1
|
Prates‐Rodrigues M, Schweizer BLA, de Paula Gomes C, Ribeiro ÂM, Padovan‐Neto FE, Masini D, Lopes‐Aguiar C. Challenges and Opportunities in Exploring Non-Motor Symptoms in 6-Hydroxydopamine Models of Parkinson's Disease: A Systematic Review. J Neurochem 2025; 169:e70008. [PMID: 39901598 PMCID: PMC11791392 DOI: 10.1111/jnc.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 02/05/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of midbrain dopaminergic neurons, leading to motor symptoms such as tremors, rigidity, and bradykinesia. Non-motor symptoms, including depression, hyposmia, and sleep disturbances, often emerge in the early stages of PD, but their mechanisms remain poorly understood. The 6-hydroxydopamine (6-OHDA) rodent model is a well-established tool for preclinical research, replicating key motor and non-motor symptoms of PD. In this review, we systematically analyzed 135 studies that used 6-OHDA rodent models of PD to investigate non-motor symptoms. The review process adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis highlights the growing use of 6-OHDA PD models for experimental research of non-motor symptoms. It also reveals significant variability in methodologies, including choices of brain target, toxin dosage, lesion verification strategies, and behavioral assessment reporting. Factors that hinder reproducibility and comparability of findings across studies. We highlight the need for standardization in 6-OHDA-based models with particular emphasis on consistent evaluation of lesion extent and reporting of the co-occurrence of non-motor symptoms. By fostering methodological coherence, this framework aims to enhance the reproducibility, reliability, and translational value of 6-OHDA models in PD non-motor symptom research.
Collapse
Affiliation(s)
- Mateus Prates‐Rodrigues
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Beatriz Lage Araújo Schweizer
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Clara de Paula Gomes
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Ângela Maria Ribeiro
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Fernando E. Padovan‐Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Debora Masini
- Department of Biochemistry and BiophysicsStockholm UniversityStockholmSweden
| | - Cleiton Lopes‐Aguiar
- Departamento de Fisiologia e Biofísica, Laboratório de Neurociências Comportamental e Molecular (LANEC)Universidade Federal de Minas GeraisBelo HorizonteBrazil
| |
Collapse
|
2
|
Du C, Wang J, Tan H, Han N, Li X, Sun B, Zhang G, Chang M. Dopamine D 4 receptors in the lateral habenula regulate anxiety-related behaviors in a rat model of Parkinson's disease. Brain Res Bull 2024; 219:111122. [PMID: 39521183 DOI: 10.1016/j.brainresbull.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopamine (DA) and 5-hydroxytryptamine (5-HT) containing systems, which are implicated in the pathophysiology of anxiety, it is not clear how activation and blockade of LHb D4 receptors affects anxiety-like behaviors, particularly in Parkinson's disease related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, which attribute to hyperactivity of LHb neurons and decrease in the level of DA in the medial prefrontal cortex (mPFC), amygdala and ventral hippocampus (vHip) compared to sham-operated rats. Intra-LHb injection of D4 receptor agonist A412997 induced or increased the expression of anxiety-like behaviors, while injection of D4 receptor antagonist L741742 showed anxiolytic effects in sham-operated and the SNc-lesioned rats. However, the doses producing behavioral effects in the lesioned rats were higher than those of sham-operated rats. Intra-LHb injection of A412997 increased firing rate of LHb neurons, and decreased levels of DA and 5-HT in the mPFC, amygdala and vHip; conversely, L741742 decreased firing rate of LHb neurons, and increased levels of DA and 5-HT in two groups of rats. Compared to sham-operated rats, the duration of A412997 and L741742 action on the firing rate of neurons was markedly shortened in the lesioned rats. Collectively, these findings suggest that D4 receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway down-regulates function and/or expression of these receptors.
Collapse
Affiliation(s)
- Chengxue Du
- The College of Life Sciences, Northwest University, Xi'an, China; Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Jiachen Wang
- The College of Life Sciences, Northwest University, Xi'an, China; Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Huihui Tan
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Nannan Han
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Xiaobo Li
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Baihua Sun
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China
| | - Gejuan Zhang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China.
| | - Mingze Chang
- Department of Neurology, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an, China.
| |
Collapse
|
3
|
Tang G, Guo Y, Li R, Wang Y, Yang J, Gao S, Liu J. Lateral habenula 5-HT 1B receptors are involved in regulation of anxiety-like behaviors in parkinsonian rats. Neurochem Int 2024; 177:105766. [PMID: 38750961 DOI: 10.1016/j.neuint.2024.105766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not clear the role of LHb 5-HT1B receptors in regulation of anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to decreased normalized δ power and increased normalized θ power in the LHb, and decreased dopamine (DA) level in the prelimbic cortex (PrL) compared with sham rats. Down-regulation of LHb 5-HT1B receptors by RNA interference produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb in both sham and lesioned rats. Further, intra-LHb injection of 5-HT1B receptor agonist CP93129 induced anxiolytic-like responses, increased normalized δ power and decreased normalized θ power in the LHb, and increased DA and serotonin (5-HT) release in the PrL; conversely, 5-HT1B receptor antagonist SB216641 produced anxiety-like effects, decreased normalized δ power and increased normalized θ power in the LHb, and decreased DA and 5-HT release in the PrL in sham and lesioned rats. Additionally, effects of CP93129 and SB216641 on the behaviors, normalized δ and θ power in the LHb, and DA and 5-HT release in the PrL were decreased in lesioned rats, which were consistent with down-regulation of LHb 5-HT1B receptors after DA depletion. Collectively, these findings suggest that 5-HT1B receptors in the LHb are involved in the regulation of anxiety-like behaviors.
Collapse
Affiliation(s)
- Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
4
|
Li R, Wang Y, Yang Y, Wu Z, Wang L, Tang G, Yang J, Liu J. The α1 and γ2 subunit-containing GABA A receptor-mediated inhibitory transmission in the anteroventral bed nucleus of stria terminalis is involved in the regulation of anxiety in rats with substantia nigra lesions. Neuropharmacology 2023:109645. [PMID: 37392819 DOI: 10.1016/j.neuropharm.2023.109645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
The anteroventral bed nucleus of the stria terminalis (avBNST) is widely acknowledged as a key brain structure that regulates negative emotional states, such as anxiety. At present, it is still unclear whether GABAA receptor-mediated inhibitory transmission in the avBNST is involved in Parkinson's disease (PD)-related anxiety. In this study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNc) in rats induced anxiety-like behaviors, increased GABA synthesis and release, and upregulated expression of GABAA receptor subunits in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). In both sham and 6-OHDA rats, intra-avBNST injection of GABAA receptor agonist muscimol induced the following changes: (i) anxiolytic-like responses, (ii) inhibition of the firing activity of GABAergic neurons in the avBNST, (iii) excitation of dopaminergic neurons in the ventral tegmental area (VTA) and serotonergic neurons in the dorsal raphe nucleus (DRN), and (iv) increase of DA and 5-HT release in the BLA, whereas antagonist bicuculline induced the opposite effects. Collectively, these findings suggest that degeneration of the nigrostriatal pathway enhances GABAA receptor-mediated inhibitory transmission in the avBNST, which is involved in PD-related anxiety. Further, activation and blockade of avBNST GABAA receptors affect the firing activity of VTA dopaminergic and DRN serotonergic neurons, and then change release of BLA DA and 5-HT, thereby regulating anxiety-like behaviors.
Collapse
Affiliation(s)
- Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yaxin Yang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ling Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
5
|
Tang G, Guo Y, Zhang L, Wang T, Li R, Yang J, Wang Y, Liu J. 5-HT 1B receptors in the basolateral amygdaloid nucleus regulate anxiety-like behaviors through AC-PKA signal pathway in a rat model of Parkinson's disease. Behav Brain Res 2023; 449:114488. [PMID: 37169129 DOI: 10.1016/j.bbr.2023.114488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is commonly accompanied with anxiety, multiple studies indicate that the basolateral amygdaloid nucleus (BLA) is closely related to modulation of anxiety and expresses serotonin1B (5-HT1B) receptors, however, effects of BLA 5-HT1B receptors on anxiety-like behaviors are unclear, particularly in PD-related anxiety. METHODS The open-field and elevated plus maze tests were used to examine anxiety-like behaviors. In vivo electrophysiology and microdialysis were performed to observe the firing activity of BLA neurons and GABA, glutamate, dopamine (DA) and 5-HT release in the BLA, respectively. Western blotting was used to analyze protein expression of 5-HT1B receptors, adenylate cyclase (AC) and phosphorylated protein kinase A at threonine 197 site (p-PKA-Thr197) in the BLA. RESULTS Intra-BLA injection of 5-HT1B receptor agonist CP93129 produced anxiety-like effects and antagonist SB216641 induced anxiolytic-like responses in sham-operated and 6-hydroxydopamine-lesioned rats. Further, pretreatment with AC inhibitor SQ22536 and PKA inhibitor KT5720 blocked the behavioral effects of CP93129, respectively. Intra-BLA injection of CP93129 increased the firing rate of BLA glutamate neurons and decreased GABA/glutamate ratio and DA and 5-HT levels in the BLA of sham-operated and the lesioned rats, while SB216641 induced the opposite effects. Compared with sham-operated rats, effects of CP93129 and SB216641 on behaviors, electrophysiology and microdialysis were decreased in the lesioned rats, which were associated with decreased expression of 5-HT1B receptors, AC and p-PKA-Thr197 in the BLA. CONCLUSION These findings suggest that 5-HT1B receptor-AC-PKA signal pathway in the BLA is involved in the regulation of PD-related anxiety.
Collapse
Affiliation(s)
- Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
6
|
Zhang J, Wang X, Bernardi RE, Ju J, Wei S, Gong Z. Activation of AMPA Receptors in the Lateral Habenula Produces Anxiolytic Effects in a Rat Model of Parkinson’s Disease. Front Pharmacol 2022; 13:821975. [PMID: 35145415 PMCID: PMC8822149 DOI: 10.3389/fphar.2022.821975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Parkinson’s disease (PD) is commonly accompanied with anxiety disorder, however, the mechanisms underlying PD-mediated anxiety remain elusive. The lateral habenula (LHb) is a critical brain region that influences the activity of the monoaminergic system in the midbrain and consequently modulates anxiety. Most neurons in the LHb express AMPA receptors (AMPARs). The PD model for the pharmacological intervention of AMPA receptors was established by the unilateral lesion of the substantia nigra pars compacta (SNc) with 6-hydroxydopamine (6-OHDA). Methods: The AMPAR agonist (S)-AMPA and antagonist NBQX were microinjected into the LHb, respectively, to examine whether anxiety-like behaviors were altered in sham-operated and SNc-lesion rats, measured with the paradigms of the open-field test (OPT) and elevated plus maze (EPM). Furthermore, dopamine (DA) and 5-hydroxytryptamine (5-HT) levels in the basolateral amygdala (BLA) were measured using in vivo microdialysis immediately following the injections of (S)-AMPA and NBQX into the LHb. Results: Activation of LHb AMPA receptors by (S)-AMPA produced anxiolytic-like behaviors and enhanced the extracellular DA and 5-HT in the BLA. Conversely, NBQX induced anxiety-like effects and suppressed the extracellular DA and 5-HT in the BLA. In addition, the minimal doses inducing the effects in the SNc-lesion rats were lower than those in sham-operated rats. Conclusion: These findings suggest that the effects of AMPA receptors in the LHb on anxiety-like behaviors likely involve the extracellular levels of DA and 5-HT in the BLA. The present results may improve our understanding of the neuropathology and/or treatment of PD.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xiaobing Wang
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
| | - Rick E. Bernardi
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg, Germany
| | - Jun Ju
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Shoupeng Wei
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Centre, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Shoupeng Wei, ; Zhiting Gong,
| | - Zhiting Gong
- Department of Anatomy, College of Preclinical Medicine, Dali University, Dali, China
- *Correspondence: Shoupeng Wei, ; Zhiting Gong,
| |
Collapse
|
7
|
Du CX, Guo Y, Liu J. Lesions of the lateral habenula produce anxiolytic effects in a rat model of Parkinson's disease. Neurol Res 2021; 43:785-792. [PMID: 34081574 DOI: 10.1080/01616412.2021.1935100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Objective: This study was designed to investigate the effects of lateral habenula (LHb) lesion on anxiety-like behaviors in parkinsonian rats.Methods: Anxiety-like behaviors were assessed by the open field and elevated plus maze (EPM) tests in control, medial forebrain bundle (MFB)-lesioned, MFB- and LHb-lesioned and MFB-lesioned and LHb sham-lesioned rats, respectively. The levels of extracellular dopamine (DA), serotonin (5-HT) and noradrenaline (NA) in the basolateral amygdala (BLA) were measured by in vivo microdialysis and neurochemistry.Results: Compared to control rats, MFB lesions in rats decreased the percentage of time spent in the central area in the open field test and the percentages of open arm time and open arm entries in the EPM test, indicating the induction of anxiety-like behaviors, and this lesion also decreased the level of extracellular DA in the BLA. Further, rats in the MFB + LHb lesion group showed increased percentage of time spent in the central area and the percentages of open arm time and open arm entries compared to rats in the MFB lesion group, suggesting anxiolytic effects after lesioning the LHb. Neurochemical results found that lesions of the LHb increased the levels of extracellular DA and 5-HT in the BLA in the MFB and LHb lesion groups, whereas NA level was not altered.Discussion: These findings suggest that depletion of DA plays an important role in anxiety-like behaviors, and lesions of the LHb produce anxiolytic responses in MFB-lesioned rats, which are related to increased levels of extracellular DA and 5-HT in the BLA.
Collapse
Affiliation(s)
- Cheng Xue Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Neurology, Xi'an 3rd Hospital, Xi'an, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
8
|
Vidal B, Levigoureux E, Chaib S, Bouillot C, Billard T, Newman-Tancredi A, Zimmer L. Different Alterations of Agonist and Antagonist Binding to 5-HT1A Receptor in a Rat Model of Parkinson’s Disease and Levodopa-Induced Dyskinesia: A MicroPET Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:1257-1269. [DOI: 10.3233/jpd-212580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: The gold-standard treatment for Parkinson’s disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a “false neurotransmitter”. The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. Objective: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed “off” L-DOPA. Methods: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. Results: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. Conclusion: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson’s disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.
Collapse
Affiliation(s)
- Benjamin Vidal
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
| | - Elise Levigoureux
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Sarah Chaib
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | | | - Thierry Billard
- CERMEP-Imaging Platform, Bron, France
- Institute of Chemistry and Biochemistry, Université de Lyon, CNRS, Villeurbanne, France
| | | | - Luc Zimmer
- Lyon Neuroscience Research Center, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon, France
- Hospices Civils de Lyon, Lyon, France
- CERMEP-Imaging Platform, Bron, France
| |
Collapse
|
9
|
Yang Y, Liu J, Wang Y, Wu X, Li L, Bian G, Li W, Yuan H, Zhang Q. Blockade of pre-synaptic and post-synaptic GABA B receptors in the lateral habenula produces different effects on anxiety-like behaviors in 6-hydroxydopamine hemiparkinsonian rats. Neuropharmacology 2021; 196:108705. [PMID: 34246684 DOI: 10.1016/j.neuropharm.2021.108705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not known how blockade of GABAB receptors in the region affects anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to hyperactivity of LHb neurons and decreased the level of extracellular dopamine (DA) in the basolateral amygdala (BLA) compared to sham-lesioned rats. Intra-LHb injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both groups. Further, intra-LHb injection of CGP36216 decreased the firing rate of the neurons, and increased the GABA/glutamate ratio in the LHb and release of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 increased the firing rate of the neurons and decreased the GABA/glutamate ratio and release of DA and 5-HT in sham-lesioned and the lesioned rats. However, the doses of the antagonists producing these behavioral effects in the lesioned rats were lower than those in sham-lesioned rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in the lesioned rats. Collectively, these findings suggest that pre-synaptic and post-synaptic GABAB receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway up-regulates function and/or expression of these receptors.
Collapse
Affiliation(s)
- Yaxin Yang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Libo Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guanyun Bian
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haifeng Yuan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
10
|
de Faria SM, de Morais Fabrício D, Tumas V, Castro PC, Ponti MA, Hallak JE, Zuardi AW, Crippa JAS, Chagas MHN. Effects of acute cannabidiol administration on anxiety and tremors induced by a Simulated Public Speaking Test in patients with Parkinson's disease. J Psychopharmacol 2020; 34:189-196. [PMID: 31909680 DOI: 10.1177/0269881119895536] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cannabidiol (CBD) is one of the main components of Cannabis sativa and has anxiolytic properties, but no study has been conducted to evaluate the effects of CBD on anxiety signs and symptoms in patients with Parkinson's disease (PD). This study aimed to evaluate the impacts of acute CBD administration at a dose of 300 mg on anxiety measures and tremors induced by a Simulated Public Speaking Test (SPST) in individuals with PD. METHODS A randomised, double-blinded, placebo-controlled, crossover clinical trial was conducted. A total of 24 individuals with PD were included and underwent two experimental sessions within a 15-day interval. After taking CBD or a placebo, participants underwent the SPST. During the test, the following data were collected: heart rate, systemic blood pressure and tremor frequency and amplitude. In addition, the Visual Analog Mood Scales (VAMS) and Self-Statements during Public Speaking Scale were applied. Statistical analysis was performed by repeated-measures analysis of variance (ANOVA) while considering the drug, SPST phase and interactions between these variables. RESULTS There were statistically significant differences in the VAMS anxiety factor for the drug; CBD attenuated the anxiety experimentally induced by the SPST. Repeated-measures ANOVA showed significant differences in the drug for the variable related to tremor amplitude as recorded by the accelerometer. CONCLUSION Acute CBD administration at a dose of 300 mg decreased anxiety in patients with PD, and there was also decreased tremor amplitude in an anxiogenic situation.
Collapse
Affiliation(s)
| | | | - Vitor Tumas
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paula Costa Castro
- Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil
| | - Moacir Antonelli Ponti
- Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, Brazil
| | - Jaime Ec Hallak
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Alexandre S Crippa
- Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
11
|
Piotrowicz Z, Chalimoniuk M, Płoszczyca K K, Czuba M, Langfort J. Acute normobaric hypoxia does not affect the simultaneous exercise-induced increase in circulating BDNF and GDNF in young healthy men: A feasibility study. PLoS One 2019; 14:e0224207. [PMID: 31644554 PMCID: PMC6808427 DOI: 10.1371/journal.pone.0224207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 01/25/2023] Open
Abstract
Physical exercise has a neuromodulatory effect on the central nervous system (CNS) partially by modifying expression of neuropeptides produced and secreted by neurons and glial cells, among which the best examined are brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Because both neurotrophins can cross the brain-blood barrier (BBB), their blood levels indirectly reflect their production in the CNS. Moreover, both neuropeptides are involved in modulation of dopaminergic and serotoninergic system function. Because limited information is available on the effects of exercise to volition exhaustion and acute hypoxia on CNS, BDNF and GDNF formation, the aims of the present study were to verify whether 1) acute exercise to exhaustion in addition to neurons also activates glial cells and 2) additional exposure to acute normobaric moderate hypoxia affects their function. In this feasibility study we measured blood concentrations of BDNF, GDNF, and neuropeptides considered as biomarkers of brain damage (bFGF, NGF, S100B, GFAP) in seven sedentary healthy young men who performed a graded exercise test to volitional exhaustion on a cycle ergometer under normoxic (N) and hypoxic conditions: 2,000 m (H2; FiO2 = 16.6%) and 3,000 m altitude (H3; FiO2 = 14.7%). In all conditions serum concentrations of both BDNF and GDNF increased immediately after cessation of exercise (p<0.01). There was no effect of condition or interaction (condition x time of measurement) and exercise on any of the brain damage biomarkers: bFGF, NGF, S100B, GFAP. Moreover, in N (0<0.01) and H3 (p<0.05) exercise caused elevated serum 5-HT concentration. The results suggest that a graded effort to volitional exhaustion in normoxia, as well as hypoxia, simultaneously activates both neurons and astrocytes. Considering that s100B, GFAP, bFGF, and NGF (produced mainly by astrocytes) are markers of brain damage, it can be assumed that a maximum effort in both conditions is safe for the CNS.
Collapse
Affiliation(s)
- Zofia Piotrowicz
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Tourism and Health in Biała Podlaska, The Józef Piłsudski University of Physical Education, Warsaw, Poland
| | | | - Miłosz Czuba
- Department of Kinesiology, Institute of Sport, Warsaw, Poland
- Department of Sports Theory, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Józef Langfort
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| |
Collapse
|
12
|
Vieira JCF, Bassani TB, Santiago RM, de O. Guaita G, Zanoveli JM, da Cunha C, Vital MA. Anxiety-like behavior induced by 6-OHDA animal model of Parkinson’s disease may be related to a dysregulation of neurotransmitter systems in brain areas related to anxiety. Behav Brain Res 2019; 371:111981. [DOI: 10.1016/j.bbr.2019.111981] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/22/2019] [Accepted: 05/25/2019] [Indexed: 12/22/2022]
|
13
|
Liu KC, Guo Y, Zhang J, Chen L, Liu YW, Lv SX, Xie W, Wang HS, Zhang YM, Zhang L. Activation and blockade of dorsal hippocampal Serotonin6 receptors regulate anxiety-like behaviors in a unilateral 6-hydroxydopamine rat model of Parkinson’s disease. Neurol Res 2019; 41:791-801. [PMID: 31056008 DOI: 10.1080/01616412.2019.1611204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kun Cheng Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Neurology, West China Hospital, SiChuan University, Chengdu, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yi Wei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shu Xuan Lv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wen Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hui Sheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yu Ming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Department of Anesthesiology, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
14
|
Serotonergic dysfunction in a model of parkinsonism induced by reserpine. J Chem Neuroanat 2019; 96:73-78. [DOI: 10.1016/j.jchemneu.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
|
15
|
Faivre F, Joshi A, Bezard E, Barrot M. The hidden side of Parkinson’s disease: Studying pain, anxiety and depression in animal models. Neurosci Biobehav Rev 2019; 96:335-352. [DOI: 10.1016/j.neubiorev.2018.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
|
16
|
Yamashita PS, Rosa DS, Lowry CA, Zangrossi H. Serotonin actions within the prelimbic cortex induce anxiolysis mediated by serotonin 1a receptors. J Psychopharmacol 2018; 33:269881118817384. [PMID: 30565963 DOI: 10.1177/0269881118817384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Serotonin plays an important role in the regulation of anxiety, acting through complex modulatory mechanisms within distinct brain structures. Serotonin can act through complex negative feedback mechanisms controlling the neuronal activity of serotonergic circuits and downstream physiologic and behavioral responses. Administration of serotonin or the serotonin 1A receptor agonist, (±)-8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), into the prefrontal cortex, inhibits anxiety-like responses. The prelimbic area of the prefrontal cortex regulates serotonergic neurons within the dorsal raphe nucleus and is involved in modulating anxiety-like behavioral responses. AIMS: This study aimed to investigate the serotonergic role within the prelimbic area on anxiety- and panic-related defensive behavioral responses. METHODS: We investigated the effects of serotonin within the prelimbic area on inhibitory avoidance and escape behaviors in the elevated T-maze. We also extended the investigation to serotonin 1A, 2A, and 2C receptors. RESULTS: Intra-prelimbic area injection of serotonin or 8-OH-DPAT induced anxiolytic effects without affecting escape behaviors. Previous administration of the serotonin 1A receptor antagonist, WAY-100635, into the prelimbic area counteracted the anxiolytic effects of serotonin. Neither the serotonin 2A nor the serotonin 2C receptor preferential agonists, (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) and 6-chloro-2-(1-piperazinyl) pyrazine (MK-212), respectively, affected behavioral responses in the elevated T-maze. CONCLUSION: Facilitation of serotonergic signaling within the prelimbic area of rats induced an anxiolytic effect in the elevated T-maze test, which was mediated by local serotonin 1A receptors. This inhibition of anxiety-like defensive behavioral responses may be mediated by prelimbic area projections to neural systems controlling anxiety, such as the dorsal raphe nucleus or basolateral amygdala.
Collapse
Affiliation(s)
- Paula Sm Yamashita
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Daiane S Rosa
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Christopher A Lowry
- 2 Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Helio Zangrossi
- 1 Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
- 3 Department of Neuroscience and Behavioral Science, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
17
|
Du CX, Guo Y, Zhang QJ, Zhang J, Lv SX, Liu J. Involvement of prelimbic 5-HT 7 receptors in the regulation of anxiety-like behaviors in hemiparkinsonian rats. Neurol Res 2018; 40:847-855. [PMID: 29989483 DOI: 10.1080/01616412.2018.1493962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE At present, little is known about the role of serotonin7 (5-HT7) receptor in anxiety, particularly in Parkinson's disease-related anxiety. Here, we tested whether 5-HT7 receptors in the prelimbic (PrL) cortex are involved in the regulation of anxiety-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle (MFB). METHODS The open field and elevated plus maze (EPM) tests were performed to study the influence of MFB lesion and intra-PrL injection of 5-HT7 agonist AS19 (0.5, 1 or 2 μg/rat) and antagonist SB269970 (1.5, 3 or 6 μg/rat) on anxiety-like behaviors. Additionally, changes in monoamine levels in limbic and limbic-related brain regions were observed after intra-PrL injection of AS19 (2 μg/rat) and SB269970 (6 μg/rat). RESULTS The MFB lesion induced anxiety-like behaviors compared to sham-operated rats. Intra-PrL injection of AS19 showed anxiolytic effects by the open field and EPM tests in two groups of rats, and administration of SB269970 showed anxiogenic responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 increased dopamine, 5-HT and noradrenaline (NA) levels in the medial prefrontal cortex, ventral hippocampus and amygdala in two groups of rats, whereas SB269970 decreased 5-HT and NA levels in these brain regions. DISCUSSION 5-HT7 receptors in the PrL are involved in the regulation of anxiety-like behaviors, which is attributable to changes in dopamine, 5-HT and NA levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors. ABBREVIATIONS 6-OHDA: 6-hydroxydopamine; DMSO: dimethyl sulfoxide; DA: dopamine; EPM: elevated plus maze; MFB: medial forebrain bundlem; PFC: medial prefrontal cortex; NA: noradrenaline; PD: Pakinson's disease; PrL: prelimbic; 5-HT: serotonin; vHip: ventral hippocampus.
Collapse
Affiliation(s)
- Cheng Xue Du
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Yuan Guo
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Qiao Jun Zhang
- b Department of Rehabilitation Medicine , The Second Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Jin Zhang
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Shu Xuan Lv
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China
| | - Jian Liu
- a Department of Physiology and Pathophysiology, School of Basic Medical Sciences , Xi'an Jiaotong University Health Science Center , Xi'an , China.,c Key Laboratory of Environment and Genes Related to Diseases , Ministry of Education of China , Xi'an , China
| |
Collapse
|
18
|
Sun YN, Yao L, Li LB, Wang Y, Du CX, Guo Y, Liu J. Activation and blockade of basolateral amygdala 5-HT6 receptor produce anxiolytic-like behaviors in an experimental model of Parkinson’s disease. Neuropharmacology 2018; 137:275-285. [DOI: 10.1016/j.neuropharm.2018.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/16/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
|
19
|
β-asarone and levodopa coadministration increases striatal levels of dopamine and levodopa and improves behavioral competence in Parkinson's rat by enhancing dopa decarboxylase activity. Biomed Pharmacother 2017; 94:666-678. [DOI: 10.1016/j.biopha.2017.07.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/21/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
|
20
|
Miyazaki I, Asanuma M. Serotonin 1A Receptors on Astrocytes as a Potential Target for the Treatment of Parkinson's Disease. Curr Med Chem 2016; 23:686-700. [PMID: 26795196 PMCID: PMC4997990 DOI: 10.2174/0929867323666160122115057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/12/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Astrocytes are the most abundant neuron-supporting glial cells in the central nervous system. The neuroprotective role of astrocytes has been demonstrated in various neurological disorders such as amyotrophic lateral sclerosis, spinal cord injury, stroke and Parkinson’s disease (PD). Astrocyte dysfunction or loss-of-astrocytes increases the susceptibility of neurons to cell death, while astrocyte transplantation in animal studies has therapeutic advantage. We reported recently that stimulation of serotonin 1A (5-HT1A) receptors on astrocytes promoted astrocyte proliferation and upregulated antioxidative molecules to act as a neuroprotectant in parkinsonian mice. PD is a progressive neurodegenerative disease with motor symptoms such as tremor, bradykinesia, rigidity and postural instability, that are based on selective loss of nigrostriatal dopaminergic neurons, and with non-motor symptoms such as orthostatic hypotension and constipation based on peripheral neurodegeneration. Although dopaminergic therapy for managing the motor disability associated with PD is being assessed at present, the main challenge remains the development of neuroprotective or disease-modifying treatments. Therefore, it is desirable to find treatments that can reduce the progression of dopaminergic cell death. In this article, we summarize first the neuroprotective properties of astrocytes targeting certain molecules related to PD. Next, we review neuroprotective effects induced by stimulation of 5-HT1A receptors on astrocytes. The review discusses new promising therapeutic strategies based on neuroprotection against oxidative stress and prevention of dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
21
|
Activation and blockade of prelimbic 5-HT6 receptors produce different effects on depressive-like behaviors in unilateral 6-hydroxydopamine-induced Parkinson's rats. Neuropharmacology 2016; 110:25-36. [DOI: 10.1016/j.neuropharm.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/15/2022]
|
22
|
Activation and blockade of serotonin6 receptors in the dorsal hippocampus enhance T maze and hole-board performance in a unilateral 6-hydroxydopamine rat model of Parkinson's disease. Brain Res 2016; 1650:184-195. [DOI: 10.1016/j.brainres.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/28/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022]
|
23
|
Han LN, Zhang L, Sun YN, Du CX, Zhang YM, Wang T, Zhang J, Liu J. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats. Brain Res 2016; 1644:79-87. [PMID: 27178363 DOI: 10.1016/j.brainres.2016.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 01/21/2023]
Abstract
Preclinical studies indicate that serotonin7 (5-HT7) receptors may regulate depressive-like behaviors. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT7 receptors in the lateral habenular nucleus (LHb) involve in the regulation of PD-related depression. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-LHb injection of 5-HT7 receptor agonist AS19 (1, 2 and 4μg/rat) induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-LHb injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6μg/rat) produced antidepressant effects in the two groups of rats. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-LHb injection of AS19 (4μg/rat) decreased dopamine and 5-HT levels in the medial prefrontal cortex, habenula and hippocampus in sham-operated and the lesioned rats; whereas SB269970 (6μg/rat) increased dopamine and 5-HT levels in these structures. In addition, noradrenaline levels in these structures were not changed after intra-LHb injection of AS19 or SB269970 in the two groups of rats. These findings suggest that activation or blockade of 5-HT7 receptors in the LHb may change the activity of LHb glutamate neurons, and then decreases or increases dopamine and 5-HT levels in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors.
Collapse
Affiliation(s)
- Ling Na Han
- Department of Physiology, Changzhi Medical College, Changzhi 046000, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yi Na Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Cheng Xue Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Yu Ming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jin Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
24
|
Magnard R, Vachez Y, Carcenac C, Krack P, David O, Savasta M, Boulet S, Carnicella S. What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease? Transl Psychiatry 2016; 6:e753. [PMID: 26954980 PMCID: PMC4872443 DOI: 10.1038/tp.2016.17] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
In addition to classical motor symptoms, Parkinson's disease (PD) patients display incapacitating neuropsychiatric manifestations, such as apathy, anhedonia, depression and anxiety. These hitherto generally neglected non-motor symptoms, have gained increasing interest in medical and scientific communities over the last decade because of the extent of their negative impact on PD patients' quality of life. Although recent clinical and functional imaging studies have provided useful information, the pathophysiology of apathy and associated affective impairments remains elusive. Our aim in this review is to summarize and discuss recent advances in the development of rodent models of PD-related neuropsychiatric symptoms using neurotoxin lesion-based approaches. The data collected suggest that bilateral and partial lesions of the nigrostriatal system aimed at inducing reliable neuropsychiatric-like deficits while avoiding severe motor impairments that may interfere with behavioral evaluation, is a more selective and efficient strategy than medial forebrain bundle lesions. Moreover, of all the different classes of pharmacological agents, D2/D3 receptor agonists such as pramipexole appear to be the most efficient treatment for the wide range of behavioral deficits induced by dopaminergic lesions. Lesion-based rodent models, therefore, appear to be relevant tools for studying the pathophysiology of the non-motor symptoms of PD. Data accumulated so far confirm the causative role of dopaminergic depletion, especially in the nigrostriatal system, in the development of behavioral impairments related to apathy, depression and anxiety. They also put forward D2/D3 receptors as potential targets for the treatment of such neuropsychiatric symptoms in PD.
Collapse
Affiliation(s)
- R Magnard
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - Y Vachez
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - C Carcenac
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - P Krack
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France,Movement Disorder Unit, Department of Psychiatry and Neurology, CHU de Grenoble, Grenoble, France
| | - O David
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - M Savasta
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - S Boulet
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| | - S Carnicella
- Inserm U1216, Grenoble, France,Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France,Inserm U1216, Grenoble Institute of Neuroscience, Site Santé La Tronche - BP 170, 38042 Grenoble, France. E-mail:
| |
Collapse
|
25
|
Ragan CM, Harding KM, Lonstein JS. Associations among within-litter differences in early mothering received and later emotional behaviors, mothering, and cortical tryptophan hydroxylase-2 expression in female laboratory rats. Horm Behav 2016; 77:62-71. [PMID: 26219576 PMCID: PMC7005883 DOI: 10.1016/j.yhbeh.2015.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/25/2022]
Abstract
This article is part of a Special Issue "Parental Care". The effects of differential maternal care received on offspring phenotype in rodents has been extensively studied between litters, but the consequences of differential mothering within litters on offspring neurobehavioral development have been rarely examined. We here investigated how variability in maternal care received among female rat siblings (measured four times daily on postnatal days 4, 6, 8, and 10) relates to the siblings' later emotional and maternal behaviors. As previously reported, we found that some female pups received up to three times more maternal licking bouts compared to their sisters; this difference was positively correlated with the pups' body weights. The number of maternal licking bouts that females received was negatively correlated with their later neophobic behaviors in an open field during periadolescence, but positively correlated with their anxiety-related behavior in an elevated plus maze during adulthood. Licking received was also positively correlated with females' later likelihood to retrieve pups in a maternal sensitization paradigm. In addition, females' neophobia during adolescence and anxiety-related behavior during adulthood predicted some aspects of both postpartum and sensitized maternal responsiveness. Medial prefrontal cortex expression of tryptophan hydroxylase-2 (TPH2; enzyme necessary for serotonin synthesis) was negatively associated with early maternal licking received. Interestingly, cortical TPH2 was positively associated with the maternal responsiveness of sensitized virgins but negatively associated with it in postpartum females. These results indicate that within-litter differences in maternal care received is an often neglected, but important, contributor to individual differences in offspring socioemotional behaviors as well as to the cortical serotonin neurochemistry that may influence these behaviors.
Collapse
Affiliation(s)
- Christina M Ragan
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Kaitlyn M Harding
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Joseph S Lonstein
- Department of Psychology and Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Zhang QJ, Du CX, Tan HH, Zhang L, Li LB, Zhang J, Niu XL, Liu J. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model. Neuroscience 2015; 311:45-55. [PMID: 26470809 DOI: 10.1016/j.neuroscience.2015.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/27/2023]
Abstract
The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.
Collapse
Affiliation(s)
- Q J Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - C X Du
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - H H Tan
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - L Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - L B Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - X L Niu
- Department of Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
27
|
Liu KC, Li JY, Tan HH, Du CX, Xie W, Zhang YM, Ma WL, Zhang L. Serotonin6 receptors in the dorsal hippocampus regulate depressive-like behaviors in unilateral 6-hydroxydopamine-lesioned Parkinson's rats. Neuropharmacology 2015; 95:290-8. [DOI: 10.1016/j.neuropharm.2015.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
|
28
|
Activation of 5-HT₁A receptors in the medial subdivision of the central nucleus of the amygdala produces anxiolytic effects in a rat model of Parkinson's disease. Neuropharmacology 2015; 95:181-91. [PMID: 25797491 DOI: 10.1016/j.neuropharm.2015.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 11/21/2022]
Abstract
Although the medial subdivision of the central nucleus of the amygdala (CeM) and serotonin-1A (5-HT1A) receptors are involved in the regulation of anxiety, their roles in Parkinson's disease (PD)-associated anxiety are still unknown. Here we assessed the importance of CeM 5-HT1A receptors for anxiety in rats with unilateral 6-hydroxydopamine (6-OHDA) lesion of the medial forebrain bundle (MFB). The lesion induced anxiety-like behaviors, increased the firing rate and burst-firing pattern of CeM γ-aminobutyric acid (GABA) neurons, as well as decreased dopamine (DA) levels in the striatum, medial prefrontal cortex (mPFC), amygdala and ventral part of hippocampus (vHip). Intra-CeM injection of the selective 5-HT1A receptor agonist 8-OH-DPAT produced anxiolytic effects in the lesioned rats, and decreased the firing rate of CeM GABAergic neurons in two groups of rats. Compared to sham-operated rats, the duration of the inhibitory effect on the firing rate of GABAergic neurons was shortened in the lesioned rats. The injection increased DA levels in the mPFC and amygdala in two groups of rats and the vHip in the lesioned rats, and increased 5-HT level in the lesioned rats, whereas it decreased NA levels in the mPFC in two groups of rats and the vHip in the lesioned rats. Moreover, the mean density of 5-HT1A receptor and GABA double-labeled neurons in the CeM was reduced after the lesioning. These results suggest that activation of CeM 5-HT1A receptor produces anxiolytic effects in the 6-OHDA-lesioned rats, which involves decreased firing rate of the GABAergic neurons, and changed monoamine levels in the limbic and limbic-related brain regions.
Collapse
|
29
|
|