1
|
Silva B, João F, Amado S, Alvites RD, Maurício AC, Esteves B, Sousa AC, Lopes B, Sousa P, Dias JR, Veloso A, Pascoal-Faria P, Alves N. Biomechanical gait analysis in sheep: kinematic parameters. Front Bioeng Biotechnol 2024; 12:1370101. [PMID: 38832130 PMCID: PMC11144912 DOI: 10.3389/fbioe.2024.1370101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Animals have been used as models to help to better understand biological and anatomical systems, and pathologies in both humans and non-human species, and sheep are often used as an in vivo experimental model for orthopedic research. Gait analysis has been shown to be an important tool in biomechanics research with clinical applications. The purpose of this study was to perform a kinematic analysis using a tridimensional (3D) reconstruction of the sheep hindlimb. Seven healthy sheep were evaluated for natural overground walking, and motion capture of the right hindlimb was collected with an optoelectronic system while the animals walked in a track. The analysis addressed gait spatiotemporal variables, hip, knee and ankle angle and intralimb joint angle coordination measures during the entire walking cycle. This study is the first that describes the spatiotemporal parameters from the hip, knee and ankle joints in a tridimensional way: flexion/extension; abduction/adduction and inter/external rotation. The results of this assessment can be used as an outcome indicator to guide treatment and the efficacy of different therapies for orthopedic and neurological conditions involving the locomotor system of the sheep animal model.
Collapse
Affiliation(s)
- Bruna Silva
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
| | - Filipa João
- CIPER—Biomechanics and Functional Morphology Laboratory, Faculty of Human Kinetics (FMH), University of Lisbon, Lisbon, Portugal
| | - Sandra Amado
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
| | - Rui D. Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universi-dade do Porto (ICETA), Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Porto, Portugal
| | - Ana C. Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universi-dade do Porto (ICETA), Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Bárbara Esteves
- University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universi-dade do Porto (ICETA), Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universi-dade do Porto (ICETA), Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universi-dade do Porto (ICETA), Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
| | - António Veloso
- CIPER—Biomechanics and Functional Morphology Laboratory, Faculty of Human Kinetics (FMH), University of Lisbon, Lisbon, Portugal
| | - Paula Pascoal-Faria
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), Porto, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
2
|
Lam DV, Lindemann M, Yang K, Liu DX, Ludwig KA, Shoffstall AJ. An Open-Source 3D-Printed Hindlimb Stabilization Apparatus for Reliable Measurement of Stimulation-Evoked Ankle Flexion in Rat. eNeuro 2024; 11:ENEURO.0305-23.2023. [PMID: 38164555 PMCID: PMC10918511 DOI: 10.1523/eneuro.0305-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Currently there are numerous methods to evaluate peripheral nerve stimulation interfaces in rats, with stimulation-evoked ankle torque being one of the most prominent. Commercial rat ankle torque measurement systems and custom one-off solutions have been published in the literature. However, commercial systems are proprietary and costly and do not allow for customization. One-off lab-built systems have required specialized machining expertise, and building plans have previously not been made easily accessible. Here, detailed building plans are provided for a low-cost, open-source, and basic ankle torque measurement system from which additional customization can be made. A hindlimb stabilization apparatus was developed to secure and stabilize a rat's hindlimb, while allowing for simultaneous ankle-isometric torque and lower limb muscle electromyography (EMG). The design was composed mainly of adjustable 3D-printed components to accommodate anatomical differences between rat hindlimbs. Additionally, construction and calibration procedures of the rat hindlimb stabilization apparatus were demonstrated in this study. In vivo torque measurements were reliably acquired and corresponded to increasing stimulation amplitudes. Furthermore, implanted leads used for intramuscular EMG recordings complemented torque measurements and were used as an additional functional measurement in evaluating the performance of a peripheral nerve stimulation interface. In conclusion, an open-source and noninvasive platform, made primarily with 3D-printed components, was constructed for reliable data acquisition of evoked motor activity in rat models. The purpose of this apparatus is to provide researchers a versatile system with adjustable components that can be tailored to meet user-defined experimental requirements when evaluating motor function of the rat hindlimbs.
Collapse
Affiliation(s)
- Danny V Lam
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland 44106, Ohio
| | - Madeline Lindemann
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
| | - Kevin Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
| | - Derrick X Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
| | - Kip A Ludwig
- Department of Neurosurgery, University of Wisconsin-Madison, Madison 53705, Wisconsin
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland 44106, Ohio
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland 44106, Ohio
| |
Collapse
|
3
|
Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int 2021; 2021:6613029. [PMID: 33488738 PMCID: PMC7801080 DOI: 10.1155/2021/6613029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injury remains a clinical challenge with severe physiological and functional consequences. Despite the existence of multiple possible therapeutic approaches, until now, there is no consensus regarding the advantages of each option or the best methodology in promoting nerve regeneration. Regenerative medicine is a promise to overcome this medical limitation, and in this work, chitosan nerve guide conduits and olfactory mucosa mesenchymal stem/stromal cells were applied in different therapeutic combinations to promote regeneration in sciatic nerves after neurotmesis injury. Over 20 weeks, the intervened animals were subjected to a regular functional assessment (determination of motor performance, nociception, and sciatic indexes), and after this period, they were evaluated kinematically and the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed confirming the beneficial effects of using these therapeutic approaches. The use of chitosan NGCs and cells resulted in better motor performance, better sciatic indexes, and lower gait dysfunction after 20 weeks. The use of only NGGs demonstrated better nociceptive recoveries. The stereological evaluation of the sciatic nerve revealed identical values in the different parameters for all therapeutic groups. In the muscle histomorphometric evaluation, the groups treated with NGCs and cells showed results close to those of the group that received traditional sutures, the one with the best final values. The therapeutic combinations studied show promising outcomes and should be the target of new future works to overcome some irregularities found in the results and establish the combination of nerve guidance conduits and olfactory mucosa mesenchymal stem/stromal cells as viable options in the treatment of peripheral nerves after injury.
Collapse
|
4
|
Bruna J, Alberti P, Calls-Cobos A, Caillaud M, Damaj MI, Navarro X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp Neurol 2020; 325:113154. [PMID: 31837318 PMCID: PMC7105293 DOI: 10.1016/j.expneurol.2019.113154] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
Abstract
Peripheral neuropathy is one of the most common, dose limiting, and long-lasting disabling adverse events of chemotherapy treatment. Unfortunately, no treatment has proven efficacy to prevent this adverse effect in patients or improve the nerve regeneration, once it is established. Experimental models, particularly using rats and mice, are useful to investigate the mechanisms related to axonal or neuronal degeneration and target loss of function induced by neurotoxic drugs, as well as to test new strategies to prevent the development of neuropathy and to improve functional restitution. Therefore, objective and reliable methods should be applied for the assessment of function and innervation in adequately designed in vivo studies of CIPN, taking into account the impact of age, sex and species/strains features. This review gives an overview of the most useful methods to assess sensory, motor and autonomic functions, electrophysiological and morphological tests in rodent models of peripheral neuropathy, focused on CIPN. We include as well a proposal of protocols that may improve the quality and comparability of studies undertaken in different laboratories. It is recommended to apply more than one functional method for each type of function, and to perform parallel morphological studies in the same targets and models.
Collapse
Affiliation(s)
- Jordi Bruna
- Unit of Neuro-Oncology, Hospital Universitari de Bellvitge, Institut Català d'Oncologia L'Hospitalet, IDIBELL, Hospitalet de Llobregat, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, University Milano Bicocca, Monza, Italy; NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Aina Calls-Cobos
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Martial Caillaud
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.
| |
Collapse
|
5
|
A three dimensional multiplane kinematic model for bilateral hind limb gait analysis in cats. PLoS One 2018; 13:e0197837. [PMID: 30080884 PMCID: PMC6078300 DOI: 10.1371/journal.pone.0197837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background Kinematic gait analysis is an important noninvasive technique used for quantitative evaluation and description of locomotion and other movements in healthy and injured populations. Three dimensional (3D) kinematic analysis offers additional outcome measures including internal-external rotation not characterized using sagittal plane (2D) analysis techniques. Methods The objectives of this study were to 1) develop and evaluate a 3D hind limb multiplane kinematic model for gait analysis in cats using joint coordinate systems, 2) implement and compare two 3D stifle (knee) prediction techniques, and 3) compare flexion-extension determined using the multiplane model to a sagittal plane model. Walking gait was recorded in 3 female adult cats (age = 2.9 years, weight = 3.5 ± 0.2 kg). Kinematic outcomes included flexion-extension, internal-external rotation, and abduction-adduction of the hip, stifle, and tarsal (ankle) joints. Results Each multiplane stifle prediction technique yielded similar findings. Joint angles determined using markers placed on skin above bony landmarks in vivo were similar to joint angles determined using a feline hind limb skeleton in which markers were placed directly on landmarks ex vivo. Differences in hip, stifle, and tarsal joint flexion-extension were demonstrated when comparing the multiplane model to the sagittal plane model. Conclusions This multiplane cat kinematic model can predict joint rotational kinematics as a tool that can quantify frontal, transverse, and sagittal plane motion. This model has multiple advantages given its ability to characterize joint internal-external rotation and abduction-adduction. A further, important benefit is greater accuracy in representing joint flexion-extension movements.
Collapse
|
6
|
Raffalt PC, Nielsen LR, Madsen S, Munk Højberg L, Pingel J, Nielsen JB, Wienecke J, Alkjær T. Day-to-day reliability of gait characteristics in rats. J Biomech 2018. [PMID: 29530501 DOI: 10.1016/j.jbiomech.2018.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.
Collapse
Affiliation(s)
- Peter C Raffalt
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Louise R Nielsen
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Madsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Laurits Munk Højberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jessica Pingel
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Jens Bo Nielsen
- Center of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Tine Alkjær
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Gregor RJ, Maas H, Bulgakova MA, Oliver A, English AW, Prilutsky BI. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles. J Neurophysiol 2017; 119:1166-1185. [PMID: 29187556 DOI: 10.1152/jn.00661.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.
Collapse
Affiliation(s)
- Robert J Gregor
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia.,Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam , The Netherlands
| | | | - Alanna Oliver
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine , Atlanta, Georgia
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
8
|
Mehrshad A, Shahraki M, Ehteshamfar S. Local Administration of Methylprednisolone Laden Hydrogel Enhances Functional Recovery of Transected Sciatic Nerve in Rat. Bull Emerg Trauma 2017; 5:231-239. [PMID: 29177169 DOI: 10.18869/acadpub.beat.5.4.509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective To determine the effects of methylprednisolone-laden hydrogel loaded into a chitosan conduit on the functional recovery of peripheral nerve using a rat sciatic nerve regeneration model was assessed. Methods 10-mm sciatic nerve defect was bridged using a chitosan conduit (CHIT/CGP-Hydrogel) filled with CGP-hydrogel. In authograft group (AUTO) a segment of sciatic nerve was transected and reimplanted reversely. In methylprednisolone treated group (CHIT/MP) the conduit was filled with methylprednisolone-laden CGP-hydrogel. The regenerated fibers were studied within 16 weeks after surgery. Results The behavioral, functional and electrophysiological studies confirmed faster recovery of the regenerated axons in methylprednisolone treated group compared to CHIT/Hydrogel group (p<0.05). The mean ratios of gastrocnemius muscles weight were measured. There was statistically significant difference between the muscle weight ratios of CHIT/MP and CHIT/Hydrogel groups (p<0.05). Morphometric indices of regenerated fibers showed number and diameter of the myelinated fibers were significantly higher in CHIT/MP than in CHIT/Hydrogel group. Conclusion Methylprednisolone-laden hydrogel when loaded in a chitosan conduit resulted in improvement of functional recovery and quantitative morphometric indices of sciatic nerve.
Collapse
Affiliation(s)
- Ali Mehrshad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Shahraki
- Department Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Shahin Ehteshamfar
- Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
9
|
Zmysłowski W, Cabaj AM, Sławińska U. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth. PLoS One 2017; 12:e0170235. [PMID: 28095499 PMCID: PMC5240973 DOI: 10.1371/journal.pone.0170235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022] Open
Abstract
The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.
Collapse
Affiliation(s)
- Wojciech Zmysłowski
- Department of Engineering of Nervous and Muscular System, Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
- * E-mail:
| | - Anna M. Cabaj
- Department of Engineering of Nervous and Muscular System, Nałęcz Institute of Biocybernetics and Biomedical Engineering, PAS, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
10
|
Muthuraman A, Ramesh M. Ischemic-reperfusion of unilateral external iliac artery in rat: A new model for vasculitic femoral neuropathy. Neurosci Lett 2016; 628:10-6. [PMID: 27288016 DOI: 10.1016/j.neulet.2016.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/14/2016] [Accepted: 06/07/2016] [Indexed: 01/14/2023]
Abstract
Clinically, ischemic environment during gynecological surgery at lithotomy position is most common causative factor for the development of vasculitic femoral neuropathy (VFN). The present study was designed to induce the clinically relevant rat model of VFN by ischemic-reperfusion (I/R) injury of unilateral external iliac artery (uEIA). The VFN was induced by 3, 4 and 5h occlusion of uEIA followed by reperfusion. The I/R of uEIA induced VFN was evaluated by (i) behavioral parameters i.e., hind limb temperature; weight bearing capacity; (ii) kinematic analysis i.e., paw posture, splay angle, static sciatic index (SSI), and ankle-angle tests; (iii) evaluation of pain perception i.e., plantar and pin prick; (iv) serum biochemical estimation i.e., nitrate, lipid peroxidation, TNF-α and calcium level; (v) evaluation of motor and sensory nerve conduction velocity; and (vi) measurement of nerve fiber density. The 4 and 5h occlusion of uEIA has produced the potential changes in behavioral, functional, electrophysiological, biochemical and histopathological assessment. The 5h occlusion of uEIA has shown to produce the mortality. Whereas, 3h occlusion does not produce the significant changes in the development of VFN. The 4h ischemic occlusion of uEIA has shown potential rat model of VFN due to its close mimicking capacity of VFN in human. Therefore, it can be useful to explore the newer anti-neuralgic medicine and with their pharmacodynamic action in the field of various neurovascular disorders.
Collapse
Affiliation(s)
- Arunachalam Muthuraman
- Department of Pharmacology, Neuropharmacology Division, Akal Toxicology Research Centre, A Unit of Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur 148001, Punjab, India.
| | - Muthusamy Ramesh
- Department of Pharmacology, Neuropharmacology Division, Akal Toxicology Research Centre, A Unit of Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur 148001, Punjab, India; School of Health Sciences, University of KwaZulu-Natal (UKZN), Durban 4001 South Africa.
| |
Collapse
|
11
|
Navarro X. Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: a critical overview. Eur J Neurosci 2015; 43:271-86. [PMID: 26228942 DOI: 10.1111/ejn.13033] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 01/08/2023]
Abstract
Peripheral nerve injuries usually lead to severe loss of motor, sensory and autonomic functions in the patients. Due to the complex requirements for adequate axonal regeneration, functional recovery is often poorly achieved. Experimental models are useful to investigate the mechanisms related to axonal regeneration and tissue reinnervation, and to test new therapeutic strategies to improve functional recovery. Therefore, objective and reliable evaluation methods should be applied for the assessment of regeneration and function restitution after nerve injury in animal models. This review gives an overview of the most useful methods to assess nerve regeneration, target reinnervation and recovery of complex sensory and motor functions, their values and limitations. The selection of methods has to be adequate to the main objective of the research study, either enhancement of axonal regeneration, improving regeneration and reinnervation of target organs by different types of nerve fibres, or increasing recovery of complex sensory and motor functions. It is generally recommended to use more than one functional method for each purpose, and also to perform morphological studies of the injured nerve and the reinnervated targets.
Collapse
Affiliation(s)
- Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Bellaterra, Spain
| |
Collapse
|
12
|
Andrew RL, Albert AYK, Renaut S, Rennison DJ, Bock DG, Vines T. Assessing the reproducibility of discriminant function analyses. PeerJ 2015; 3:e1137. [PMID: 26290793 PMCID: PMC4540019 DOI: 10.7717/peerj.1137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/08/2015] [Indexed: 11/20/2022] Open
Abstract
Data are the foundation of empirical research, yet all too often the datasets underlying published papers are unavailable, incorrect, or poorly curated. This is a serious issue, because future researchers are then unable to validate published results or reuse data to explore new ideas and hypotheses. Even if data files are securely stored and accessible, they must also be accompanied by accurate labels and identifiers. To assess how often problems with metadata or data curation affect the reproducibility of published results, we attempted to reproduce Discriminant Function Analyses (DFAs) from the field of organismal biology. DFA is a commonly used statistical analysis that has changed little since its inception almost eight decades ago, and therefore provides an opportunity to test reproducibility among datasets of varying ages. Out of 100 papers we initially surveyed, fourteen were excluded because they did not present the common types of quantitative result from their DFA or gave insufficient details of their DFA. Of the remaining 86 datasets, there were 15 cases for which we were unable to confidently relate the dataset we received to the one used in the published analysis. The reasons ranged from incomprehensible or absent variable labels, the DFA being performed on an unspecified subset of the data, or the dataset we received being incomplete. We focused on reproducing three common summary statistics from DFAs: the percent variance explained, the percentage correctly assigned and the largest discriminant function coefficient. The reproducibility of the first two was fairly high (20 of 26, and 44 of 60 datasets, respectively), whereas our success rate with the discriminant function coefficients was lower (15 of 26 datasets). When considering all three summary statistics, we were able to completely reproduce 46 (65%) of 71 datasets. While our results show that a majority of studies are reproducible, they highlight the fact that many studies still are not the carefully curated research that the scientific community and public expects.
Collapse
Affiliation(s)
- Rose L Andrew
- School of Environmental and Rural Science, University of New England , Armidale, NSW , Australia ; Biodiversity Research Centre, University of British Columbia , Vancouver, BC , Canada
| | - Arianne Y K Albert
- Women's Health Research Institute, BC Women's Hospital and Health Centre , Vancouver, BC , Canada
| | - Sebastien Renaut
- Biodiversity Research Centre, University of British Columbia , Vancouver, BC , Canada ; Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal , Montreal, QC , Canada
| | - Diana J Rennison
- Biodiversity Research Centre, University of British Columbia , Vancouver, BC , Canada
| | - Dan G Bock
- Biodiversity Research Centre, University of British Columbia , Vancouver, BC , Canada
| | - Tim Vines
- Biodiversity Research Centre, University of British Columbia , Vancouver, BC , Canada ; Molecular Ecology Editorial Office , Vancouver, BC , Canada
| |
Collapse
|
13
|
Jang SH, Lee JH. Effects of physical exercise on the functional recovery of rat hindlimbs with impairments of the sciatic nerve as assessed by 2D video analysis. J Phys Ther Sci 2015; 27:935-8. [PMID: 25931763 PMCID: PMC4395747 DOI: 10.1589/jpts.27.935] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/19/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effects of treadmill training
on functional recovery by analyzing the ankle joint as well as the knee and hip joints
with 2D video analysis during gait by rats with sciatic nerve injury. [Subjects and
Methods] Twenty-four male Sprague-Dawley rats were used in this study. The sham group (SG)
received only a sham operation without any sciatic injury; the training group (TG)
performed treadmill training for 4 weeks after sciatic injury; and the control group (CG)
wasn’t provided with any therapeutic intervention after sciatic injury. [Results] The
ankle, knee, and hip ROM of TG and CG during the initial, mid stance, and toe-off phases
of gait at post-test were significantly different from SG. [Conclusion] Physical exercise,
like treadmill training, is beneficial for the improvement of the ankle, knee and hip
joints of rats with crushed sciatic nerve injury.
Collapse
Affiliation(s)
- Sang-Hun Jang
- Department of Physical Therapy, Gimcheon University, Republic of Korea
| | - Jung-Ho Lee
- Department of Physical Therapy, School of Medical and Public Health, Kyungdong University, Republic of Korea
| |
Collapse
|
14
|
JOÃO FILIPA, VELOSO ANTÓNIO, AMADO SANDRA, ARMADA-DA-SILVA PAULO, MAURÍCIO ANAC. CAN GLOBAL OPTIMIZATION TECHNIQUE COMPENSATE FOR MARKER SKIN MOVEMENT IN RAT KINEMATICS? J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The motion of the skeletal estimated from skin attached marker-based motion capture(MOCAP) systems is known to be affected by significant bias caused by anatomical landmarks mislocation but especially by soft tissue artifacts (such as skin deformation and sliding, inertial effects and muscle contraction). As a consequence, the error associated with this bias can propagate to joint kinematics and kinetics data, particularly in small rodents. The purpose of this study was to perform a segmental kinematic analysis of the rat hindlimb during locomotion, using both global optimization as well as segmental optimization methods. Eight rats were evaluated for natural overground walking and motion of the right hindlimb was captured with an optoeletronic system while the animals walked in the track. Three-dimensional (3D) biomechanical analyses were carried out and hip, knee and ankle joint angular displacements and velocities were calculated. Comparison between both methods demonstrated that the magnitude of the kinematic error due to skin movement increases in the segmental optimization when compared with the global optimization method. The kinematic results assessed with the global optimization method matches more closely to the joint angles and ranges of motion calculated from bone-derived kinematics, being the knee and hip joints with more significant differences.
Collapse
Affiliation(s)
- FILIPA JOÃO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - ANTÓNIO VELOSO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - SANDRA AMADO
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - PAULO ARMADA-DA-SILVA
- Univ Tecn Lisboa, Fac Motricidade Humana-CIPER-LBMF, Estrada da Costa, P-1499-002 Lisbon, Portugal
| | - ANA C. MAURÍCIO
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar (ICBAS), Porto University (UP), P-4050-313, Porto, Portugal
| |
Collapse
|
15
|
Eftaxiopoulou T, Macdonald W, Britzman D, Bull AMJ. Gait compensations in rats after a temporary nerve palsy quantified using temporo-spatial and kinematic parameters. J Neurosci Methods 2014; 232:16-23. [PMID: 24768577 DOI: 10.1016/j.jneumeth.2014.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this work was to test a method for measuring the gait of rats with sufficient sensitivity to detect subtle locomotor changes due to pathology, injury and recovery. METHOD The gait of female Sprague-Dawley rats was assessed using an optical motion tracking system and the DigiGait™ imaging system during normal locomotion, shortly after temporary nerve block to the left hind limb and after full recovery. RESULTS The effect of low treadmill speeds (10-30 cm/s) was initially investigated. Significant changes were detected in the spatiotemporal gait parameters, consistent with those previously reported. The overall ranges of motion in the hip, knee and ankle joints were 37.5° (±7.1°), 50.2° (±9.4°) and 61.6° (±9.1°) and did not appear to change with speed, indicating that for low speed variations, kinematic comparisons across speeds may be possible. Following the induction of a temporary sciatic nerve block, the range of motion of the left ankle and knee during swing decreased by 23° and 33°, respectively (p<0.05). A compensatory change of a greater range of motion at the hip was noted in the contralateral limb (p<0.01). 90 min post injection, most of the gait parameters had returned to normal, however, minor walking deficits were still present. COMPARISON WITH EXISTING METHOD(S) Discriminant analysis showed that a combination of dynamic and kinematic parameters provides a more robust method for the classification of gait changes. CONCLUSIONS This more detailed method, employing both dynamic analysis and joint kinematics simultaneously, was found to be a reliable approach for the quantification of gait in rats.
Collapse
Affiliation(s)
- Theofano Eftaxiopoulou
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ UK; The Royal British Legion Centre for Blast Injury Studies at Imperial College London, South Kensington Campus, SW7 2AZ UK.
| | - Warren Macdonald
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ UK
| | - David Britzman
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ UK
| | - Anthony M J Bull
- Department of Bioengineering, Imperial College London, South Kensington Campus, SW7 2AZ UK; The Royal British Legion Centre for Blast Injury Studies at Imperial College London, South Kensington Campus, SW7 2AZ UK
| |
Collapse
|
16
|
Speck AE, Ilha J, do Espírito Santo CC, Aguiar AS, Dos Santos ARS, Swarowsky A. The IBB forelimb scale as a tool to assess functional recovery after peripheral nerve injury in mice. J Neurosci Methods 2014; 226:66-72. [PMID: 24486876 DOI: 10.1016/j.jneumeth.2014.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study was conducted to test whether the IBB Forelimb Scale (Irvine et al., 2010) which was originally developed for rats with spinal cord injury, is also capable of measuring the functional performance of Swiss mice with lesions of the median and ulnar nerves inflicted via crushing with standardized strength. NEW METHOD This test was performed at days 1, 3, 7, 10, 14 and 21 after surgery and each animal gives a score of 9, where 0 represented the worst functionality and 9 represented the habitual behavior. RESULTS The control animals usually exhibited movements in the task that were scored as 9 during the experimental period. The lesion group began with a score of 2 on the 1st and 3rd post-operative days. On the 7th and 10th postoperative days, respectively, they scored 7, and on the 14th post-operative day, they achieved a score of 8. Only on the 21st post-operative day, did they exhibit habitual skillful behaviors. COMPARISON WITH EXISTING METHOD(S) IBB Forelimb Scale is effective for determining how the animals perform the movements in detail, which is not readily revealed by other methods. Furthermore, this test show similar recovery periods with grasping test, staircase test and seems to be more sensitive than paw print analysis for this type of lesion. CONCLUSIONS Our data demonstrate that IBB scale was capable of measuring gradual improvements in motor forelimb functions in this model and may be a new and effective assessment tool for peripheral nerve injury.
Collapse
Affiliation(s)
- Ana Elisa Speck
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, UDESC, Rua Pascoal Simone 358, Coqueiros, Florianópolis, SC 88080-350, Brazil
| | - Jocemar Ilha
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, UDESC, Rua Pascoal Simone 358, Coqueiros, Florianópolis, SC 88080-350, Brazil
| | - Caroline Cunha do Espírito Santo
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, UDESC, Rua Pascoal Simone 358, Coqueiros, Florianópolis, SC 88080-350, Brazil
| | - Aderbal Silva Aguiar
- Departamento de Bioquímica, Centro de Ciências Biológicas, UFSC, Córrego Grande, Florianópolis, SC 88049-900, Brazil
| | - Adair Roberto Soares Dos Santos
- Laboratório de Neurobiologia da Dor e Inflamação, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, UFSC, Trindade, Florianópolis, SC 88040-900, Brazil
| | - Alessandra Swarowsky
- Programa de Pós-Graduação em Fisioterapia, Centro do Ciências da Saúde e do Esporte, UDESC, Rua Pascoal Simone 358, Coqueiros, Florianópolis, SC 88080-350, Brazil.
| |
Collapse
|
17
|
Video-based Gait Analysis for Functional Evaluation of Healing Achilles Tendon in Rats. Ann Biomed Eng 2012; 40:2532-40. [DOI: 10.1007/s10439-012-0619-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
|