1
|
Brown RE. Measuring the replicability of our own research. J Neurosci Methods 2024; 406:110111. [PMID: 38521128 DOI: 10.1016/j.jneumeth.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In the study of transgenic mouse models of neurodevelopmental and neurodegenerative disorders, we use batteries of tests to measure deficits in behaviour and from the results of these tests, we make inferences about the mental states of the mice that we interpret as deficits in "learning", "memory", "anxiety", "depression", etc. This paper discusses the problems of determining whether a particular transgenic mouse is a valid mouse model of disease X, the problem of background strains, and the question of whether our behavioural tests are measuring what we say they are. The problem of the reliability of results is then discussed: are they replicable between labs and can we replicate our results in our own lab? This involves the study of intra- and inter- experimenter reliability. The variables that influence replicability and the importance of conducting a complete behavioural phenotype: sensory, motor, cognitive and social emotional behaviour are discussed. Then the thorny question of failure to replicate is examined: Is it a curse or a blessing? Finally, the role of failure in research and what it tells us about our research paradigms is examined.
Collapse
Affiliation(s)
- Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
2
|
Le Dréan ME, Le Berre-Scoul C, Paillé V, Caillaud M, Oullier T, Gonzales J, Hulin P, Neunlist M, Talon S, Boudin H. The regulation of enteric neuron connectivity by semaphorin 5A is affected by the autism-associated S956G missense mutation. iScience 2024; 27:109638. [PMID: 38650986 PMCID: PMC11033180 DOI: 10.1016/j.isci.2024.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The neural network of the enteric nervous system (ENS) underlies gastrointestinal functions. However, the molecular mechanisms involved in enteric neuronal connectivity are poorly characterized. Here, we studied the role of semaphorin 5A (Sema5A), previously characterized in the central nervous system, on ENS neuronal connectivity. Sema5A is linked to autism spectrum disorder (ASD), a neurodevelopmental disorder frequently associated with gastrointestinal comorbidities, and potentially associated with ENS impairments. This study investigated in rat enteric neuron cultures and gut explants the role of Sema5A on enteric neuron connectivity and the impact of ASD-associated mutations on Sema5A activity. Our findings demonstrated that Sema5A promoted axonal complexity and reduced functional connectivity in enteric neurons. Strikingly, the ASD-associated mutation S956G in Sema5A strongly affected these activities. This study identifies a critical role of Sema5A in the ENS as a regulator of neuronal connectivity that might be compromised in ASD.
Collapse
Affiliation(s)
- Morgane E. Le Dréan
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Catherine Le Berre-Scoul
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Vincent Paillé
- Nantes Université, INRAE, UMR 1280, PhAN, IMAD, 44000 Nantes, France
| | - Martial Caillaud
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Thibauld Oullier
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Jacques Gonzales
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Philippe Hulin
- Plateforme MicroPICell Nantes Université, CHU Nantes, CNRS, INSERM, BioCore, US16, SFR Bonamy, Nantes, France
| | - Michel Neunlist
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Sophie Talon
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| | - Hélène Boudin
- Nantes Université, Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes, France
| |
Collapse
|
3
|
Okabe M, Sato T, Takahashi M, Honjo A, Okawa M, Ishida M, Kukimoto-Niino M, Shirouzu M, Miyamoto Y, Yamauchi J. Autism Spectrum Disorder- and/or Intellectual Disability-Associated Semaphorin-5A Exploits the Mechanism by Which Dock5 Signalosome Molecules Control Cell Shape. Curr Issues Mol Biol 2024; 46:3092-3107. [PMID: 38666924 PMCID: PMC11049140 DOI: 10.3390/cimb46040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. Individuals with ASD may exhibit difficulties in social interactions, communication challenges, repetitive behaviors, and restricted interests. While genetic mutations in individuals with ASD can either activate or inactivate the activities of the gene product, impacting neuronal morphogenesis and causing symptoms, the underlying mechanism remains to be fully established. Herein, for the first time, we report that genetically conserved Rac1 guanine-nucleotide exchange factor (GEF) Dock5 signalosome molecules control process elongation in the N1E-115 cell line, a model line capable of achieving neuronal morphological changes. The increased elongation phenotypes observed in ASD and intellectual disability (ID)-associated Semaphorin-5A (Sema5A) Arg676-to-Cys [p.R676C] were also mediated by Dock5 signalosome molecules. Indeed, knockdown of Dock5 using clustered regularly interspaced short palindromic repeat (CRISPR)/CasRx-based guide(g)RNA specifically recovered the mutated Sema5A-induced increase in process elongation in cells. Knockdown of Elmo2, an adaptor molecule of Dock5, also exhibited similar recovery. Comparable results were obtained when transfecting the interaction region of Dock5 with Elmo2. The activation of c-Jun N-terminal kinase (JNK), one of the primary signal transduction molecules underlying process elongation, was ameliorated by either their knockdown or transfection. These results suggest that the Dock5 signalosome comprises abnormal signaling involved in the process elongation induced by ASD- and ID-associated Sema5A. These molecules could be added to the list of potential therapeutic target molecules for abnormal neuronal morphogenesis in ASD at the molecular and cellular levels.
Collapse
Affiliation(s)
- Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Takanari Sato
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Asahi Honjo
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Miki Ishida
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan; (M.O.); (Y.M.)
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan; (M.K.-N.); (M.S.)
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
4
|
Altaisaikhan A, Yoshihara K, Hata T, Miyata N, Asano Y, Suematsu T, Kadota Y, Sudo N. Dietary supplementation with 1-kestose induces altered locomotor activity and increased striatal dopamine levels with a change in gut microbiota in male mice. Physiol Rep 2023; 11:e15882. [PMID: 38054526 PMCID: PMC10698829 DOI: 10.14814/phy2.15882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
1-Kestose (KES), a dietary fiber and prebiotic carbohydrate, benefits various physiological functions. This study aimed to examine whether diets supplemented with KES over three consecutive generations could significantly affect some host physiological aspects, including behavioral phenotypes and gut microbial ecology. Mice that received KES-supplemented diets for three generations demonstrated increased activity compared with those fed diets lacking KES. Furthermore, the KES group showed increased striatal dopamine (DA) and serotonin (5-HT) levels. The observed increase in DA levels within the striatum was positively correlated with locomotor activity in the KES group but not in the control (CON) group. The α-diversities were significantly lower in the KES group compared to the CON group. The three-dimensional principal coordinate analysis revealed a substantial distinction between the KES and CON groups across each generation. At the genus level, most gut microbiota genera exhibited lower abundances in the KES group than in the CON group, except for Bifidobacteria and Akkermansia. Spearman's rank-order analysis indicated significant negative correlations between the striatal DA levels and α-diversity values. These findings suggest that prolonged supplementation with KES may stimulate increased locomotor activity along with elevated striatal DA levels, which are potentially associated with KES-induced alterations in the gut microbiota.
Collapse
Affiliation(s)
- Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takafumi Suematsu
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshihiro Kadota
- Research and Development Center, B Food Science Co., Ltd.ChitaJapan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
5
|
Okabe M, Miyamoto Y, Ikoma Y, Takahashi M, Shirai R, Kukimoto-Niino M, Shirouzu M, Yamauchi J. RhoG-Binding Domain of Elmo1 Ameliorates Excessive Process Elongation Induced by Autism Spectrum Disorder-Associated Sema5A. PATHOPHYSIOLOGY 2023; 30:548-566. [PMID: 38133141 PMCID: PMC10745971 DOI: 10.3390/pathophysiology30040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. ASD is characterized by poor interpersonal relationships and strong attachment. The correlations between activated or inactivated gene products, which occur as a result of genetic mutations affecting neurons in ASD patients, and ASD symptoms are now of critical concern. Here, for the first time, we describe the process in which that the respective ASD-associated mutations (Arg676-to-Cys [R676C] and Ser951-to-Cys [S951C]) of semaphorin-5A (Sema5A) localize Sema5A proteins themselves around the plasma membrane in the N1E-115 cell line, a model line that can achieve neuronal morphological differentiation. The expression of each mutated construct resulted in the promotion of excessive elongation of neurite-like processes with increased differentiation protein markers; R676C was more effective than S951C. The differentiated phenotypes were very partially neutralized by an antibody, against Plexin-B3 as the specific Sema5A receptor, suggesting that the effects of Sema5A act in an autocrine manner. R676C greatly increased the activation of c-Jun N-terminal kinase (JNK), one of the signaling molecules underlying process elongation. In contrast, the blocking of JNK signaling, by a chemical JNK inhibitor or an inhibitory construct of the interaction of RhoG with Elmo1 as JNK upstream signaling molecules, recovered the excessive process elongation. These results suggest that ASD-associated mutations of Sema5A, acting through the JNK signaling cascade, lead to excessive differentiated phenotypes, and the inhibition of JNK signaling recovers them, revealing possible therapeutic targets for recovering the potential molecular and cellular phenotypes underlying certain ASD symptoms.
Collapse
Affiliation(s)
- Miyu Okabe
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Yuta Ikoma
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Mikito Takahashi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Remina Shirai
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan (M.S.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, Center for Biosystems Dynamics Research, RIKEN, Yokohama 230-0045, Japan (M.S.)
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.); (R.S.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science,Tokyo 156-8506, Japan
| |
Collapse
|
6
|
Fertan E, Wong AA, Montbrun TSGD, Purdon MK, Roddick KM, Yamamoto T, Brown RE. Early postnatal development of the MDGA2 +/- mouse model of synaptic dysfunction. Behav Brain Res 2023; 452:114590. [PMID: 37499910 DOI: 10.1016/j.bbr.2023.114590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Synaptic dysfunction underlies many neurodevelopmental disorders (NDDs). The membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) regulate synaptic development by modulating neurexin-neuroligin complex formation. Since understanding the neurodevelopmental profile and the sex-based differences in the manifestation of the symptoms of NDDs is important for their early diagnosis, we tested a mouse model haploinsufficient for MDGA2 (MDGA2+/-) on a neurodevelopmental test battery, containing sensory, motor, and cognitive measures, as well as ultrasonic vocalizations. When male and female MDGA2+/- and wildtype (WT) C57BL/6 J mice were examined from 2 to 23 days of age using this test battery, genotype and sex differences in body weight, sensory-motor processes, and ultrasonic vocalizations were observed. The auditory startle reflex appeared earlier in the MDGA2+/- than in WT mice and the MDGA2+/- mice produced fewer ultrasonic vocalizations. The MDGA2+/- mice showed reduced locomotion and rearing than WT mice in the open field after 17 days of age and spent less time investigating a novel object than WT mice at 21 days of age. Female MDGA2+/- mice weighed less than WT females and showed lower grip strength, indicating a delay in sensory-motor development in MDGA2+/- mice, which appears to be more pronounced in females than males. The behavioural phenotypes resulting from MDGA2 haploinsufficiency suggests that it shows delayed development of motor behaviour, grip strength and exploratory behaviour, non-social phenotypes of NDDs.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
7
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
8
|
Zhang X, Yoshihara K, Miyata N, Hata T, Altaisaikhan A, Takakura S, Asano Y, Izuno S, Sudo N. Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice. Physiol Behav 2022; 244:113653. [PMID: 34800493 DOI: 10.1016/j.physbeh.2021.113653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Important precursors of monoaminergic neurotransmitters, dietary tryptophan (TRP), tyrosine, and phenylalanine (all referred to as TTP), play crucial roles in a wide range of behavioral and emotional functions. In the current study, we investigated whether diets devoid of TTP or diets deficient in TRP alone can affect body weight, behavioral characteristics, and gut microbiota, by comparing mice fed on these amino acids-depleted diets to mice fed on diets containing regular levels of amino acids. Both dietary TTP- and TRP-deprived animals showed a reduction in food intake and body weight. In behavioral analyses, the mice fed TTP-deprived diets were more active than mice fed diets containing regular levels of amino acids. The TRP-deprived group exhibited a reduction in serum TRP levels, concomitant with a decrease in serotonin and 5-hydroxyindoleacetic acid levels in some regions of the brain. The TTP-deprived group showed a reduction in TTP levels in the serum, concomitant with decreases in both phenylalanine and tyrosine levels in the hippocampus, as well as serotonin, norepinephrine, and dopamine concentrations in some regions of the brain. Regarding the effects of TRP or TTP deprivation on gut microbial ecology, the relative abundance of genus Roseburia was significantly reduced in the TTP-deprived group than in the dietary restriction control group. Interestingly, TTP was found even in the feces of mice fed TTP- and TRP-deficient diets, suggesting that TTP is produced by microbial or enzymatic digestion of the host-derived proteins. However, microbe generated TTP did not compensate for the systemic TTP deficiency induced by the lack of dietary TTP intake. Collectively, these results indicate that chronic dietary TTP deprivation induces decreased monoamines and their metabolites in a brain region-specific manner. The altered activities of the monoaminergic systems may contribute to increased locomotor activity.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Izuno
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
9
|
Eaton M, Zhang J, Ma Z, Park AC, Lietzke E, Romero CM, Liu Y, Coleman ER, Chen X, Xiao T, Que Z, Lai S, Wu J, Lee JH, Palant S, Nguyen HP, Huang Z, Skarnes WC, Koss WA, Yang Y. Generation and basic characterization of a gene-trap knockout mouse model of Scn2a with a substantial reduction of voltage-gated sodium channel Na v 1.2 expression. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12725. [PMID: 33369088 DOI: 10.1111/gbb.12725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Large-scale genetic studies revealed SCN2A as one of the most frequently mutated genes in patients with neurodevelopmental disorders. SCN2A encodes for the voltage-gated sodium channel isoform 1.2 (Nav 1.2) expressed in the neurons of the central nervous system. Homozygous knockout (null) of Scn2a in mice is perinatal lethal, whereas heterozygous knockout of Scn2a (Scn2a+/- ) results in mild behavior abnormalities. The Nav 1.2 expression level in Scn2a+/- mice is reported to be around 50-60% of the wild-type (WT) level, which indicates that a close to 50% reduction of Nav 1.2 expression may not be sufficient to lead to major behavioral phenotypes in mice. To overcome this barrier, we characterized a novel mouse model of severe Scn2a deficiency using a targeted gene-trap knockout (gtKO) strategy. This approach produces viable homozygous mice (Scn2agtKO/gtKO ) that can survive to adulthood, with about a quarter of Nav 1.2 expression compared to WT mice. Innate behaviors like nesting and mating were profoundly disrupted in Scn2agtKO/gtKO mice. Notably, Scn2agtKO/gtKO mice have a significantly decreased center duration compared to WT in the open field test, suggesting anxiety-like behaviors in a novel, open space. These mice also have decreased thermal and cold tolerance. Additionally, Scn2agtKO/gtKO mice have increased fix-pattern exploration in the novel object exploration test and a slight increase in grooming, indicating a detectable level of repetitive behaviors. They bury little to no marbles and have decreased interaction with novel objects. These Scn2a gene-trap knockout mice thus provide a unique model to study pathophysiology associated with severe Scn2a deficiency.
Collapse
Affiliation(s)
- Muriel Eaton
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jingliang Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhixiong Ma
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Anthony C Park
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lietzke
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Chloé M Romero
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Yushuang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Emily R Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Xiaoling Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Tiange Xiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhefu Que
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Shirong Lai
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Jiaxiang Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Ji Hea Lee
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Sophia Palant
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Huynhvi P Nguyen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Zhuo Huang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - William C Skarnes
- Department of Cellular Engineering, The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Wendy A Koss
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
- Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana, USA
| | - Yang Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
10
|
Fertan E, Wong AA, Purdon MK, Weaver ICG, Brown RE. The effect of background strain on the behavioral phenotypes of the MDGA2 +/- mouse model of autism spectrum disorder. GENES BRAIN AND BEHAVIOR 2020; 20:e12696. [PMID: 32808443 DOI: 10.1111/gbb.12696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Abstract
The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/- ) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/- and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/- genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/- genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/- mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.,Brain Repair Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
11
|
Kimura-Todani T, Hata T, Miyata N, Takakura S, Yoshihara K, Zhang XT, Asano Y, Altaisaikhan A, Tsukahara T, Sudo N. Dietary delivery of acetate to the colon using acylated starches as a carrier exerts anxiolytic effects in mice. Physiol Behav 2020; 223:113004. [PMID: 32525009 DOI: 10.1016/j.physbeh.2020.113004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 01/07/2023]
Abstract
Recently, short-chain fatty acids (SCFA) have been shown to play an important role in mediating the gut-brain interaction and thereby participate in the patho-physiological process of stress-related disorders. In the current study, we examined whether SCFA generated in the lower gut affects host metabolic and behavioral characteristics. To determine this, we used special diets containing acylated starches that can reach the colon without being absorbed in the upper gastrointestinal tract of male mice. The delivery of SCFA to the colon using this method induced a substantial increase in acetate, butyrate, and propionate in the cecum. Moreover, the diets containing acylated starches also decreased microbial diversity in the cecum, concomitant with a significant impact on microbial composition. In marble-burying (MB) tests, the mice that consumed diets containing acetylated starches showed a decrease in anxiety-like behavior compared with the mice that consumed diets containing either butyrylated or propionylated starches. Cecal acetate contents were significantly associated with anxiety-like behaviors when evaluated by elevated plus-maze and MB tests. Collectively, these results indicate that gut acetate elevation of a dietary origin may exert anxiolytic effects on behavioral phenotypes of the host.
Collapse
Affiliation(s)
- Tae Kimura-Todani
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xue-Ting Zhang
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
12
|
Kada Sanda A, Nantia AE, Manfo TFP, Toboh RT, Abende RE, Adaibum S, Moundipa PF, Kamtchouing P. Subchronic administration of Parastar insecticide induced behavioral changes and impaired motor coordination in male Wistar rats. Drug Chem Toxicol 2020; 45:426-434. [PMID: 31914824 DOI: 10.1080/01480545.2019.1709491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Parastar is an insecticide formulation of lambda-cyhalothrin and imidacloprid largely used for crop protection in North West Region of Cameroon. In the present study, we evaluated the behavioral activities and motor function of Wistar male rats after subchronic treatment with the pesticide formulation. To this end, three groups of adult rats were administered Parastar at doses 1.25, 2.49 and 6.23 mg/kg, respectively, for 35 days. A control group was included and received distilled water. At the end of the treatment, the animals were submitted to behavioral and functional tests (open field test, elevated plus maze test, light-dark box test, forced swimming test, tail suspension test, beam-walking test, grid suspension test and wire hang test) for estimation of anxiety, exploration, depression and motor coordination. Results revealed that Parastar, at the higher doses tested, 2.49 and 6.23 mg/kg, induced anxiogenic-like pattern behavior in rats in all behavioral assays including open field test (total distance moved, total lines crossed, frequency and total time in center square were all reduced), elevated plus maze (decreased total time spent in open arms and the number of entries in open arms of the elevated plus maze), and light-dark box (the dark box duration increased, while light box duration time and frequency of transition between dark and light box decreased). Treatment with 2.49 and 6.23 mg/kg Parastar increased the immobility time of animals in both forced swimming test and tail suspension test. The insecticide induced decrease in the distance traveled, foot slip and number of turns of animals in the beam walking test. Parastar also decreased the animal suspension time in both grid suspension grip-strength test and the wire hang test. Taken altogether, these results suggest that subchronic administration of Parastar at the doses of 2.49 and 6.23 mg/kg induced anxiety-like and depressive-like behavior as well as impaired motor coordination and muscle strength in male rats.
Collapse
Affiliation(s)
- Antoine Kada Sanda
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Akono Edouard Nantia
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - T F Pascal Manfo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Romi T Toboh
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Roxane Essame Abende
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Sterling Adaibum
- Department of Biochemistry, Faculty of Science, University of Bamenda, Bambili, Cameroon
| | - Paul Fewou Moundipa
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Pierre Kamtchouing
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| |
Collapse
|
13
|
Kosel F, Torres Munoz P, Yang JR, Wong AA, Franklin TB. Age-related changes in social behaviours in the 5xFAD mouse model of Alzheimer's disease. Behav Brain Res 2019; 362:160-172. [PMID: 30659846 DOI: 10.1016/j.bbr.2019.01.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
In addition to memory impairments, patients with Alzheimer's disease (AD) exhibit a number of behavioural and psychological symptoms that can affect social interactions over the course of the disease. While altered social interactions have been demonstrated in a number of mouse models of AD, many models only recapitulate the initial stages of the disease, and these behavioural changes have yet to be examined over the course of disease progression. By performing a longitudinal study using the 5xFAD mouse model, we have demonstrated that transgenic females exhibit progressive alterations in social investigation compared to wild-type controls. Transgenic females exhibited an age-related reduction in interest for social odours, as well as reduced investigative behaviours towards novel conspecifics in a novel environment. However, transgenic mice exhibited no obvious olfactory deficits, nor any changes in scent-marking behaviour compared to wild-type controls, indicating that changes in investigative behaviour were due to motivation to engage with a social stimulus. This evidence suggests that transgenic 5xFAD females exhibit increased social anxiety in novel environments compared to wild-type controls. Overall, transgenic 5xFAD female mice mimic some features of social withdrawal observed in human AD patients suggesting this strain may be suitable for modelling aspects of the social dysfunction observed in human patients.
Collapse
Affiliation(s)
- Filip Kosel
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Paula Torres Munoz
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - J Renee Yang
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Aimee A Wong
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada
| | - Tamara B Franklin
- The Social Lab, Department of Psychology and Neuroscience, Dalhousie University, Halifax, B3H 4R2, Canada.
| |
Collapse
|
14
|
O'Leary TP, Shin S, Fertan E, Dingle RN, Almuklass A, Gunn RK, Yu Z, Wang J, Brown RE. Reduced acoustic startle response and peripheral hearing loss in the 5xFAD mouse model of Alzheimer's disease. GENES BRAIN AND BEHAVIOR 2017; 16:554-563. [DOI: 10.1111/gbb.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/30/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Affiliation(s)
- T. P. O'Leary
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - S. Shin
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - E. Fertan
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - R. N. Dingle
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - A. Almuklass
- Department of Basic Medical Sciences; King Saud Bin Abdulaziz University for Health Science; Riyadh Saudi Arabia
| | - R. K. Gunn
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| | - Z. Yu
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - J. Wang
- Department of School of Human Communication Disorders; Dalhousie University; Halifax Nova Scotia Canada
| | - R. E. Brown
- Department of Psychology & Neuroscience; Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
15
|
Ellenbroek BA, August C, Youn J. Does Prenatal Valproate Interact with a Genetic Reduction in the Serotonin Transporter? A Rat Study on Anxiety and Cognition. Front Neurosci 2016; 10:424. [PMID: 27708559 PMCID: PMC5030776 DOI: 10.3389/fnins.2016.00424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
There is ample evidence that prenatal exposure to valproate (or valproic acid, VPA) enhances the risk of developing Autism Spectrum Disorders (ASD). In line with this, a single injection of VPA induces a multitude of ASD-like symptoms in animals, such as rats and mice. However, there is equally strong evidence that genetic factors contribute significantly to the risk of ASD and indeed, like most other psychiatric disorders, ASD is now generally thought to results from an interaction between genetic and environmental factors. Given that VPA significantly impacts on the serotonergic system, and serotonin has strong biochemical and genetic links to ASD, we aimed to investigate the interaction between genetic reduction in the serotonin transporter and prenatal valproate administration. More specifically, we exposed both wildtype (SERT+/+) rats and rats heterozygous for the serotonin transporter deletion (SERT+/-) to a single injection of 400 mg/kg VPA at gestational day (GD) 12. The offspring, in adulthood, was assessed in four different tests: Elevated Plus Maze and Novelty Suppressed Feeding as measures for anxiety and prepulse inhibition (PPI) and latent inhibition as measures for cognition and information processing. The results show that prenatal VPA significantly increased anxiety in both paradigm, reduced PPI and reduced conditioning in the latent inhibition paradigm. However, we failed to find a significant gene-environment interaction. We propose that this may be related to the timing of the VPA injection and suggest that whereas GD12 might be optimal for affecting normal rat, rats with a genetically compromised serotonergic system may be more sensitive to VPA at earlier time points during gestation. Overall our data are the first to investigate gene * environmental interactions in a genetic rat model for ASD and suggest that timing may be of crucial importance to the long-term outcome.
Collapse
Affiliation(s)
- Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington Wellington, New Zealand
| | - Caren August
- School of Psychology, Victoria University of Wellington Wellington, New Zealand
| | - Jiun Youn
- School of Psychology, Victoria University of Wellington Wellington, New Zealand
| |
Collapse
|
16
|
Chen JA, Peñagarikano O, Belgard TG, Swarup V, Geschwind DH. The emerging picture of autism spectrum disorder: genetics and pathology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:111-44. [PMID: 25621659 DOI: 10.1146/annurev-pathol-012414-040405] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) is defined by impaired social interaction and communication accompanied by stereotyped behaviors and restricted interests. Although ASD is common, its genetic and clinical features are highly heterogeneous. A number of recent breakthroughs have dramatically advanced our understanding of ASD from the standpoint of human genetics and neuropathology. These studies highlight the period of fetal development and the processes of chromatin structure, synaptic function, and neuron-glial signaling. The initial efforts to systematically integrate findings of multiple levels of genomic data and studies of mouse models have yielded new clues regarding ASD pathophysiology. This early work points to an emerging convergence of disease mechanisms in this complex and etiologically heterogeneous disorder.
Collapse
|
17
|
Huang J, Zhong Z, Wang M, Chen X, Tan Y, Zhang S, He W, He X, Huang G, Lu H, Wu P, Che Y, Yan YL, Postlethwait JH, Chen W, Wang H. Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behavior. J Neurosci 2015; 35:2572-87. [PMID: 25673850 PMCID: PMC4323534 DOI: 10.1523/jneurosci.2551-14.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent psychiatric disorders in children and adults. While ADHD patients often display circadian abnormalities, the underlying mechanisms are unclear. Here we found that the zebrafish mutant for the circadian gene period1b (per1b) displays hyperactive, impulsive-like, and attention deficit-like behaviors and low levels of dopamine, reminiscent of human ADHD patients. We found that the circadian clock directly regulates dopamine-related genes monoamine oxidase and dopamine β hydroxylase, and acts via genes important for the development or maintenance of dopaminergic neurons to regulate their number and organization in the ventral diencephalic posterior tuberculum. We then found that Per1 knock-out mice also display ADHD-like symptoms and reduced levels of dopamine, thereby showing highly conserved roles of the circadian clock in ADHD. Our studies demonstrate that disruption of a circadian clock gene elicits ADHD-like syndrome. The circadian model for attention deficiency and hyperactive behavior sheds light on ADHD pathogenesis and opens avenues for exploring novel targets for diagnosis and therapy for this common psychiatric disorder.
Collapse
Affiliation(s)
- Jian Huang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Zhaomin Zhong
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Mingyong Wang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Xifeng Chen
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Yicheng Tan
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Shuqing Zhang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Wei He
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Xiong He
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Guodong Huang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College
| | - Haiping Lu
- Department of Pediatrics and Child Health, Affiliated Children's Hospital, Soochow University, Suzhou 215003, Jiangsu, China
| | - Ping Wu
- School of Biology & Basic Medical Sciences, Medical College
| | - Yi Che
- School of Biology & Basic Medical Sciences, Medical College
| | - Yi-Lin Yan
- Center for Circadian Clocks, Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, and
| | | | - Wenbiao Chen
- Center for Circadian Clocks, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Han Wang
- Center for Circadian Clocks, School of Biology & Basic Medical Sciences, Medical College,
| |
Collapse
|
18
|
Duan Y, Wang SH, Song J, Mironova Y, Ming GL, Kolodkin AL, Giger RJ. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. eLife 2014; 3. [PMID: 25313870 PMCID: PMC4236683 DOI: 10.7554/elife.04390] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.
Collapse
Affiliation(s)
- Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Shih-Hsiu Wang
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Song
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yevgeniya Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guo-li Ming
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alex L Kolodkin
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
19
|
Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav Brain Res 2013; 251:5-17. [DOI: 10.1016/j.bbr.2013.05.047] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 12/14/2022]
|
20
|
Cheng Y, Quinn JF, Weiss LA. An eQTL mapping approach reveals that rare variants in the SEMA5A regulatory network impact autism risk. Hum Mol Genet 2013; 22:2960-72. [PMID: 23575222 PMCID: PMC3690972 DOI: 10.1093/hmg/ddt150] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 02/05/2013] [Accepted: 03/29/2013] [Indexed: 01/05/2023] Open
Abstract
To date, genome-wide single nucleotide polymorphism (SNP) and copy number variant (CNV) association studies of autism spectrum disorders (ASDs) have led to promising signals but not to easily interpretable or translatable results. Our own genome-wide association study (GWAS) showed significant association to an intergenic SNP near Semaphorin 5A (SEMA5A) and provided evidence for reduced expression of the same gene. In a novel GWAS follow-up approach, we map an expression regulatory pathway for a GWAS candidate gene, SEMA5A, in silico by using population expression and genotype data sets. We find that the SEMA5A regulatory network significantly overlaps rare autism-specific CNVs. The SEMA5A regulatory network includes previous autism candidate genes and regions, including MACROD2, A2BP1, MCPH1, MAST4, CDH8, CADM1, FOXP1, AUTS2, MBD5, 7q21, 20p, USH2A, KIRREL3, DBF4B and RELN, among others. Our results provide: (i) a novel data-derived network implicated in autism, (ii) evidence that the same pathway seeded by an initial SNP association shows association with rare genetic variation in ASDs, (iii) a potential mechanism of action and interpretation for the previous autism candidate genes and genetic variants that fall in this network, and (iv) a novel approach that can be applied to other candidate genes for complex genetic disorders. We take a step towards better understanding of the significance of SEMA5A pathways in autism that can guide interpretation of many other genetic results in ASDs.
Collapse
Affiliation(s)
| | | | - Lauren Anne Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Capone G, Novello G, Bavaro SL, Fasano C, Pesce Delfino A, Polito AN, Kanduc D. A qualitative description of the peptide sharing between poliovirus and Homo sapiens. Immunopharmacol Immunotoxicol 2012; 34:779-85. [PMID: 22303874 DOI: 10.3109/08923973.2012.654610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In a companion paper, we reported that pentapeptides from human poliovirus 1, Mahoney strain, occur repeatedly in human proteins for a total of more than 18,000 overlaps. In the present study, we describe the distribution of the polio pentapeptides throughout biochemical pathways and networks characterizing functions and tissues in the human host. The present study might be of help to better define the poliovirus-host relationships as well as for designing peptide modules with anti-polio activity.
Collapse
Affiliation(s)
- Giovanni Capone
- Department of Biochemistry and Molecular Biology, Universityof Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|