1
|
Esparza-Salazar FDJ, Lezama-Toledo AR, Rivera-Monroy G, Borlongan CV. Exendin-4 for Parkinson's disease. Brain Circ 2021; 7:41-43. [PMID: 34084977 PMCID: PMC8057099 DOI: 10.4103/bc.bc_21_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
This review article discusses the preclinical evidence and clinical trials testing the use of a peptide agonist of the glucagon-like peptide (GLP) receptor that promotes insulin secretion in the animal models of and patient with Parkinson's disease (PD). In particular, we focus on the therapeutic effects of the GLP receptor agonist exendin-4, also called exenatide, in PD. The ultimate goal of this article is to provide a critical assessment of the laboratory and clinical data toward guiding the translation of exendin-4 as a clinically relevant therapeutic for PD.
Collapse
Affiliation(s)
| | - Alma Rosa Lezama-Toledo
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Germán Rivera-Monroy
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
2
|
Yu SJ, Chen S, Yang YY, Glotfelty EJ, Jung J, Kim HK, Choi HI, Choi DS, Hoffer BJ, Greig NH, Wang Y. PT320, Sustained-Release Exendin-4, Mitigates L-DOPA-Induced Dyskinesia in a Rat 6-Hydroxydopamine Model of Parkinson's Disease. Front Neurosci 2020; 14:785. [PMID: 32848559 PMCID: PMC7431885 DOI: 10.3389/fnins.2020.00785] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background We previously demonstrated that subcutaneous administration of PT320, a sustained-release (SR) form of exendin-4, resulted in the long-term maintenance of steady-state exenatide (exendin-4) plasma and target levels in 6-hydroxydopamine (6-OHDA)-pretreated animals. Additionally, pre- or post-treatment with PT320 mitigated the early stage of 6-OHDA-induced dopaminergic neurodegeneration. The purpose of this study was to evaluate the effect of PT320 on L-3,4-dihydroxyphenylalanine (L-DOPA)-induced abnormal involuntary movements (AIMs) in the rat 6-OHDA model of Parkinson’s disease. Methods Adult male Sprague–Dawley rats were unilaterally lesioned in the right medial forebrain bundle by 6-OHDA. L-DOPA and benserazide were given daily for 22 days, starting from 4 weeks after lesioning. PT320 was co-administered weekly for 3 weeks. AIM was evaluated on days 1, 16, and 22 after initiating L-DOPA/benserazide + PT320 treatment. Brain tissues were subsequently collected for HPLC measurements of dopamine (DA) and metabolite concentrations. Results L-DOPA/benserazide increased AIMs of limbs and axial as well as the sum of all dyskinesia scores (ALO) over 3 weeks. PT320 significantly reduced the AIM scores of limbs, orolingual, and ALO. Although PT320 did not alter DA levels in the lesioned striatum, PT320 significantly attenuated 6-OHDA-enhanced DA turnover. Conclusion PT320 attenuates L-DOPA/benserazide-induced dyskinesia in a 6-OHDA rat model of PD and warrants clinical evaluation to mitigate Parkinson’s disease in humans.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Shuchun Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Yung-Yung Yang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| | - Elliot J Glotfelty
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jin Jung
- Peptron Inc., Daejeon, South Korea
| | | | | | - Doo-Sup Choi
- Departments of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
3
|
Mograbi KDM, de Castro ACF, de Oliveira JAR, Sales PJB, Covolan L, Del Bel EA, de Souza AS. Effects of GABAa receptor antagonists on motor behavior in pharmacological Parkinson's disease model in mice. Physiol Rep 2017; 5:5/6/e13081. [PMID: 28351968 PMCID: PMC5371543 DOI: 10.14814/phy2.13081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to evaluate the effects of two gamma‐amino butyric acid (GABA)a receptor antagonists on motor behavioral tasks in a pharmacological model of Parkinson disease (PD) in rodents. Ninety‐six Swiss mice received intraperitoneal injection of Haloperidol (1 mg/kg) to block dopaminergic receptors. GABAa receptors antagonists Bicuculline (1 and 5 mg/kg) and Flumazenil (3 and 6 mg/kg) were used for the assessment of the interaction among these neurotransmitters, in this PD model. The motor behavior of the animals was evaluated in the catalepsy test (30, 60, and 90 min after drugs application), through open field test (after 60 min) and trough functional gait assessment (after 60 min). Both Bicuculline and Flumazenil were able to partially reverse catalepsy induced by Haloperidol. In the open field test, Haloperidol reduced the number of horizontal and vertical exploration of the animals, which was not reversed trough application of GABAa antagonists. Furthermore, the functional gait assessment was not sensitive enough to detect motor changes in this animal model of PD. There is an interaction between dopamine and GABA in the basal ganglia and the blocking GABAa receptors may have therapeutic potential in the treatment of PD.
Collapse
Affiliation(s)
- Karla De Michelis Mograbi
- Laboratory of Biophysiopharmacology, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | | | | | | | - Luciene Covolan
- Laboratory of Neurophysiology, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | | | - Albert Schiaveto de Souza
- Laboratory of Biophysiopharmacology, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
4
|
Deep Brain Stimulation of Hemiparkinsonian Rats with Unipolar and Bipolar Electrodes for up to 6 Weeks: Behavioral Testing of Freely Moving Animals. PARKINSONS DISEASE 2017; 2017:5693589. [PMID: 28758044 PMCID: PMC5512044 DOI: 10.1155/2017/5693589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022]
Abstract
Although the clinical use of deep brain stimulation (DBS) is increasing, its basic mechanisms of action are still poorly understood. Platinum/iridium electrodes were inserted into the subthalamic nucleus of rats with unilateral 6-OHDA-induced lesions of the medial forebrain bundle. Six behavioral parameters were compared with respect to their potential to detect DBS effects. Locomotor function was quantified by (i) apomorphine-induced rotation, (ii) initiation time, (iii) the number of adjusting steps in the stepping test, and (iv) the total migration distance in the open field test. Sensorimotor neglect and anxiety were quantified by (v) the retrieval bias in the corridor test and (vi) the ratio of migration distance in the center versus in the periphery in the open field test, respectively. In our setup, unipolar stimulation was found to be more efficient than bipolar stimulation for achieving beneficial long-term DBS effects. Performance in the apomorphine-induced rotation test showed no improvement after 6 weeks. DBS reduced the initiation time of the contralateral paw in the stepping test after 3 weeks of DBS followed by 3 weeks without DBS. Similarly, sensorimotor neglect was improved. The latter two parameters were found to be most appropriate for judging therapeutic DBS effects.
Collapse
|
5
|
Vecchia DD, Schamne MG, Ferro MM, Santos AFCD, Latyki CL, Lara DVD, Ben J, Moreira EL, Prediger RD, Miyoshi E. Effects of Hypericum perforatum on turning behavior in an animal model of Parkinson's disease. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000100012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by the slow and progressive death of dopaminergic neurons in the (substantia nigra pars compact). Hypericum perforatum (H. perforatum) is a plant widely used as an antidepressant, that also presents antioxidant and anti-inflammatory properties. We evaluated the effects of H. perforatum on the turning behavior of rats submitted to a unilateral administration of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle as an animal model of PD. The animals were treated with H. perforatum (100, 200, or 400 mg/kg, v.o.) for 35 consecutive days (from the 28th day before surgery to the 7th day after). The turning behavior was evaluated at 7, 14 and 21 days after the surgery, and the turnings were counted as contralateral or ipsilateral to the lesion side. All tested doses significantly reduced the number of contralateral turns in all days of evaluation, suggesting a neuroprotective effect. However, they were not able to prevent the 6-OHDA-induced decrease of tyrosine hydroxylase expression in the lesioned striatum. We propose that H. perforatum may counteract the overexpression of dopamine receptors on the lesioned striatum as a possible mechanism for this effect. The present findings provide new evidence that H. perforatum may represent a promising therapeutic tool for PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juliana Ben
- Federal University of Santa Catarina, Brazil
| | | | | | | |
Collapse
|
6
|
Pan MK, Tai CH, Liu WC, Pei JC, Lai WS, Kuo CC. Deranged NMDAergic cortico-subthalamic transmission underlies parkinsonian motor deficits. J Clin Invest 2014; 124:4629-41. [PMID: 25202982 DOI: 10.1172/jci75587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 07/31/2014] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is the most prevalent hypokinetic movement disorder, and symptomatic PD pathogenesis has been ascribed to imbalances between the direct and indirect pathways in the basal ganglia circuitry. Here, we applied glutamate receptor blockers to the subthalamic nucleus (STN) of parkinsonian rats and evaluated locomotor behaviors via single-unit and local-field recordings. Using this model, we found that inhibition of NMDAergic cortico-subthalamic transmission ameliorates parkinsonian motor deficits without eliciting any vivid turning behavior and abolishes electrophysiological abnormalities, including excessive subthalamic bursts, cortico-subthalamic synchronization, and in situ beta synchronization in both the motor cortex and STN. Premotor cortex stimulation revealed that cortico-subthalamic transmission is deranged in PD and directly responsible for the excessive stimulation-dependent bursts and time-locked spikes in the STN, explaining the genesis of PD-associated pathological bursts and synchronization, respectively. Moreover, application of a dopaminergic agent via a microinfusion cannula localized the therapeutic effect to the STN, without correcting striatal dopamine deficiency. Finally, optogenetic overactivation and synchronization of cortico-subthalamic transmission alone sufficiently and instantaneously induced parkinsonian-associated locomotor dysfunction in normal mice. In addition to the classic theory emphasizing the direct-indirect pathways, our data suggest that deranged cortico-subthalamic transmission via the NMDA receptor also plays a central role in the pathophysiology of parkinsonian motor deficits.
Collapse
|
7
|
Petrosyan TR, Gevorkyan OV, Hovsepyan AS. Effects of bacterial melanin on movement, posture, and skilled balancing deficits after unilateral destruction of substantia nigra pars compacta in rats. J Mot Behav 2013; 46:67-72. [PMID: 24328980 DOI: 10.1080/00222895.2013.865588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sixteen adult male rats were initially trained to an instrumental conditioned reflex (ICR) and subjected to unilateral destruction of substantia nigra pars compacta. Part of the animals was injected with bacterial melanin solution on the next day of destruction. The other 8 rats served as the control group. Recovery rates for ICR and dynamics of paralyzed hindlimb movements were studied in both groups. Conditioned reflex and contralateral to lesion hindlimb movements recovered faster in rats injected with bacterial melanin after the destruction.
Collapse
Affiliation(s)
- T R Petrosyan
- a Department of Kinesiology , Armenian State Institute of Physical Education , Yerevan
| | | | | |
Collapse
|