1
|
van den Berg MM, Wong AB, Houtak G, Williamson RS, Borst JGG. Sodium salicylate improves detection of amplitude-modulated sound in mice. iScience 2024; 27:109691. [PMID: 38736549 PMCID: PMC11088340 DOI: 10.1016/j.isci.2024.109691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/14/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Salicylate is commonly used to induce tinnitus in animals, but its underlying mechanism of action is still debated. We therefore tested its effects on the firing properties of neurons in the mouse inferior colliculus (IC). Salicylate induced a large decrease in the spontaneous activity and an increase of ∼20 dB SPL in the minimum threshold of single units. In response to sinusoidally modulated noise (SAM noise) single units showed both an increase in phase locking and improved rate coding. Mice also became better at detecting amplitude modulations, and a simple threshold model based on the IC population response could reproduce this improvement. The responses to dynamic random chords (DRCs) suggested that the improved AM encoding was due to a linearization of the cochlear output, resulting in larger contrasts during SAM noise. These effects of salicylate are not consistent with the presence of tinnitus, but should be taken into account when studying hyperacusis.
Collapse
Affiliation(s)
- Maurits M. van den Berg
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Aaron B. Wong
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Ghais Houtak
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| | - Ross S. Williamson
- Pittsburgh Hearing Research Center, Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, NL-3015 GD Rotterdam, the Netherlands
| |
Collapse
|
2
|
Lefler SM, Duncan RK, Goodman SS, Guinan JJ, Lichtenhan JT. Measurements From Ears With Endolymphatic Hydrops and 2-Hydroxypropyl-Beta-Cyclodextrin Provide Evidence That Loudness Recruitment Can Have a Cochlear Origin. Front Surg 2021; 8:687490. [PMID: 34676239 PMCID: PMC8523923 DOI: 10.3389/fsurg.2021.687490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Loudness recruitment is commonly experienced by patients with putative endolymphatic hydrops. Loudness recruitment is abnormal loudness growth with high-level sounds being perceived as having normal loudness even though hearing thresholds are elevated. The traditional interpretation of recruitment is that cochlear amplification has been reduced. Since the cochlear amplifier acts primarily at low sound levels, an ear with elevated thresholds from reduced cochlear amplification can have normal processing at high sound levels. In humans, recruitment can be studied using perceptual loudness but in animals physiological measurements are used. Recruitment in animal auditory-nerve responses has never been unequivocally demonstrated because the animals used had damage to sensory and neural cells, not solely a reduction of cochlear amplification. Investigators have thus looked for, and found, evidence of recruitment in the auditory central nervous system (CNS). While studies on CNS recruitment are informative, they cannot rule out the traditional interpretation of recruitment originating in the cochlea. Design: We used techniques that could assess hearing function throughout entire frequency- and dynamic-range of hearing. Measurements were made from two animal models: guinea-pig ears with endolymphatic-sac-ablation surgery to produce endolymphatic hydrops, and naïve guinea-pig ears with cochlear perfusions of 13 mM 2-Hydroxypropyl-Beta-Cyclodextrin (HPBCD) in artificial perilymph. Endolymphatic sac ablation caused low-frequency loss. Animals treated with HPBCD had hearing loss at all frequencies. None of these animals had loss of hair cells or synapses on auditory nerve fibers. Results: In ears with endolymphatic hydrops and those perfused with HPBCD, auditory-nerve based measurements at low frequencies showed recruitment compared to controls. Recruitment was not found at high frequencies (> 4 kHz) where hearing thresholds were normal in ears with endolymphatic hydrops and elevated in ears treated with HPBCD. Conclusions: We found compelling evidence of recruitment in auditory-nerve data. Such clear evidence has never been shown before. Our findings suggest that, in patients suspected of having endolymphatic hydrops, loudness recruitment may be a good indication that the associated low-frequency hearing loss originates from a reduction of cochlear amplification, and that measurements of recruitment could be used in differential diagnosis and treatment monitoring of Ménière's disease.
Collapse
Affiliation(s)
- Shannon M Lefler
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| | - Robert K Duncan
- Department of Otolaryngology-Head and Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - John J Guinan
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
| | - Jeffery T Lichtenhan
- Department of Otolaryngology, Washington University School of Medicine in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
3
|
Liu Y, Alkharabsheh A, Sun W. Hyperexcitability of the Nucleus Accumbens Is Involved in Noise-Induced Hyperacusis. Neural Plast 2020; 2020:8814858. [PMID: 33293947 PMCID: PMC7714561 DOI: 10.1155/2020/8814858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/18/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Reduced tolerance to sound stimuli (hyperacusis) is commonly seen in tinnitus patients. Dysfunction of limbic systems, such as the nucleus accumbens (NAc), may be involved in emotional reactions to the sound stimuli in tinnitus patients. To study the functional changes in the NAc in hyperacusis, we have examined the neural activity changes of the NAc using c-Fos staining in an animal model of hyperacusis. The c-Fos staining was also examined in the medial geniculate nucleus (MGN), a central auditory pathway which has neural projections to the NAc. Postnatal rats (14 days) were exposed to loud noise (115 dB SPL, 4 hours for two consecutive days) to induce hyperacusis (n = 4). Rats without noise exposure were used as the controls (n = 4). After P35, rats in both groups were put in a behavioral training for sound detection. After they were trained to detect sound stimuli, their reaction time to noise bursts centered at 2 kHz (40-110 dB SPL) was measured. Rats in the noise group showed a significantly shorter reaction time than those in the control group to the noise bursts at high intensities, suggesting the noise exposure induced hyperacusis behavior. The c-Fos expressions in the NAc and the MGNs of the noise group were significantly higher than those of the control group. Our results suggested that early-age noise exposure caused hyperactivity in the NAc and the MGNs which may induce the loudness increase in these rats.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, China 200080
| | - Ana''am Alkharabsheh
- Department of Hearing and Speech Sciences, University of Jordan, Queen Rania Al Abdallah St., Amman, Jordan 11942
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
4
|
Ventral cochlear nucleus bushy cells encode hyperacusis in guinea pigs. Sci Rep 2020; 10:20594. [PMID: 33244141 PMCID: PMC7693270 DOI: 10.1038/s41598-020-77754-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022] Open
Abstract
Psychophysical studies characterize hyperacusis as increased loudness growth over a wide-frequency range, decreased tolerance to loud sounds and reduced behavioral reaction time latencies to high-intensity sounds. While commonly associated with hearing loss, hyperacusis can also occur without hearing loss, implicating the central nervous system in the generation of hyperacusis. Previous studies suggest that ventral cochlear nucleus bushy cells may be putative neural contributors to hyperacusis. Compared to other ventral cochlear nucleus output neurons, bushy cells show high firing rates as well as lower and less variable first-spike latencies at suprathreshold intensities. Following cochlear damage, bushy cells show increased spontaneous firing rates across a wide-frequency range, suggesting that they might also show increased sound-evoked responses and reduced latencies to higher-intensity sounds. However, no studies have examined bushy cells in relationship to hyperacusis. Herein, we test the hypothesis that bushy cells may contribute to the neural basis of hyperacusis by employing noise-overexposure and single-unit electrophysiology. We find that bushy cells exhibit hyperacusis-like neural firing patterns, which are comprised of enhanced sound-driven firing rates, reduced first-spike latencies and wideband increases in excitability.
Collapse
|
5
|
McCullagh EA, Rotschafer SE, Auerbach BD, Klug A, Kaczmarek LK, Cramer KS, Kulesza RJ, Razak KA, Lovelace JW, Lu Y, Koch U, Wang Y. Mechanisms underlying auditory processing deficits in Fragile X syndrome. FASEB J 2020; 34:3501-3518. [PMID: 32039504 DOI: 10.1096/fj.201902435r] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/18/2020] [Indexed: 01/14/2023]
Abstract
Autism spectrum disorders (ASD) are strongly associated with auditory hypersensitivity or hyperacusis (difficulty tolerating sounds). Fragile X syndrome (FXS), the most common monogenetic cause of ASD, has emerged as a powerful gateway for exploring underlying mechanisms of hyperacusis and auditory dysfunction in ASD. This review discusses examples of disruption of the auditory pathways in FXS at molecular, synaptic, and circuit levels in animal models as well as in FXS individuals. These examples highlight the involvement of multiple mechanisms, from aberrant synaptic development and ion channel deregulation of auditory brainstem circuits, to impaired neuronal plasticity and network hyperexcitability in the auditory cortex. Though a relatively new area of research, recent discoveries have increased interest in auditory dysfunction and mechanisms underlying hyperacusis in this disorder. This rapidly growing body of data has yielded novel research directions addressing critical questions regarding the timing and possible outcomes of human therapies for auditory dysfunction in ASD.
Collapse
Affiliation(s)
- Elizabeth A McCullagh
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA.,Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
| | - Sarah E Rotschafer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, Department of Communicative Disorders & Sciences, SUNY at Buffalo, Buffalo, NY, USA
| | - Achim Klug
- Department of Physiology and Biophysics, University of Colorado Anschutz, Aurora, CO, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Randy J Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, CA, USA
| | | | - Yong Lu
- Department of Anatomy and Neurobiology, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Ursula Koch
- Institute of Biology, Neurophysiology, Freie Universität Berlin, Berlin, Germany
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
6
|
Möhrle D, Hofmeier B, Amend M, Wolpert S, Ni K, Bing D, Klose U, Pichler B, Knipper M, Rüttiger L. Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis. Neuroscience 2018; 407:146-169. [PMID: 30599268 DOI: 10.1016/j.neuroscience.2018.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
For successful future therapeutic strategies for tinnitus and hyperacusis, a subcategorization of both conditions on the basis of differentiated neural correlates would be of invaluable advantage. In the present study, we used our refined operant conditioning animal model to divide equally noise-exposed rats into groups with either tinnitus or hyperacusis, with neither condition, or with both conditions co-occurring simultaneously. Using click stimulus and noise burst-evoked Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions, no hearing threshold difference was observed between any of the groups. However, animals with neither tinnitus nor hyperacusis responded to noise trauma with shortened ABR wave I and IV latencies and elevated central neuronal gain (increased ABR wave IV/I amplitude ratio), which was previously assumed in most of the literature to be a neural correlate for tinnitus. In contrast, animals with tinnitus had reduced neural response gain and delayed ABR wave I and IV latencies, while animals with hyperacusis showed none of these changes. Preliminary studies, aimed at establishing comparable non-invasive objective tools for identifying tinnitus in humans and animals, confirmed reduced central gain and delayed response latency in human and animals. Moreover, the first ever resting state functional Magnetic Resonance Imaging (rs-fMRI) analyses comparing humans and rats with and without tinnitus showed reduced rs-fMRI activities in the auditory cortex in both patients and animals with tinnitus. These findings encourage further efforts to establish non-invasive diagnostic tools that can be used in humans and animals alike and give hope for differentiated classification of tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Dorit Möhrle
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Benedikt Hofmeier
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Mario Amend
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Stephan Wolpert
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Kun Ni
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; Shanghai Jiao Tong University, Department of Otolaryngology, Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Luding Road, NO. 355. Putuo District, 200062 Shanghai, China.
| | - Dan Bing
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Uwe Klose
- University Hospital Tübingen, Department of Diagnostic and Interventional Neuroradiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Bernd Pichler
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Marlies Knipper
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Zuo H, Lei D, Sivaramakrishnan S, Howie B, Mulvany J, Bao J. An operant-based detection method for inferring tinnitus in mice. J Neurosci Methods 2017; 291:227-237. [DOI: 10.1016/j.jneumeth.2017.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
|
8
|
Berger JI, Coomber B, Hill S, Alexander SPH, Owen W, Palmer AR, Wallace MN. Effects of the cannabinoid CB 1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs. Hear Res 2017; 356:51-62. [PMID: 29108871 PMCID: PMC5714060 DOI: 10.1016/j.heares.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
Abstract
Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2′-chloroethylamide (ACEA), a highly-selective CB1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6–10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis. CB1 agonist (ACEA) effects were assessed in awake guinea pigs following salicylate. Salicylate-induced decreases in brainstem response amplitudes were tempered by ACEA. Decreases in alpha band oscillations were not evident following salicylate + ACEA. ACEA did not eliminate salicylate-induced increases in cortical evoked potentials. ACEA failed to prevent or reverse salicylate- or noise-induced tinnitus behaviour.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Samantha Hill
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Steve P H Alexander
- School of Life Sciences, Medical School, The University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - William Owen
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
9
|
Jiang C, Luo B, Manohar S, Chen GD, Salvi R. Plastic changes along auditory pathway during salicylate-induced ototoxicity: Hyperactivity and CF shifts. Hear Res 2017; 347:28-40. [PMID: 27989950 PMCID: PMC5403591 DOI: 10.1016/j.heares.2016.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
High dose of salicylate, the active ingredient in aspirin, has long been known to induce transient hearing loss, tinnitus and hyperacusis making it a powerful experimental tool. These salicylate-induced perceptual disturbances are associated with a massive reduction in the neural output of the cochlea. Paradoxically, the diminished neural output of the cochlea is accompanied by a dramatic increase in sound-evoked activity in the auditory cortex (AC) and several other parts of the central nervous system. Exactly where the increase in neural activity begins and builds up along the central auditory pathway are not fully understood. To address this issue, we measured sound-evoked neural activity in the cochlea, cochlear nucleus (CN), inferior colliculus (IC), and AC before and after administering a high dose of sodium salicylate (SS, 300 mg/kg). The SS-treatment abolished low-level sound-evoked responses along the auditory pathway resulting in a 20-30 dB threshold shift. While the neural output of the cochlea was substantially reduced at high intensities, the neural responses in the CN were only slightly reduced; those in the IC were nearly normal or slightly enhanced while those in the AC considerably enhanced, indicative of a progress increase in central gain. The SS-induced increase in central response in the IC and AC was frequency-dependent with the greatest increase occurring in the mid-frequency range the putative pitch of SS-induced tinnitus. This frequency-dependent hyperactivity appeared to result from shifts in the frequency receptive fields (FRF) such that the response areas of many FRF shifted/expanded toward the mid-frequencies. Our results suggest that the SS-induced threshold shift originates in the cochlea. In contrast, enhanced central gain is not localized to one region, but progressively builds up at successively higher stage of the auditory pathway either through a loss of inhibition and/or increased excitation.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui 230001, China; Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bin Luo
- Department of Neurosurgery, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui 230001, China; Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
10
|
Alkharabsheh A, Xiong F, Xiong B, Manohar S, Chen G, Salvi R, Sun W. Early age noise exposure increases loudness perception - A novel animal model of hyperacusis. Hear Res 2017; 347:11-17. [DOI: 10.1016/j.heares.2016.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/04/2016] [Accepted: 06/15/2016] [Indexed: 11/26/2022]
|
11
|
Abernathy MM, Gauvin DV, Tapp RL, Yoder JD, Baird TJ. Utility of the auditory brainstem response evaluation in non-clinical drug safety evaluations. J Pharmacol Toxicol Methods 2015; 75:111-7. [DOI: 10.1016/j.vascn.2015.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/24/2015] [Accepted: 05/07/2015] [Indexed: 01/15/2023]
|
12
|
Auerbach BD, Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol 2014; 5:206. [PMID: 25386157 PMCID: PMC4208401 DOI: 10.3389/fneur.2014.00206] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/30/2014] [Indexed: 12/02/2022] Open
Abstract
Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Paulo V Rodrigues
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Richard J Salvi
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|
13
|
Hayes SH, Radziwon KE, Stolzberg DJ, Salvi RJ. Behavioral models of tinnitus and hyperacusis in animals. Front Neurol 2014; 5:179. [PMID: 25278931 PMCID: PMC4166233 DOI: 10.3389/fneur.2014.00179] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022] Open
Abstract
The phantom perception of tinnitus and reduced sound-level tolerance associated with hyperacusis have a high comorbidity and can be debilitating conditions for which there are no widely accepted treatments. One factor limiting the development of treatments for tinnitus and hyperacusis is the lack of reliable animal behavioral models of these disorders. Therefore, the purpose of this review is to highlight the current animal models of tinnitus and hyperacusis, and to detail the advantages and disadvantages of each paradigm. To date, this is the first review to include models of both tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Sarah H Hayes
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Kelly E Radziwon
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York , Buffalo, NY , USA
| | - Daniel J Stolzberg
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario , London, ON , Canada
| | - Richard J Salvi
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York , Buffalo, NY , USA
| |
Collapse
|