1
|
Caudle RM, Neubert JK. Effects of Oxaliplatin on Facial Sensitivity to Cool Temperatures and TRPM8 Expressing Trigeminal Ganglion Neurons in Mice. FRONTIERS IN PAIN RESEARCH 2022; 3:868547. [PMID: 35634452 PMCID: PMC9130462 DOI: 10.3389/fpain.2022.868547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The chemotherapeutic agent oxaliplatin is commonly used to treat colorectal cancer. Although effective as a chemotherapeutic, it frequently produces painful peripheral neuropathies. These neuropathies can be divided into an acute sensitivity to cool temperatures in the mouth and face, and chronic neuropathic pain in the limbs and possible numbness. The chronic neuropathy also includes sensitivity to cool temperatures. Neurons that detect cool temperatures are reported to utilize Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Therefore, we investigated the effects of oxaliplatin on facial nociception to cool temperatures (18°C) in mice and on TRPM8 expressing trigeminal ganglion (TRG) neurons. Paclitaxel, a chemotherapeutic that is used to treat breast cancer, was included for comparison because it produces neuropathies, but acute cool temperature sensitivity in the oral cavity or face is not typically reported. Behavioral testing of facial sensitivity to 18°C indicated no hypersensitivity either acutely or chronically following either chemotherapeutic agent. However, whole cell voltage clamp experiments in TRPM8 expressing TRG neurons indicated that both oxaliplatin and paclitaxel increased Hyperpolarization-Activated Cyclic Nucleotide-Gated channel (HCN), voltage gated sodium channel (Nav), and menthol evoked TRPM8 currents. Voltage gated potassium channel (Kv) currents were not altered. Histological examination of TRPM8 fibers in the skin of the whisker pads demonstrated that the TRPM8 expressing axons and possible Merkel cell-neurite complexes were damaged by oxaliplatin. These findings indicate that oxaliplatin induces a rapid degeneration of TRG neuron axons that express TRPM8, which prevents evoked activation of the sensitized neurons and likely leads to reduced sensitivity to touch and cool temperatures. The changes in HCN, Nav, and TRPM8 currents suggest that spontaneous firing of action potentials may be increased in the deafferented neurons within the ganglion, possibly producing spontaneously induced cooling or nociceptive sensations.
Collapse
Affiliation(s)
- Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida, Gainesville, FL, United States
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Kubis HP, Albelwi TA, Rogers RD. Carrots for the donkey: Influence of evaluative conditioning and training on self-paced exercise intensity and delay discounting of exercise in healthy adults. PLoS One 2021; 16:e0257953. [PMID: 34613992 PMCID: PMC8494336 DOI: 10.1371/journal.pone.0257953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/18/2022] Open
Abstract
To choose exercise over alternative behaviours, subjective reward evaluation of the potential choices is a principal step in decision making. However, the selection of exercise intensity might integrate acute visceral responses (i.e. pleasant or unpleasant feelings) and motives related to goals (i.e. enjoyment, competition, health). To understand the factors determining the selection of exercise in its intensity and evaluation as a modality, we conducted a study combining exercise training and evaluative conditioning. Evaluative conditioning was performed by using a novel technique using a primary reinforcer (sweetness) as the unconditioned stimulus and physical strain i.e. heart rate elevation as the conditioned stimulus during interval training, using a randomized control design (N = 58). Pre, post-three weeks interval training w/o conditioning, and after 4 weeks follow-up, participants were tested on self-paced speed selection on treadmill measuring heart rate, subjective pleasantness, and effort levels, as well as delay-discounting of exercise and food rewards. Results revealed that the selection of exercise intensity was significantly increased by adaptation to training and evaluative conditioning, revealing the importance of visceral factors as well as learned expected rewards. Delay discounting rates of self-paced exercise were transiently reduced by training but not affected by evaluative conditioning. In conclusion, exercise decisions are suggested to separate the decision-making process into a modality-specific cognitive evaluation of exercise, and an exercise intensity selection based on acute visceral experience integrating effort, pleasantness, and learned rewards.
Collapse
Affiliation(s)
- Hans-Peter Kubis
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, Wales, United Kingdom
- * E-mail:
| | - Tamam A. Albelwi
- School of Sport, Health and Exercise Sciences, Bangor University, Bangor, Wales, United Kingdom
- Ministry of Health Saudi Arabia, Arar, Northern Border Zone, Saudi Arabia
| | - Robert D. Rogers
- School of Psychology, Bangor University, Bangor, Wales, United Kingdom
| |
Collapse
|
3
|
Yates JR, Bardo MT, Beckmann JS. Environmental enrichment and drug value: a behavioral economic analysis in male rats. Addict Biol 2019; 24:65-75. [PMID: 29178664 DOI: 10.1111/adb.12581] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023]
Abstract
Rats raised in an enriched condition (EC) show decreased stimulant self-administration relative to rats reared in an isolated condition (IC). However, few studies have examined the behavioral mechanisms underlying this environment-induced difference in self-administration. Because economic demand for drugs of abuse predicts addiction-like behavior in both humans and animals, we applied a behavioral economic analysis to cocaine self-administration data in EC and IC rats. During cocaine self-administration, the dose decreased across blocks of trials (0.75-0.003 mg/kg/inf), which allowed for a determination of demand intensity and demand elasticity. Demand intensity did not differ between EC and IC rats; however, cocaine was more elastic in EC rats relative to IC rats (i.e. EC rats were less willing to respond for cocaine as the unit price increased). When EC rats were placed in an isolated condition, demand elasticity decreased, whereas elasticity increased for IC rats placed in an enriched condition. Additionally, we applied behavioral economic analyses to previously published self-administration data and found that our results replicate past findings with cocaine and methylphenidate. To determine if differences in demand elasticity are specific to drug reinforcement, a separate group of rats was tested in sucrose or saccharin self-administration. Results showed that sucrose and saccharin were more elastic in EC rats relative to IC rats, and demand intensity was lower for saccharin in EC rats relative to IC rats. Overall, drug and nondrug reinforcers are more elastic in EC rats, which may account for the protective effects of environmental enrichment against stimulant self-administration.
Collapse
Affiliation(s)
- Justin R. Yates
- Department of Psychological Science; Northern Kentucky University; Highland Heights KY USA
- Department of Psychology; University of Kentucky; Lexington KY USA
| | - Michael T. Bardo
- Department of Psychology; University of Kentucky; Lexington KY USA
- Center for Drug Abuse Research Translation; University of Kentucky; Lexington KY USA
| | | |
Collapse
|
4
|
Placebo Analgesia in Rodents: Current and Future Research. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 138:1-15. [PMID: 29681320 DOI: 10.1016/bs.irn.2018.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The investigation of placebo effects in animal pain models has received less attention than human research. This may be related to a number of difficulties, including the fact that animals lack the ability to use language and establish expectancies verbally, that animals cannot report and rate the extent to which they experience pain, and the inadequacy of current models of pain. Here, we describe the relatively small number of studies that have been published, communicating the opportunities and excitement of this research. We critically discuss pitfalls and limitations with the hope that this will advance future animal placebo-related research.
Collapse
|
5
|
Sex differences in mouse Transient Receptor Potential Cation Channel, Subfamily M, Member 8 expressing trigeminal ganglion neurons. PLoS One 2017; 12:e0176753. [PMID: 28472061 PMCID: PMC5417611 DOI: 10.1371/journal.pone.0176753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2016] [Accepted: 04/17/2017] [Indexed: 01/04/2023] Open
Abstract
The detection of cool temperatures is thought to be mediated by primary afferent neurons that express the cool temperature sensing protein Transient Receptor Potential Cation Channel, Subfamily M, Member 8 (TRPM8). Using mice, this study tested the hypothesis that sex differences in sensitivity to cool temperatures were mediated by differences in neurons that express TRPM8. Ion currents from TRPM8 expressing trigeminal ganglion (TRG) neurons in females demonstrated larger hyperpolarization-activated cyclic nucleotide-gated currents (Ih) than male neurons at both 30° and 18°C. Additionally, female neurons' voltage gated potassium currents (Ik) were suppressed by cooling, whereas male Ik was not significantly affected. At the holding potential tested (-60mV) TRPM8 currents were not visibly activated in either sex by cooling. Modeling the effect of Ih and Ik on membrane potentials demonstrated that at 30° the membrane potential in both sexes is unstable. At 18°, female TRPM8 TRG neurons develop a large oscillating pattern in their membrane potential, whereas male neurons become highly stable. These findings suggest that the differences in Ih and Ik in the TRPM8 TRG neurons of male and female mice likely leads to greater sensitivity of female mice to the cool temperature. This hypothesis was confirmed in an operant reward/conflict assay. Female mice contacted an 18°C surface for approximately half the time that males contacted the cool surface. At 33° and 10°C male and female mice contacted the stimulus for similar amounts of time. These data suggest that sex differences in the functioning of Ih and Ik in TRPM8 expressing primary afferent neurons leads to differences in cool temperature sensitivity.
Collapse
|
6
|
Taylor BF, Ramirez HE, Battles AH, Andrutis KA, Neubert JK. Analgesic Activity of Tramadol and Buprenorphine after Voluntary Ingestion by Rats (Rattus norvegicus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2016; 55:74-82. [PMID: 26817983 PMCID: PMC4747014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 03/11/2015] [Revised: 04/09/2015] [Accepted: 05/18/2015] [Indexed: 06/05/2023]
Abstract
Effective pain management for rats and mice is crucial due to the continuing increase in the use of these species in biomedical research. Here we used a recently validated operant orofacial pain assay to determine dose-response curves for buprenorphine and tramadol when mixed in nut paste and administered to male and female rats. Statistically significant analgesic doses of tramadol in nut paste included doses of 20, 30, and 40 mg/kg for female rats but only 40 mg/kg for male rats. For male rats receiving buprenorphine mixed in nut paste, a significant analgesic response was observed at 0.5 and 0.6 mg/kg. None of the doses tested produced a significant analgesic response in female rats. Our results indicate that at the doses tested, tramadol and buprenorphine produced an analgesic response in male rats. In female rats, tramadol shows a higher analgesic effect than buprenorphine. The analgesic effects observed 60 min after administration of the statistically significant oral doses of both drugs were similar to the analgesic effects of 0.03 mg/kg subcutaneous buprenorphine 30 min after administration. The method of voluntary ingestion could be effective, is easy to use, and would minimize stress to the rats during the immediate postoperative period.
Collapse
Affiliation(s)
- Bryan F Taylor
- Animal Care Services, University of Florida, Gainesville, Florida
| | - Harvey E Ramirez
- Animal Care Services, University of Florida, Gainesville, Florida;,
| | - August H Battles
- Animal Care Services, University of Florida, Gainesville, Florida
| | - Karl A Andrutis
- Animal Care Services, University of Florida, Gainesville, Florida
| | - John K Neubert
- Department of Orthodontics, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Anderson EM, Reeves T, Kapernaros K, Neubert JK, Caudle RM. Phosphorylation of the N-methyl-d-aspartate receptor is increased in the nucleus accumbens during both acute and extended morphine withdrawal. J Pharmacol Exp Ther 2015; 355:496-505. [PMID: 26377910 DOI: 10.1124/jpet.115.227629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022] Open
Abstract
Opioid withdrawal causes a dysphoric state that can lead to complications in pain patients and can propagate use in drug abusers and addicts. Opioid withdrawal changes the activity of neurons in the nucleus accumbens, an area rich in both opioid-binding mu opioid receptors and glutamate-binding NMDA receptors. Because the accumbens is an area important for reward and aversion, plastic changes in this area during withdrawal could alter future behaviors in animals. We discovered an increase in phosphorylation of serine 897 in the NR1 subunit of the NMDA receptor (pNR1) during acute morphine withdrawal. This serine can be phosphorylated by protein kinase A (PKA) and dephosphorylated by calcineurin. We next demonstrated that this increased pNR1 change is associated with an increase in NR1 surface expression. NR1 surface expression and pNR1 levels during acute withdrawal were both reduced by the NMDA receptor antagonist MK-801 (dizocilpine hydrogen maleate) and the PKA inhibitor H-89(N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride hydrate). We also found that pNR1 levels remained high after an extended morphine withdrawal period of 2 months, correlated with reward-seeking behavior for palatable food, and were associated with a decrease in accumbal calcineurin levels. These data suggest that NR1 phosphorylation changes during the acute withdrawal phase can be long lasting and may reflect a permanent change in NMDA receptors in the accumbens. These altered NMDA receptors in the accumbens could play a role in long-lasting behaviors associated with reward and opioid use.
Collapse
Affiliation(s)
- Ethan M Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - Turi Reeves
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - Katherine Kapernaros
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - John K Neubert
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| | - Robert M Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida (E.M.A., R.M.C.); Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida (E.M.A., R.M.C.); University of Florida, Gainesville, Florida (T.R., K.K.); and UF College of Dentistry, Department of Orthodontics, Gainesville, Florida (J.K.N.)
| |
Collapse
|
8
|
Kangas BD, Bergman J. Operant nociception in nonhuman primates. Pain 2014; 155:1821-1828. [PMID: 24968803 PMCID: PMC4157960 DOI: 10.1016/j.pain.2014.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2014] [Revised: 06/10/2014] [Accepted: 06/16/2014] [Indexed: 01/05/2023]
Abstract
The effective management of pain is a longstanding public health concern. Morphine-like opioids have long been front-line analgesics, but produce undesirable side effects that can limit their application. Slow progress in the introduction of novel improved medications for pain management over the last 5 decades has prompted a call for innovative translational research, including new preclinical assays. Most current in vivo procedures (eg, tail flick, hot plate, warm water tail withdrawal) assay the effects of nociceptive stimuli on simple spinal reflexes or unconditioned behavioral reactions. However, clinical treatment goals may include the restoration of previous behavioral activities, which can be limited by medication-related side effects that are not measured in such procedures. The present studies describe an apparatus and procedure to study the disruptive effects of nociceptive stimuli on voluntary behavior in nonhuman primates, and the ability of drugs to restore such behavior through their analgesic actions. Squirrel monkeys were trained to pull a cylindrical thermode for access to a highly palatable food. Next, sessions were conducted in which the temperature of the thermode was increased stepwise until responding stopped, permitting the determination of stable nociceptive thresholds. Tests revealed that several opioid analgesics, but not d-amphetamine or Δ(9)-THC, produced dose-related increases in threshold that were antagonist sensitive and efficacy dependent, consistent with their effects using traditional measures of antinociception. Unlike traditional reflex-based measures, however, the results also permitted the concurrent evaluation of response disruption, providing an index with which to characterize the behavioral selectivity of antinociceptive drugs.
Collapse
Affiliation(s)
- Brian D Kangas
- Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | | |
Collapse
|
9
|
Anderson EM, Jenkins AC, Caudle RM, Neubert JK. The effects of a co-application of menthol and capsaicin on nociceptive behaviors of the rat on the operant orofacial pain assessment device. PLoS One 2014; 9:e89137. [PMID: 24558480 PMCID: PMC3928399 DOI: 10.1371/journal.pone.0089137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2013] [Accepted: 01/20/2014] [Indexed: 01/04/2023] Open
Abstract
Background Transient receptor potential (TRP) cation channels are involved in the perception of hot and cold pain and are targets for pain relief in humans. We hypothesized that agonists of TRPV1 and TRPM8/TRPA1, capsaicin and menthol, would alter nociceptive behaviors in the rat, but their opposite effects on temperature detection would attenuate one another if combined. Methods Rats were tested on the Orofacial Pain Assessment Device (OPAD, Stoelting Co.) at three temperatures within a 17 min behavioral session (33°C, 21°C, 45°C). Results The lick/face ratio (L/F: reward licking events divided by the number of stimulus contacts. Each time there is a licking event a contact is being made.) is a measure of nociception on the OPAD and this was equally reduced at 45°C and 21°C suggesting they are both nociceptive and/or aversive to rats. However, rats consumed (licks) equal amounts at 33°C and 21°C but less at 45°C suggesting that heat is more nociceptive than cold at these temperatures in the orofacial pain model. When menthol and capsaicin were applied alone they both induced nociceptive behaviors like lower L/F ratios and licks. When applied together though, the licks at 21°C were equal to those at 33°C and both were significantly higher than at 45°C. Conclusions This suggests that the cool temperature is less nociceptive when TRPM8/TRPA1 and TRPV1 are co-activated. These results suggest that co-activation of TRP channels can reduce certain nociceptive behaviors. These data demonstrate that the motivational aspects of nociception can be influenced selectively by TRP channel modulation and that certain aspects of pain can be dissociated and therefore targeted selectively in the clinic.
Collapse
Affiliation(s)
- Ethan M. Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
- * E-mail:
| | - Alan C. Jenkins
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| | - Robert M. Caudle
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, Gainesville, Florida, United States of America
- Department of Neuroscience, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, Florida, United States of America
| | - John K. Neubert
- Department of Orthodontics, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
10
|
Murphy NP, Mills RH, Caudle RM, Neubert JK. Operant assays for assessing pain in preclinical rodent models: highlights from an orofacial assay. Curr Top Behav Neurosci 2014; 20:121-45. [PMID: 25103871 DOI: 10.1007/7854_2014_332] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022]
Abstract
Despite an immense investment of resources, pain remains at epidemic proportions. Given this, there has been an increased effort toward appraising the process by which new painkillers are developed, focusing specifically on why so few analgesics make it from the benchside to the bedside. The use of behavioral assays and animal modeling for the preclinical stages of analgesic development is being reexamined to determine whether they are truly relevant, meaningful, and predictive. Consequently, there is a strengthening consensus that the traditional reflex-based assays upon which several decades of preclinical pain research has been based are inadequate. Thus, investigators have recently turned to the development of new preclinical assays with improved face, content, and predictive validity. In this regard, operant pain assays show considerable promise, as they are more sensitive, present better validity, and, importantly, better encompass the psychological and affective dimensions of pain that trouble human pain sufferers. Here, we briefly compare and contrast reflex assays with operant assays, and we introduce a particular operant orofacial pain assay used in a variety of experiments to emphasize how operant pain assays can be applied to preclinical studies of pain.
Collapse
Affiliation(s)
- Niall P Murphy
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA,
| | | | | | | |
Collapse
|
11
|
Prochazkova M, Terse A, Amin ND, Hall B, Utreras E, Pant HC, Kulkarni AB. Activation of cyclin-dependent kinase 5 mediates orofacial mechanical hyperalgesia. Mol Pain 2013; 9:66. [PMID: 24359609 PMCID: PMC3882292 DOI: 10.1186/1744-8069-9-66] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2013] [Accepted: 12/17/2013] [Indexed: 11/23/2022] Open
Abstract
Background Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling. Our previous studies revealed that the expression of Cdk5 and its activator, p35, is upregulated in nociceptive neurons during peripheral inflammation. The aim of the present study was to characterize the involvement of Cdk5 in orofacial pain. Since mechanical hyperalgesia is the distinctive sign of many orofacial pain conditions, we adapted an existing orofacial stimulation test to assess the behavioral responses to mechanical stimulation in the trigeminal region of the transgenic mice with either reduced or increased Cdk5 activity. Results Mice overexpressing or lacking p35, an activator of Cdk5, showed altered phenotype in response to noxious mechanical stimulation in the trigeminal area. Mice with increased Cdk5 activity displayed aversive behavior to mechanical stimulation as indicated by a significant decrease in reward licking events and licking time. The number of reward licking/facial contact events was significantly decreased in these mice as the mechanical intensity increased. By contrast, mice deficient in Cdk5 activity displayed mechanical hypoalgesia. Conclusions Collectively, our findings demonstrate for the first time the important role of Cdk5 in orofacial mechanical nociception. Modulation of Cdk5 activity in primary sensory neurons makes it an attractive potential target for the development of novel analgesics that could be used to treat multiple orofacial pain conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashok B Kulkarni
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Anderson EM, Mills R, Nolan TA, Jenkins AC, Mustafa G, Lloyd C, Caudle RM, Neubert JK. Use of the Operant Orofacial Pain Assessment Device (OPAD) to measure changes in nociceptive behavior. J Vis Exp 2013:e50336. [PMID: 23792907 DOI: 10.3791/50336] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023] Open
Abstract
We present an operant system for the detection of pain in awake, conscious rodents. The Orofacial Pain Assessment Device (OPAD) assesses pain behaviors in a more clinically relevant way by not relying on reflex-based measures of nociception. Food fasted, hairless (or shaved) rodents are placed into a Plexiglas chamber which has two Peltier-based thermodes that can be programmed to any temperature between 7 °C and 60 °C. The rodent is trained to make contact with these in order to access a reward bottle. During a session, a number of behavioral pain outcomes are automatically recorded and saved. These measures include the number of reward bottle activations (licks) and facial contact stimuli (face contacts), but custom measures like the lick/face ratio (total number of licks per session/total number of contacts) can also be created. The stimulus temperature can be set to a single temperature or multiple temperatures within a session. The OPAD is a high-throughput, easy to use operant assay which will lead to better translation of pain research in the future as it includes cortical input instead of relying on spinal reflex-based nociceptive assays.
Collapse
Affiliation(s)
- Ethan M Anderson
- Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rossi HL, Luu AKS, Kothari SD, Kuburas A, Neubert JK, Caudle RM, Recober A. Effects of diet-induced obesity on motivation and pain behavior in an operant assay. Neuroscience 2013; 235:87-95. [PMID: 23333672 DOI: 10.1016/j.neuroscience.2013.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2012] [Revised: 12/28/2012] [Accepted: 01/03/2013] [Indexed: 12/19/2022]
Abstract
Obesity has been associated with multiple chronic pain disorders, including migraine. We hypothesized that diet-induced obesity would be associated with a reduced threshold for thermal nociception in the trigeminal system. In this study, we sought to examine the effect of diet-induced obesity on facial pain behavior. Mice of two different strains were fed high-fat or regular diet (RD) and tested using a well-established operant facial pain assay. We found that the effects of diet on behavior in this assay were strain and reward dependent. Obesity-prone C57BL/6J mice fed a high-fat diet (HFD) display lower number of licks of a caloric, palatable reward (33% sweetened condensed milk or 30% sucrose) than control mice. This occurred at all temperatures, in both sexes, and was evident even before the onset of obesity. This diminished reward-seeking behavior was not observed in obesity-resistant SKH1-E (SK) mice. These findings suggest that diet and strain interact to modulate reward-seeking behavior. Furthermore, we observed a difference between diet groups in operant behavior with caloric, palatable rewards, but not with a non-caloric neutral reward (water). Importantly, we found no effect of diet-induced obesity on acute thermal nociception in the absence of inflammation or injury. This indicates that thermal sensation in the face is not affected by obesity-associated peripheral neuropathy as it occurs when studying pain behaviors in the rodent hindpaw. Future studies using this model may reveal whether obesity facilitates the development of chronic pain after injury or inflammation.
Collapse
Affiliation(s)
- H L Rossi
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Nolan TA, Price DD, Caudle RM, Murphy NP, Neubert JK. Placebo-induced analgesia in an operant pain model in rats. Pain 2012; 153:2009-2016. [PMID: 22871471 DOI: 10.1016/j.pain.2012.04.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2012] [Revised: 03/28/2012] [Accepted: 04/24/2012] [Indexed: 12/19/2022]
Abstract
Analgesia is particularly susceptible to placebo responses. Recent studies in humans have provided important insights into the neurobiology underlying placebo-induced analgesia. However, human studies provide incomplete mechanistic explanations of placebo analgesia because of limited capacity to use cellular, molecular, and genetic manipulations. To address this shortcoming, this article describes the development of a rat model of conditioned analgesia in an operant pain assay. Specifically, rats were conditioned to associate a placebo manipulation with the analgesic effect of 1mg/kg morphine (subcutaneously) on facial thermal pain. We found that conditioned (placebo) responding bore 3 of the hallmarks of placebo-induced analgesia: (1) strong interanimal variability in the response, (2) suppression by the opiate antagonist naloxone (5mg/kg subcutaneously), and (3) a positive predictive relationship between the unconditioned analgesic effect and the conditioned (placebo) effect. Because of the operant nature of the assay and the use of only a mild noxious thermal stimulus, we suggest that these results provide evidence of placebo-induced analgesia in a preclinical model that utilizes an affective behavioral end point. This finding may provide opportunities for invasive preclinical studies allowing greater understanding of placebo-induced analgesia, thus paving the way for avenues to harness its benefits.
Collapse
Affiliation(s)
- Todd A Nolan
- College of Dentistry, Department of Orthodontics, University of Florida, Gainesville, FL, USA Department of Oral Surgery, University of Florida, Gainesville, FL, USA Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|