1
|
Nasehi M, Mohammadi A, Ebrahimi-Ghiri M, Hashemi M, Zarrindast MR. MLC901 during sleep deprivation rescues fear memory disruption in rats. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:813-821. [DOI: 10.1007/s00210-018-01612-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022]
|
2
|
Thomasson J, Canini F, Poly-Thomasson B, Trousselard M, Granon S, Chauveau F. Neuropeptide S overcomes short term memory deficit induced by sleep restriction by increasing prefrontal cortex activity. Eur Neuropsychopharmacol 2017; 27:1308-1318. [PMID: 28941995 DOI: 10.1016/j.euroneuro.2017.08.431] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Sleep restriction (SR) impairs short term memory (STM) that might be related to different processes. Neuropeptide S (NPS), an endogenous neuropeptide that improves short term memory, activates arousal and decreases anxiety is likely to counteract the SR-induced impairment of STM. The objective of the present study was to find common cerebral pathways in sleep restriction and NPS action in order to ultimately antagonize SR effect on memory. The STM was assessed using a spontaneous spatial alternation task in a T-maze. C57-Bl/6J male mice were distributed in 4 groups according to treatment (0.1nmol of NPS or vehicle intracerebroventricular injection) and to 20h-SR. Immediately after behavioural testing, regional c-fos immunohistochemistry was performed and used as a neural activation marker for spatial short term memory (prefrontal cortex, dorsal hippocampus) and emotional reactivity (basolateral amygdala and ventral hippocampus). Anxiety-like behaviour was assessed using elevated-plus maze task. Results showed that SR impaired short term memory performance and decreased neuronal activation in cingular cortex.NPS injection overcame SR-induced STM deficits and increased neuronal activation in infralimbic cortex. SR spared anxiety-like behavior in the elevated-plus maze. Neural activation in basolateral nucleus of amygdala and ventral hippocampus were not changed after SR.In conclusion, the present study shows that NPS overcomes SR-induced STM deficits by increasing prefrontal cortex activation independently of anxiety-like behaviour.
Collapse
Affiliation(s)
- Julien Thomasson
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France
| | - Frédéric Canini
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | | | - Marion Trousselard
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France; Ecole du Val de Grâce, 1 Place Laveran, Paris, France
| | - Sylvie Granon
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), CNRS UMR 9197, Université Paris-Saclay, Orsay, France
| | - Frédéric Chauveau
- Institut de Recherche Biomédicale des Armées Brétigny-sur-Orge, France.
| |
Collapse
|
3
|
Nagai H, de Vivo L, Bellesi M, Ghilardi MF, Tononi G, Cirelli C. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice. Sleep 2017; 40:2731603. [PMID: 28364506 DOI: 10.1093/sleep/zsw059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2016] [Indexed: 12/16/2022] Open
Abstract
Introduction Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Aims and Methods Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. Results In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Conclusions Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus.
Collapse
Affiliation(s)
- Hirotaka Nagai
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| | - Luisa de Vivo
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Felice Ghilardi
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY10017
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd, Madison, WI 53719
| |
Collapse
|
4
|
Guo L, Guo Z, Luo X, Liang R, Yang S, Ren H, Wang G, Zhen X. Phosphodiesterase 10A inhibition attenuates sleep deprivation-induced deficits in long-term fear memory. Neurosci Lett 2016; 635:44-50. [PMID: 27743798 DOI: 10.1016/j.neulet.2016.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/20/2016] [Accepted: 10/10/2016] [Indexed: 12/28/2022]
Abstract
Sleep, particularly rapid eye movement (REM) sleep, is implicated in the consolidation of emotional memories. In the present study, we investigated the protective effects of a phosphodiesterase 10A (PDE10A) inhibitor MP-10 on deficits in long-term fear memory induced by REM sleep deprivation (REM-SD). REM-SD caused deficits in long-term fear memory, however, MP-10 administration ameliorated the deleterious effects of REM-SD on long term fear memory. Brain-derived neurotropic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) were altered in specific brain regions associated with learning and memory in REM-SD rats. Accordingly, REM-SD caused a significant decrease of pCREB in hippocampus and striatum and a significant decrease of BDNF in the hippocampus, striatum and amygdala, however, MP-10 reversed the effects of REM-SD in a dose-dependent manner. Our findings suggest that REM-SD disrupts the consolidation of long-term fear memory and that administration of MP-10 protects the REM-SD-induced deficits in fear memory, which may be due to the MP-10-induced expression of BDNF in the hippocampus, striatum and amygdala, and phosphorylation of CREB in the hippocampus and striatum.
Collapse
Affiliation(s)
- Lengqiu Guo
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China; College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Zhuangli Guo
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road,Qingdao, Shandong 266003, China
| | - Xiaoqing Luo
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Rui Liang
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Shui Yang
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Haigang Ren
- College of Pharmaceutical Sciences, Suzhou Health College, 28 Kehua Road, Suzhou, Jiangsu 215009, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Sleep supports cued fear extinction memory consolidation independent of circadian phase. Neurobiol Learn Mem 2016; 132:9-17. [DOI: 10.1016/j.nlm.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 01/20/2023]
|
6
|
The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol Learn Mem 2015; 122:110-21. [PMID: 25638277 DOI: 10.1016/j.nlm.2015.01.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 01/01/2023]
Abstract
Over the years, rapid eye movement (REM) sleep has been associated with general memory consolidation, specific consolidation of perceptual, procedural, emotional and fear memories, brain maturation and preparation of waking consciousness. More recently, some of these associations (e.g., general and procedural memory consolidation) have been shown to be unlikely, while others (e.g., brain maturation and consciousness) remain inconclusive. In this review, we argue that both behavioral and neurophysiological evidence supports a role of REM sleep for amygdala-related memory processing: the amygdala-hippocampus-medial prefrontal cortex network involved in emotional processing, fear memory and valence consolidation shows strongest activity during REM sleep, in contrast to the hippocampus-medial prefrontal cortex only network which is more active during non-REM sleep. However, more research is needed to fully understand the mechanisms.
Collapse
|
7
|
Ravassard P, Hamieh AM, Joseph MA, Fraize N, Libourel PA, Lebarillier L, Arthaud S, Meissirel C, Touret M, Malleret G, Salin PA. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP. Cereb Cortex 2015; 26:1488-1500. [DOI: 10.1093/cercor/bhu310] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Havekes R, Meerlo P, Abel T. Animal studies on the role of sleep in memory: from behavioral performance to molecular mechanisms. Curr Top Behav Neurosci 2015; 25:183-206. [PMID: 25680961 DOI: 10.1007/7854_2015_369] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although the exact functions of sleep remain a topic of debate, several hypotheses propose that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition . For over a century, researchers have applied a wide variety of behavioral, electrophysiological, biochemical, and molecular approaches to study how memory processes are promoted by sleep and perturbed by sleep loss. Interestingly, experimental studies indicate that cognitive impairments as a consequence of sleep deprivation appear to be most severe with learning and memory processes that require the hippocampus , which suggests that this brain region is particularly sensitive to the consequences of sleep loss. Moreover, recent studies in laboratory rodents indicate that sleep deprivation impairs hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling. Attenuated cAMP-PKA signaling can lead to a reduced activity of the transcription factor cAMP response element binding protein (CREB) and ultimately affect the expression of genes and proteins involved in neuronal plasticity and memory formation. Pharmacogenetic experiments in mice show that memory deficits following sleep deprivation can be prevented by specifically boosting cAMP signaling in excitatory neurons of the hippocampus. Given the high incidence of sleep disturbance and sleep restriction in our 24/7 society, understanding the consequences of sleep loss and unraveling the underlying molecular mechanisms is of great importance.
Collapse
Affiliation(s)
- Robbert Havekes
- Department of Biology, 10-170 Smilow Center for Translational Research, University of Pennsylvania, 3400 Civic Center Blvd Bldg 421, Philadelphia, PA, 19104-5158, USA,
| | | | | |
Collapse
|
9
|
Ishikawa H, Yamada K, Pavlides C, Ichitani Y. Sleep deprivation impairs spontaneous object-place but not novel-object recognition in rats. Neurosci Lett 2014; 580:114-8. [PMID: 25123440 DOI: 10.1016/j.neulet.2014.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 11/19/2022]
Abstract
Effects of sleep deprivation (SD) on one-trial recognition memory were investigated in rats using either a spontaneous novel-object or object-place recognition test. Rats were allowed to explore a field in which two identical objects were presented. After a delay period, they were placed again in the same field in which either: (1) one of the two objects was replaced by another object (novel-object recognition); or (2) one of the sample objects was moved to a different place (object-place recognition), and their exploration behavior to these objects was analyzed. Four hours SD immediately after the sample phase (early SD group) disrupted object-place recognition but not novel-object recognition, while SD 4-8h after the sample phase (delayed SD group) did not affect either paradigm. The results suggest that sleep selectively promotes the consolidation of hippocampal dependent memory, and that this effect is limited to within 4h after learning.
Collapse
Affiliation(s)
- Hiroko Ishikawa
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan.
| | - Constantine Pavlides
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
| | - Yukio Ichitani
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
10
|
Young EJ, Williams CL. Differential activation of amygdala Arc expression by positive and negatively valenced emotional learning conditions. Front Behav Neurosci 2013; 7:191. [PMID: 24367308 PMCID: PMC3852216 DOI: 10.3389/fnbeh.2013.00191] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/18/2013] [Indexed: 11/20/2022] Open
Abstract
Norepinephrine is released in the amygdala following negatively arousing learning conditions. This event initiates a cascade of changes including the transcription of activity-regulated cytoskeleton-associated protein (Arc) expression, an early-immediate gene associated with memory encoding. Recent evidence suggests that the valence of emotionally laden encounters may generate lateralized, as opposed to symmetric release of this transmitter in the right or left amygdala. It is currently not clear if valence-induced patterns of selective norepinephrine output across hemispheres are also reproduced in downstream pathways of cellular signaling necessary for memory formation. This question was addressed by determining if Arc expression is differentially distributed across the right and left amygdala following exposure to positively or negatively valenced learning conditions respectively. Male Sprague Dawley rats were randomly assigned to groups exposed to the Homecage only, five auditory tones only, or five auditory tones paired with footshock (0.35 mA) during Pavlovian fear conditioning. Western blot analysis revealed that Arc expression in the right amygdala was elevated significantly above that observed in the left amygdala 60 and 90 min following fear conditioning. Similarly, subjects exposed to a negatively valenced outcome consisting of an unexpected reduction in food rewards showed a greater level of Arc expression in only the right, but not left basolateral amygdala. Presenting a positively valenced event involving an unexpected increase in food reward magnitude following bar pressing, resulted in significantly greater Arc expression in the left, but not right basolateral amygdala (p < 0.01). These findings indicate that the valence of emotionally arousing learning conditions is reflected at later stages of synaptic plasticity involving the transcription of immediate early genes such as Arc.
Collapse
Affiliation(s)
| | - Cedric L. Williams
- Neuroscience and Behavior Graduate Program, Department of Psychology, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
11
|
Ota SM, Moreira KDM, Suchecki D, Oliveira MGM, Tiba PA. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation. Sleep 2013; 36:1677-84. [PMID: 24179301 DOI: 10.5665/sleep.3126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. OBJECTIVE To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. DESIGN Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. SUBJECTS Wistar male rats weighing 300-400 g. RESULTS Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. CONCLUSION Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.
Collapse
Affiliation(s)
- Simone M Ota
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
12
|
Abstract
Hippocampal cellular and molecular processes critical for memory consolidation are affected by the amount and quality of sleep attained. Questions remain with regard to how sleep enhances memory, what parameters of sleep after learning are optimal for memory consolidation, and what underlying hippocampal molecular players are targeted by sleep deprivation to impair memory consolidation and plasticity. In this review, we address these topics with a focus on the detrimental effects of post-learning sleep deprivation on memory consolidation. Obtaining adequate sleep is challenging in a society that values "work around the clock." Therefore, the development of interventions to combat the negative cognitive effects of sleep deprivation is key. However, there are a limited number of therapeutics that are able to enhance cognition in the face of insufficient sleep. The identification of molecular pathways implicated in the deleterious effects of sleep deprivation on memory could potentially yield new targets for the development of more effective drugs.
Collapse
Affiliation(s)
- Toni-Moi Prince
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ted Abel
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|