1
|
Safari V, Nategh M, Dargahi L, Zibaii ME, Khodagholi F, Rafiei S, Khatami L, Motamedi F. Individual Subnuclei of the Rat Anterior Thalamic Nuclei Differently affect Spatial Memory and Passive Avoidance Tasks. Neuroscience 2020; 444:19-32. [PMID: 32745505 DOI: 10.1016/j.neuroscience.2020.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/25/2020] [Indexed: 11/16/2022]
Abstract
The role of the anterior thalamic nuclei (ATN) has been proven in different learning and memory tasks. The ATN consist of three main subnuclei, the anterodorsal (AD), anteroventral (AV) and anteromedial (AM), which have different biological characteristics such as distinct circuitry, cell population and neurotransmitter content. The role of ATN subnuclei in learning and memory has been shown in several studies. However, their probable role in different phases of memory including acquisition, consolidation and retrieval are not still well-known. For this purpose, the effect of reversible inactivation of each ATN subnucleus on different memory phases in two behavioral tasks including passive avoidance (PA) and Morris water maze (MWM) was studied. Wister male rats were bilaterally implanted with cannulas above the AD, AV or AM subnucleus in separate experimental groups in order to inject lidocaine (4%) for their temporal inactivation or, equal volume of saline. Animals were trained in the behavioral tasks and different phases of memory were investigated. Our findings indicated that the AV inactivation strongly disrupts all memory phases in the MWM, and consolidation and retrieval phases in the PA tasks. The AM inactivation had no effect on acquisition of both tasks while it impaired the PA consolidation and MWM retrieval. However, the AD inactivation could not disrupt memory phases in the PA task but impaired the MWM retrieval. In conclusion, it seems that the ATN distinct subnuclei differently affect different phases of memory in these two tasks.
Collapse
Affiliation(s)
- Vajihe Safari
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Mohsen Nategh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Leila Dargahi
- Neuro Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran; Neuro Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrbanoo Rafiei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Leila Khatami
- School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 1954851167, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
2
|
Wolff M, Vann SD. The Cognitive Thalamus as a Gateway to Mental Representations. J Neurosci 2019; 39:3-14. [PMID: 30389839 PMCID: PMC6325267 DOI: 10.1523/jneurosci.0479-18.2018] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France,
- University of Bordeaux, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France, and
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
3
|
Barnett SC, Perry BAL, Dalrymple-Alford JC, Parr-Brownlie LC. Optogenetic stimulation: Understanding memory and treating deficits. Hippocampus 2018; 28:457-470. [DOI: 10.1002/hipo.22960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- S. C. Barnett
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - B. A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - J. C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| | - L. C. Parr-Brownlie
- Brain Research New Zealand; New Zealand
- Department of Anatomy, School of Biomedical Science; Brain Health Research Centre, University of Otago; Dunedin New Zealand
| |
Collapse
|
4
|
Perry BAL, Mercer SA, Barnett SC, Lee J, Dalrymple-Alford JC. Anterior thalamic nuclei lesions have a greater impact than mammillothalamic tract lesions on the extended hippocampal system. Hippocampus 2017; 28:121-135. [DOI: 10.1002/hipo.22815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Brook A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Stephanie A. Mercer
- Department of Biochemistry; University of Otago; Dunedin
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Sophie C. Barnett
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
| | - Jungah Lee
- Department of Psychology; University of Canterbury; Christchurch New Zealand
| | - John C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch New Zealand
- Brain Research New Zealand, co-hosted by Auckland and Otago Universities; Auckland New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| |
Collapse
|
5
|
Frizzati A, Milczarek MM, Sengpiel F, Thomas KL, Dillingham CM, Vann SD. Comparable reduction in Zif268 levels and cytochrome oxidase activity in the retrosplenial cortex following mammillothalamic tract lesions. Neuroscience 2016; 330:39-49. [PMID: 27233617 PMCID: PMC4936792 DOI: 10.1016/j.neuroscience.2016.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022]
Abstract
Mammillothalamic tract lesions impaired T-maze alternation performance. Mammillothalamic tract lesions reduced Zif268 levels in retrosplenial cortex. Mammillothalamic tract lesions reduced cytochrome oxidase in retrosplenial cortex. No changes were found in the dorsal hippocampus. These distal changes may contribute to the memory impairments.
Damage to the mammillothalamic tract (MTT) produces memory impairments in both humans and rats, yet it is still not clear why this diencephalic pathway is vital for memory. One suggestion is that it is an important route for midbrain inputs to reach a wider cortical and subcortical network that supports memory. Consistent with this idea, MTT lesions produce widespread hypoactivity in distal brain regions as measured by the immediate-early gene, c-fos. To determine whether these findings were selective to c-fos or reflected more general changes in neuronal function, we assessed the effects of MTT lesions on the expression of the immediate-early gene protein, Zif268 and the metabolic marker, cytochrome oxidase, in the retrosplenial cortex and hippocampus. The lesions decreased levels of both activity markers in the superficial and deep layers of the retrosplenial cortex in both its granular and dysgranular subregions. In contrast, no significant changes were observed in the hippocampus, despite the MTT-lesioned animals showing marked impairments on T-maze alternation. These findings are consistent with MTT lesions providing important, indirect inputs for normal retrosplenial cortex functioning. These distal functional changes may contribute to the memory impairments observed after MTT lesions.
Collapse
Affiliation(s)
- Aura Frizzati
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Michal M Milczarek
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Frank Sengpiel
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Kerrie L Thomas
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Christopher M Dillingham
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK; Institute of Neuroscience, Trinity College Dublin, Lloyd Building, College Green, Dublin 2, Ireland
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
6
|
Aggleton JP, Pralus A, Nelson AJD, Hornberger M. Thalamic pathology and memory loss in early Alzheimer's disease: moving the focus from the medial temporal lobe to Papez circuit. Brain 2016; 139:1877-90. [PMID: 27190025 PMCID: PMC4939698 DOI: 10.1093/brain/aww083] [Citation(s) in RCA: 252] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
It is widely assumed that incipient protein pathology in the medial temporal lobe instigates the loss of episodic memory in Alzheimer’s disease, one of the earliest cognitive deficits in this type of dementia. Within this region, the hippocampus is seen as the most vital for episodic memory. Consequently, research into the causes of memory loss in Alzheimer’s disease continues to centre on hippocampal dysfunction and how disease-modifying therapies in this region can potentially alleviate memory symptomology. The present review questions this entrenched notion by bringing together findings from post-mortem studies, non-invasive imaging (including studies of presymptomatic, at-risk cases) and genetically modified animal models. The combined evidence indicates that the loss of episodic memory in early Alzheimer’s disease reflects much wider neurodegeneration in an extended mnemonic system (Papez circuit), which critically involves the limbic thalamus. Within this system, the anterior thalamic nuclei are prominent, both for their vital contributions to episodic memory and for how these same nuclei appear vulnerable in prodromal Alzheimer’s disease. As thalamic abnormalities occur in some of the earliest stages of the disease, the idea that such changes are merely secondary to medial temporal lobe dysfunctions is challenged. This alternate view is further strengthened by the interdependent relationship between the anterior thalamic nuclei and retrosplenial cortex, given how dysfunctions in the latter cortical area provide some of the earliest
in vivo
imaging evidence of prodromal Alzheimer’s disease. Appreciating the importance of the anterior thalamic nuclei for memory and attention provides a more balanced understanding of Alzheimer’s disease. Furthermore, this refocus on the limbic thalamus, as well as the rest of Papez circuit, would have significant implications for the diagnostics, modelling, and experimental treatment of cognitive symptoms in Alzheimer’s disease.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | - Agathe Pralus
- Master of Biosciences, ENS de Lyon, 46 allée d'Italie, 69007 Lyon, France
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | | |
Collapse
|
7
|
Todd TP, Bucci DJ. Retrosplenial Cortex and Long-Term Memory: Molecules to Behavior. Neural Plast 2015; 2015:414173. [PMID: 26380115 PMCID: PMC4562169 DOI: 10.1155/2015/414173] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022] Open
Abstract
The retrosplenial cortex (RSC) is reciprocally connected with the hippocampus and various parahippocampal cortical regions, suggesting that RSC is well-positioned to contribute to hippocampal-dependent memory. Consistent with this, substantial behavioral evidence indicates that RSC is essential for consolidating and/or retrieving contextual and spatial memories. In addition, there is growing evidence that RSC neurons undergo activity-dependent plastic changes during memory formation and retrieval. In this paper we review both the behavioral and cellular/molecular data and posit that the RSC has a particularly important role in the storage and retrieval of spatial and contextual memories perhaps due its involvement in binding together multiple cues in the environment. We identify remaining questions and avenues for future research that take advantage of emerging methods to selectively manipulate RSC neurons both spatially and temporally and to image the RSC in awake, behaving animals.
Collapse
Affiliation(s)
- Travis P. Todd
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, NH, USA
| | - David J. Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover 03755, NH, USA
| |
Collapse
|
8
|
Vann SD, Nelson AJD. The mammillary bodies and memory: more than a hippocampal relay. PROGRESS IN BRAIN RESEARCH 2015; 219:163-85. [PMID: 26072239 PMCID: PMC4498492 DOI: 10.1016/bs.pbr.2015.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Although the mammillary bodies were one of the first neural structures to be implicated in memory, it has long been assumed that their main function was to act primarily as a hippocampal relay, passing information on to the anterior thalamic nuclei and from there to the cingulate cortex. This view not only afforded the mammillary bodies no independent role in memory, it also neglected the potential significance of other, nonhippocampal, inputs to the mammillary bodies. Recent advances have transformed the picture, revealing that projections from the tegmental nuclei of Gudden, and not the hippocampal formation, are critical for sustaining mammillary body function. By uncovering a role for the mammillary bodies that is independent of its subicular inputs, this work signals the need to consider a wider network of structures that form the neural bases of episodic memory.
Collapse
|
9
|
Loukavenko EA, Wolff M, Poirier GL, Dalrymple-Alford JC. Impaired spatial working memory after anterior thalamic lesions: recovery with cerebrolysin and enrichment. Brain Struct Funct 2015; 221:1955-70. [PMID: 25725627 DOI: 10.1007/s00429-015-1015-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022]
Abstract
Lesions to the anterior thalamic nuclei (ATN) in rats produce robust spatial memory deficits that reflect their influence as part of an extended hippocampal system. Recovery of spatial working memory after ATN lesions was examined using a 30-day administration of the neurotrophin cerebrolysin and/or an enriched housing environment. As expected, ATN lesions in standard-housed rats given saline produced severely impaired reinforced spatial alternation when compared to standard-housed rats with sham lesions. Both cerebrolysin and enrichment substantially improved this working memory deficit, including accuracy on trials that required attention to distal cues for successful performance. The combination of cerebrolysin and enrichment was more effective than either treatment alone when the delay between successive runs in a trial was increased to 40 s. Compared to the intact rats, ATN lesions in standard-housed groups produced substantial reduction in c-Fos expression in the retrosplenial cortex, which remained low after cerebrolysin and enrichment treatments. Evidence that multiple treatment strategies restore some memory functions in the current lesion model reinforces the prospect for treatments in human diencephalic amnesia.
Collapse
Affiliation(s)
- Elena A Loukavenko
- Department of Psychology, New Zealand Brain Research Institute, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| | - Mathieu Wolff
- Univ.Bordeaux,INCIA, UMR 5287, 33400, Talence, France. .,CNRS, INCIA, UMR 5287, 33400, Talence, France.
| | - Guillaume L Poirier
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, AAB201, Station 19, 1015, Lausanne, Switzerland
| | - John C Dalrymple-Alford
- Department of Psychology, New Zealand Brain Research Institute, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand. .,Department of Medicine, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
10
|
Dalrymple-Alford JC, Harland B, Loukavenko EA, Perry B, Mercer S, Collings DA, Ulrich K, Abraham WC, McNaughton N, Wolff M. Anterior thalamic nuclei lesions and recovery of function: Relevance to cognitive thalamus. Neurosci Biobehav Rev 2015; 54:145-60. [PMID: 25637779 DOI: 10.1016/j.neubiorev.2014.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/02/2014] [Accepted: 12/04/2014] [Indexed: 12/01/2022]
Abstract
Injury to the anterior thalamic nuclei (ATN) and their neural connections is the most consistent neuropathology associated with diencephalic amnesia. ATN lesions in rats produce memory impairments that support a key role for this region within an extended hippocampal system of complex overlapping neural connections. Environmental enrichment is a therapeutic tool that produces substantial, although incomplete, recovery of memory function after ATN lesions, even after the lesion-induced deficit has become established. Similarly, the neurotrophic agent cerebrolysin, also counters the negative effects of ATN lesions. ATN lesions substantially reduce c-Fos expression and spine density in the retrosplenial cortex, and reduce spine density on CA1 neurons; only the latter is reversed by enrichment. We discuss the implications of this evidence for the cognitive thalamus, with a proposal that there are genuine interactions among different but allied thalamo-cortical systems that go beyond a simple summation of their separate effects.
Collapse
Affiliation(s)
- John C Dalrymple-Alford
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand.
| | - Bruce Harland
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Elena A Loukavenko
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Brook Perry
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Stephanie Mercer
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - David A Collings
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katharina Ulrich
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Mathieu Wolff
- University of Bordeaux, INCIA, UMR 5287, F-33400 Talence, France; CNRS, INCIA, UMR 5287, F-33400 Talence, France
| |
Collapse
|
11
|
Aggleton JP. Looking beyond the hippocampus: old and new neurological targets for understanding memory disorders. Proc Biol Sci 2015; 281:rspb.2014.0565. [PMID: 24850926 PMCID: PMC4046414 DOI: 10.1098/rspb.2014.0565] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although anterograde amnesia can occur after damage in various brain sites, hippocampal dysfunction is usually seen as the ultimate cause of the failure to learn new episodic information. This assumption is supported by anatomical evidence showing direct hippocampal connections with all other sites implicated in causing anterograde amnesia. Likewise, behavioural and clinical evidence would seem to strengthen the established notion of an episodic memory system emanating from the hippocampus. There is, however, growing evidence that key, interconnected sites may also regulate the hippocampus, reflecting a more balanced, integrated network that enables learning. Recent behavioural evidence strongly suggests that medial diencephalic structures have some mnemonic functions independent of the hippocampus, which can then act upon the hippocampus. Anatomical findings now reveal that nucleus reuniens and the retrosplenial cortex provide parallel, disynaptic routes for prefrontal control of hippocampal activity. There is also growing clinical evidence that retrosplenial cortex dysfunctions contribute to both anterograde amnesia and the earliest stages of Alzheimer's disease, revealing the potential significance of this area for clinical studies. This array of findings underlines the importance of redressing the balance and the value of looking beyond the hippocampus when seeking to explain failures in learning new episodic information.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Park Place, Cardiff, Wales CF10 3AT, UK
| |
Collapse
|
12
|
Functional heterogeneity of the limbic thalamus: From hippocampal to cortical functions. Neurosci Biobehav Rev 2014; 54:120-30. [PMID: 25446945 DOI: 10.1016/j.neubiorev.2014.11.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/22/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022]
Abstract
Today, the idea that the integrity of the limbic thalamus is necessary for normal memory functions is well established. However, if the study of thalamic patients emphasized the anterior and the mediodorsal thalamus as the critical thalamic loci supporting cognitive functions, clinical studies have so far failed to attribute a specific role to each of these regions. In view of these difficulties, we review here the experimental data conducted in rodents harboring specific lesions of each thalamic region. These data clearly indicate a major functional dissociation within the limbic thalamus. The anterior thalamus provides critical support for hippocampal functions due to its cardinal location in the Papez circuit, while the mediodorsal thalamus may signal relevant information in a circuit encompassing the basolateral amygdala and the prefrontal cortex. Interestingly, while clinical studies have suggested that diencephalic pathologies may disconnect the medial temporal lobe from the cortex, experimental studies conducted in rodent show how this may differently affect distinct temporo-thalamo-cortical circuits, sharing the same general organization but supporting dissociable functions.
Collapse
|
13
|
Aggleton JP, Nelson AJD. Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits? Neurosci Biobehav Rev 2014; 54:131-44. [PMID: 25195980 PMCID: PMC4462592 DOI: 10.1016/j.neubiorev.2014.08.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/07/2014] [Accepted: 08/27/2014] [Indexed: 12/30/2022]
Abstract
A dual hypothesis is introduced to explain the importance of these thalamic nuclei. ATN are vital for multiple spatial functions. ATN damage disrupts processing across distal limbic sites. Distal pathology caused by ATN damage disrupts plasticity and metabolic activity. ATN lesion effects reflect both their intrinsic importance and distal dysfunctions.
Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, South Glamorganshire, Wales, UK
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, South Glamorganshire, Wales, UK.
| |
Collapse
|
14
|
Harland BC, Collings DA, McNaughton N, Abraham WC, Dalrymple-Alford JC. Anterior thalamic lesions reduce spine density in both hippocampal CA1 and retrosplenial cortex, but enrichment rescues CA1 spines only. Hippocampus 2014; 24:1232-47. [PMID: 24862603 DOI: 10.1002/hipo.22309] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Abstract
Injury to the anterior thalamic nuclei (ATN) may affect both hippocampus and retrosplenial cortex thus explaining some parallels between diencephalic and medial temporal lobe amnesias. We found that standard-housed rats with ATN lesions, compared with standard-housed controls, showed reduced spine density in hippocampal CA1 neurons (basal dendrites, -11.2%; apical dendrites, -9.6%) and in retrospenial granular b cortex (Rgb) neurons (apical dendrites, -20.1%) together with spatial memory deficits on cross maze and radial-arm maze tasks. Additional rats with ATN lesions were also shown to display a severe deficit on spatial working memory in the cross-maze, but subsequent enriched housing ameliorated their performance on both this task and the radial-arm maze. These enriched rats with ATN lesions also showed recovery of both basal and apical CA1 spine density to levels comparable to that of the standard-housed controls, but no recovery of Rgb spine density. Inspection of spine types in the CA1 neurons showed that ATN lesions reduced the density of thin spines and mushroom spines, but not stubby spines; while enrichment promoted recovery of thin spines. Comparison with enriched rats that received pseudo-training, which provided comparable task-related experience, but no explicit spatial memory training, suggested that basal CA1 spine density in particular was associated with spatial learning and memory performance. Distal pathology in terms of reduced integrity of hippocampal and retrosplenial microstructure provides clear support for the influence of the ATN lesions on the extended hippocampal system. The reversal by postoperative enrichment of this deficit in the hippocampus but not the retrosplenial cortex may indicate region-specific mechanisms of recovery after ATN injury.
Collapse
Affiliation(s)
- Bruce C Harland
- Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | |
Collapse
|