associates addiction phases with neuroplasticity changes in the reward circuit, little is known about the underlying mechanisms of extinction learning of opioid associated cues. Here, we combined morphine-conditioned place preference (CPP) with real-time polymerase chain reaction (RT-PCR) to identify the effects of extinction training on the expression of genes (mRNAs) associated with synaptic plasticity and opioid receptors in the ventral striatum/nucleus accumbens (VS/NAc). Following morphine extinction training, we identified two animal subgroups showing either extinction (low CPP) or extinction-resistance (high CPP). A third group were conditioned to morphine but did not receive extinction training (sham-extinction; high CPP). RT-PCR results showed that brain derived neurotrophic factor (Bdnf) was upregulated in rats showing successful extinction. Conversely, the lack of extinction training (sham-extinction) upregulated genes associated with kinases (Camk2g), neurotrophins (Ngfr), synaptic connectivity factors (Ephb2), glutamate neurotransmission (Grm8) and opioid receptors (μ1, Δ1). To further identify genes modulated by morphine itself, comparisons with their saline-counterparts were performed. Results revealed that Bdnf was consistently upregulated in the extinction group. Alternatively, widespread gene modulation was observed in the group with lack of extinction training (i.e. Drd2, Cnr1, Creb, μ1, Δ1) and the group showing extinction resistance (i.e. Crem, Rheb, Tnfa). Together, our study builds on the identification of putative genetic markers for the extinction learning of drug-associated cues.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Namyr A Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Magdiel Martínez
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Roxsana N Ayala-Pagán
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA
| | - Walter I Silva
- Department of Physiology and Biophysics, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA; Molecular Sciences Building, University of Puerto Rico, San Juan, PR 00926, USA
| | - Jennifer L Barreto-Estrada
- Department of Anatomy and Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, PR 00936, USA.
| |
Collapse
|
5
|
Khalil-Khalili M, Rashidy-Pour A, Bandegi AR, Yousefi B, Jorjani H, Miladi-Gorji H. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats. Neurosci Lett 2018; 668:7-12. [DOI: 10.1016/j.neulet.2017.12.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 11/25/2022]
|
6
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of the CART peptide expression in morphine sensitization in male rats. Eur J Pharmacol 2017; 802:52-59. [PMID: 28238767 DOI: 10.1016/j.ejphar.2017.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/24/2022]
Abstract
The importance of Cocaine- and amphetamine-regulated transcript (CART) peptide in reinforcing effects of addictive drugs specially alcohol and psychostimulants has been stablished. Involvement of CART peptide in rewarding effects of opioids in brain has recently been reported. Here we have studied the expression of CART mRNA and peptide in the reward pathway in morphine-induced sensitization phenomenon and also evaluated the peptide level fluctuations in CSF and plasma. Male Wistar rats received 7-day morphine injection (20mg/kg) and then after a 7-day washout period, a challenge dose of 10mg/kg morphine was administered and locomotor activity and oral stereotypical behaviors were recorded. Besides, the expression level of CART mRNA and peptide in four important areas of the mesocorticolimbic reward pathway including nucleus accumbens, striatum, prefrontal cortex, and hippocampus were measured by real-time PCR and western blotting, respectively. The level of the peptide in CSF and plasma was measured by Elisa method. The expression level of CART mRNA and protein in brain regions and also the peptide level in CSF and plasma were significantly down-regulated after 7-day morphine administration. These reduced levels returned to nearly normal rates after 7-day wash-out period. Administration of morphine challenge dose led to significant upregulation of CART gene expression (both mRNA and peptide) in the brain, and elevation of peptide level in CSF and plasma in morphine-sensitized rats. It can be concluded that CART is released in the framework of reward pathway and may serve as an important neurotransmitter in the process of morphine dependence and sensitization.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
7
|
Engelke DS, Filev R, Mello LE, Santos-Junior JG. Evidence of memory generalization in contextual locomotor sensitization induced by amphetamine. Behav Brain Res 2017; 317:522-527. [DOI: 10.1016/j.bbr.2016.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
8
|
|
9
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
10
|
Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine. J Neurosci 2012; 31:16279-91. [PMID: 22072679 DOI: 10.1523/jneurosci.3835-11.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glutamatergic systems, including AMPA receptors (AMPARs), are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed 1 week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge 1 week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction.
Collapse
|
11
|
Liang J, Zheng X, Chen J, Li Y, Xing X, Bai Y, Li Y. Roles of BDNF, dopamine D(3) receptors, and their interactions in the expression of morphine-induced context-specific locomotor sensitization. Eur Neuropsychopharmacol 2011; 21:825-34. [PMID: 21277174 DOI: 10.1016/j.euroneuro.2010.12.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 12/03/2010] [Accepted: 12/28/2010] [Indexed: 11/28/2022]
Abstract
Drug seeking, craving, and relapse can be triggered by environmental stimuli that acquire motivational salience through repeated associations with the drug's effects. Previous studies indicated that the dopamine D(3) receptor (Drd3) might be involved in the expression of drug-conditioned responses in rats, and brain-derived neurotrophic factor (BDNF) could modulate Drd3 expression in the nucleus accumbens (NAc). However, the involvement of neural regions with Drd3 activation and the underlying interaction between BDNF and Drd3 in the expression of behavioral responses controlled by a drug-associated environment have remained poorly understood. The present study used a conditioning procedure to assess the roles of BDNF, Drd3, and their interactions in the NAc in the expression of morphine-induced context-specific locomotor sensitization. We showed that the expression of locomotor sensitization in the morphine-paired environment was accompanied by significantly increased expression of Drd3 mRNA and BDNF mRNA and protein levels. Both sensitized locomotion in morphine-paired rats and enhanced Drd3 mRNA were suppressed by intra-NAc infusion of anti-tyrosine kinase receptor B (TrkB) IgG. Furthermore, intra-NAc infusion of the Drd3-selective antagonist SB-277011A significantly decreased the expression of context-specific locomotor sensitization and upregulated BDNF mRNA. Altogether, these results suggest that BDNF/TrkB signaling and activation of Drd3 in the NAc are required for the expression of morphine-induced context-specific locomotor sensitization.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ouyang X, Li P, Zhou S, Wang L, Qiao G, Tian S, Tang C. Rapid eye movement sleep deprivation disrupts context-modulated effects on morphine locomotor sensitization in mice. Neurosci Lett 2011; 504:73-7. [DOI: 10.1016/j.neulet.2011.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/15/2011] [Accepted: 09/02/2011] [Indexed: 11/26/2022]
|