1
|
Lee HY, Song SY, Hwang J, Baek A, Baek D, Kim SH, Park JH, Choi S, Pyo S, Cho SR. Very early environmental enrichment protects against apoptosis and improves functional recovery from hypoxic-ischemic brain injury. Front Mol Neurosci 2023; 15:1019173. [PMID: 36824441 PMCID: PMC9942523 DOI: 10.3389/fnmol.2022.1019173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023] Open
Abstract
Appropriate rehabilitation of stroke patients at a very early phase results in favorable outcomes. However, the optimal strategy for very early rehabilitation is at present unclear due to the limited knowledge on the effects of very early initiation of rehabilitation based on voluntary exercise (VE). Environmental enrichment (EE) is a therapeutic paradigm for laboratory animals that involves complex combinations of physical, cognitive, and social stimuli, as well as VE. Few studies delineated the effect of EE on apoptosis in very early stroke in an experimental model. Although a minimal benefit of early rehabilitation in stroke models has been claimed in previous studies, these were based on a forced exercise paradigm. The aim of this study is to determine whether very early exposure to EE can effectively regulate Fas/FasL-mediated apoptosis following hypoxic-ischemic (HI) brain injury and improve neurobehavioral function. C57Bl/6 mice were housed for 2 weeks in either cages with EE or standard cages (SC) 3 h or 72 h after HI brain injury. Very early exposure to EE was associated with greater improvement in motor function and cognitive ability, reduced volume of the infarcted area, decreased mitochondria-mediated apoptosis, and decreased oxidative stress. Very early exposure to EE significantly downregulated Fas/FasL-mediated apoptosis, decreased expression of Fas, Fas-associated death domain, cleaved caspase-8/caspase-8, cleaved caspase-3/caspase-3, as well as Bax and Bcl-2, in the cerebral cortex and the hippocampus. Delayed exposure to EE, on the other hand, failed to inhibit the extrinsic pathway of apoptosis. This study demonstrates that very early exposure to EE is a potentially useful therapeutic translation for stroke rehabilitation through effective inhibition of the extrinsic and intrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Hoo Young Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea,National Traffic Injury Rehabilitation Hospital, Gyeonggi-do, Republic of Korea,Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Suk-Young Song
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihye Hwang
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ahreum Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dawoon Baek
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Sung Hoon Kim
- Department of Rehabilitation Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jung Hyun Park
- Yonsei University College of Medicine, Seoul, Republic of Korea,Department of Rehabilitation Medicine, Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungchul Choi
- Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soonil Pyo
- Neuracle Science Co. Ltd., Seoul, Republic of Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Sung-Rae Cho
- Graduate Program of Biomedical Engineering, Yonsei University College of Medicine, Seoul, Republic of Korea,Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Republic of Korea,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Republic of Korea,*Correspondence: Sung-Rae Cho, ✉
| |
Collapse
|
2
|
Marrero-Cristobal G, Gelpi-Dominguez U, Morales-Silva R, Alvarado-Torres J, Perez-Torres J, Perez-Perez Y, Sepulveda-Orengo M. Aerobic exercise as a promising nonpharmacological therapy for the treatment of substance use disorders. J Neurosci Res 2022; 100:1602-1642. [PMID: 34850988 PMCID: PMC9156662 DOI: 10.1002/jnr.24990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Despite the prevalence and public health impact of substance use disorders (SUDs), effective long-term treatments remain elusive. Aerobic exercise is a promising, nonpharmacological treatment currently under investigation as a strategy for preventing drug relapse. Aerobic exercise could be incorporated into the comprehensive treatment regimens for people with substance abuse disorders. Preclinical studies of SUD with animal models have shown that aerobic exercise diminishes drug-seeking behavior, which leads to relapse, in both male and female rats. Nevertheless, little is known regarding the effects of substance abuse-induced cellular and physiological adaptations believed to be responsible for drug-seeking behavior. Accordingly, the overall goal of this review is to provide a summary and an assessment of findings to date, highlighting evidence of the molecular and neurological effects of exercise on adaptations associated with SUD.
Collapse
Affiliation(s)
| | - Ursula Gelpi-Dominguez
- School of Behavioral and Brain Sciences, Ponce Health Sciences University, Ponce, PR, USA
| | - Roberto Morales-Silva
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - John Alvarado-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Joshua Perez-Torres
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Yobet Perez-Perez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Marian Sepulveda-Orengo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
3
|
Malekloo R, Nematollahi S, Vafei AA, Rashidy-Pour A. Effects of different intensities of treadmill exercise on cued fear extinction failure, hippocampal BDNF decline, and Bax/Bcl-2 ratio alteration in chronic-morphine treated male rats. Behav Brain Res 2022; 421:113732. [PMID: 34990697 DOI: 10.1016/j.bbr.2021.113732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/30/2021] [Accepted: 12/30/2021] [Indexed: 11/02/2022]
Abstract
Chronic morphine impairs cued fear extinction, which may contribute to the high prevalence of anxiety disorders and the replase of opiate addiction. This work investigated the effects of forced exercise with different intensities on cued fear extinction impairment and alternations of hippocampal BDNF and apoptotic proteins induced by chronic morphine. Rats were injected with bi-daily doses of morphine or saline for ten days and then received a cued or contextual fear conditioning training, which was followed by fear extinction training for four consecutive days. Cued, but the not contextual fear response was impaired in morphine-treated rats. Then, different saline or morphine-treated rats underwent forced exercise for 4-weeks with light, moderate or high intensities. Subsequently, rats received a cued fear conditioning followed by four days of extinction training, and the expression of hippocampal BDNF and apoptotic proteins was determined. A relatively long time after the last injection of morphine (35 days), rats again showed cued fear extinction failure and reduced hippocampal BDNF, which recovered by light and moderate, but not high exercise. Light and moderate, but not high-intensity treadmill exercise enhanced the up-regulation of Bcl-2 and down-regulation of the Bax proteins in both saline- and morphine-treated rats, which shifted the balance between pro-apoptotic and anti-apoptotic factors in favor of cell survival. These findings highlight the impact of exercise up to moderate intensity in the recovery of cued extinction failure, more likely via BDNF in addicted individuals.
Collapse
Affiliation(s)
- Roya Malekloo
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran; Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Abbas Ali Vafei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
4
|
Akbari P, Najafi M, Rezaei AM, Miladi-Gorji H. Enriched Environment Ameliorates Cognitive Deficits and Locomotor Sensitization in Morphine-Withdrawn Rats Receiving Methadone Maintenance Treatment. Neuropsychobiology 2021; 79:437-444. [PMID: 32248192 DOI: 10.1159/000506598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/15/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study was designed to examine whether enriched environments (EE) would attenuate object recognition and spatial learning and memory deficits and locomotor sensitization induced by methadone maintenance treatment (MMT) in morphine-withdrawn rats. METHODS Male Wistar rats (170 ± 10 g) were injected with bi-daily doses (10 mg/kg, 12-h intervals) of morphine for 14 days. Rats receiving MMT were reared in the standard environment (SE) or EE during 30 days of morphine withdrawal. Then, the rats were tested for object recognition (the object recognition memory test, ORMT) and spatial learning and memory (the water maze) and then challenged with morphine (1 mg/kg, i.p.) and evaluated for locomotor activity (open-field box). RESULTS The results revealed that the dependent/saline/EE (D/Sal/EE) and D/methadone/EE (D/Meth/EE) rats exhibited significant preference for the new object (p = 0.006 and p = 0.049), spent more time in the target zone (p = 0.045 and p = 0.005) on the water maze, and displayed a lower level of distance traveled (p = 0.002 and p = 0.0001) compared to their control groups reared in SE. CONCLUSIONS We conclude that exposure to EE could ameliorate the object recognition and spatial memory deficits and also decrease locomotor sensitivity in morphine-withdrawn rats receiving MMT. Thus, EE may be beneficial in the treatment of addiction during MMT.
Collapse
Affiliation(s)
- Parastoo Akbari
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Mahmoud Najafi
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Ali-Mohammad Rezaei
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran, .,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran,
| |
Collapse
|
5
|
Kiashemshaki B, Safakhah HA, Ghanbari A, Khaleghian A, Miladi-Gorji H. Saffron (Crocus sativus L.) stigma reduces symptoms of morphine-induced dependence and spontaneous withdrawal in rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:170-181. [PMID: 33497577 DOI: 10.1080/00952990.2020.1865995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Chronic morphine induces physical and psychological dependence signs. Saffron (Crocus sativus L.) stigma has been shown to have anxiolytic, antidepressant, and antinociceptive properties and to alleviate naloxone-precipitated withdrawal signs.Objectives: Therefore, this study was designed to examine the effects of saffron aqueous extract on the severity of physical-psychological dependence, voluntary morphine consumption, and the cerebrospinal fluid (CSF) serotonin levels following locomotor sensitization in morphine-dependent rats and in rats undergoing morphine withdrawal.Materials: Adult male rats were treated with morphine (10 mg/kg, sc twice daily) for 10 days. Rats received saffron extract (60 mg/kg, ip) daily, during the induction of morphine dependence and/or withdrawal. Then, rats were tested for spontaneous withdrawal signs, anxiety using the elevated plus-maze, depression using sucrose preference test, and voluntary morphine consumption using a two-bottle choice paradigm, and then challenged with morphine (1 mg/kg, ip) to evaluate of locomotor sensitization and CSF serotonin levels.Results: The results showed saffron extract during induction of morphine dependence decreased the severity of withdrawal signs (P = .05), while it had no effect on anxiety and depression-like behaviors. Saffron extract during morphine withdrawal exhibited an increase in the percentage (or ratio) of open/total arm entries (P = .017), higher levels of sucrose preference (P = .0001), a lower morphine preference ratio (P = .02) and also, a decrease in locomotor activity (P = .004) and an increase in the CSF serotonin levels (P = .041) in rats challenged to morphine.Conclusions: Saffron extract may exert a protective effect against morphine-induced behavioral sensitization in rats, probably through increasing serotonin levels.
Collapse
Affiliation(s)
- Benyamin Kiashemshaki
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein-Ali Safakhah
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Miladi-Gorji
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Fazelzadeh M, Afzalpour ME, Fallah Mohammadi Z, Falah Mohammadi H. The effects of voluntary complex and regular wheel running exercises on the levels of 8-oxoguanine DNA glycosylase, semaphorin 3B, H2O2, and apoptosis in the hippocampus of diabetic rats. Brain Behav 2021; 11:e01988. [PMID: 33471970 PMCID: PMC7994679 DOI: 10.1002/brb3.1988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE One of the most frequent complications associated with diabetes mellitus is apoptosis within the brain which can lead to cognitive disorders. Exercise is considered the best non-pharmacological approach to reduce the severity and extent of cell death through poorly-understood mechanisms. The aim of this study was to investigate the effects of voluntary complex and regular wheel running on the levels of 8-oxoguanine DNA glycosylase (OGG1 ), semaphorin 3B (sema3B), hydrogen peroxide (H2 O2 ), and apoptosis in the hippocampus of diabetic rats. METHODS 48 Wistar male rats were randomly divided into 6 groups: healthy control (C), diabetes control (D), regular wheel running + diabetes (RWD), complex wheel running + diabetes (CWD), healthy regular wheel running (RW), and healthy complex wheel running (CW). The diabetic rat model was produced by intraperitoneal injection of streptozotocin (STZ). The protocol encompassed a 4-week voluntary running training regimen on regular and complex wheel running apparatus. The rats were sacrificed 48 hr after the last training session. To measure the protein concentrations within the hippocampus, ELISA has been utilized. One-way ANOVA was used to compare the groups. RESULTS There were no significant differences in OGG1 protein levels between the groups. H2 O2 level in the D group was significantly higher than the C group (p = .002), while this in RWD and CWD groups was considerably lower than the D group (p = .002 and p = .003, respectively). In the D group, the levels of apoptosis and Sema3B were significantly (p = .001 and p = .007, respectively) higher than C, RWD (p = .001, p = .0001, respectively), and CWD groups (p = .001, p = .006, respectively). Nevertheless, there were not any significant differences between RWD and CWD groups. CONCLUSION The increased levels of Sema3B, H2O2, and apoptosis within the hippocampus associated with diabetes could be noticeably restored by both types of voluntary wheel running protocols.
Collapse
Affiliation(s)
- Mohammad Fazelzadeh
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | | | - Ziya Fallah Mohammadi
- Faculty of Sport Sciences, Department of Exercise Physiology, University of Mazandaran, Babolsar, Iran
| | - Hossein Falah Mohammadi
- Faculty of Natural Sciences, Department of Biology, Ulm University, Baden-Württemberg, Germany
| |
Collapse
|
7
|
Mohamad Rezaei R, Shiravi A, Seyedinia SA, Moradi Kor N, Vafaei AA, Rashidy-Pour A. Role of Hippocampal 5-HT6 Receptors in Glucocorticoid-Induced Enhancement of Memory Consolidation in Rats. Basic Clin Neurosci 2021; 11:507-516. [PMID: 33613889 PMCID: PMC7878042 DOI: 10.32598/bcn.9.10.410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/27/2018] [Accepted: 08/20/2019] [Indexed: 11/24/2022] Open
Abstract
Introduction: of the study: Post-training administration of glucocorticoids enhance memory consolidation of inhibitory avoidance learning. Given the involvement of 5-HT6 receptors in memory processing and the interaction of glucocorticoids with the brain serotonergic system in modulating memory processing, we investigated whether the effect of glucocorticoids on the consolidation of emotionally arousing training depends on hippocampal 5-HT6 receptors. Methods: Rats were trained in an inhibitory avoidance task and immediately received the systemic injections of corticosterone (CORT) as well as the intra-hippocampal injections of 5-HT receptors agonist or antagonist. The memory retention test was done 48 hours after training and immediately after the behavioral test, the animals were sacrificed and the hippocampi (left and right) rapidly dissected out for molecular studies. Results: Post-training injections of different doses of CORT (1.25, 2.5, 5, and 10 mg/kg) enhanced memory retention in a dose-dependent manner. The CORT-induced enhancement of memory consolidation was blocked by bilateral intra-hippocampal injections of 5-HT6 receptor antagonist SB271046 (5 or 10 ng/per side), but not agonist EMD386088 (5 or 10 ng/per side). Furthermore, systemic CORT reduced 5-HT6 receptor mRNA and protein expression in the hippocampus. Both doses of 5-HT6 receptor agonist and antagonist significantly enhanced and reduced the expression of the 5-HT6 receptor, respectively, and both ligands at the higher dose (10 ng) enhanced memory consolidation. Moreover, CORT injection attenuated and enhanced, respectively, the effects of agonist and antagonist on 5-HT6 receptor expression. Conclusion: These behavioral and molecular findings indicated an interaction between glucocorticoids and hippocampal 5-HT6 receptors in the consolidation of emotionally arousing experiences.
Collapse
Affiliation(s)
| | | | - Seyed Ali Seyedinia
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasroallah Moradi Kor
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.,Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Voluntary Wheel Running Improves Spatial Learning Memory by Suppressing Inflammation and Apoptosis via Inactivation of Nuclear Factor Kappa B in Brain Inflammation Rats. Int Neurourol J 2020; 24:96-103. [PMID: 33271006 PMCID: PMC7731883 DOI: 10.5213/inj.2040432.216] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose Exercise has been shown to protect against diverse brain diseases. Voluntary exercise improves cognition and has a neuroprotective effect. The aim of this investigation is to study the effect of voluntary wheel running on brain inflammation in rats with regard to inflammation and apoptosis. Methods Brain inflammation was caused by intracranial injection of lipopolysaccharide using a stereotaxic instrument. Voluntary wheel running group were conducted during 21 consecutive days, staring 2 days after brain inflammation. Results Brain inflammation increased proinflammatory cytokine production and apoptosis cell death in the hippocampus. There changes in the hippocampus deteriorated spatial learning memory. However, voluntary wheel running suppressed the secretion of inflammatory cytokines and apoptotic neuronal cell death via inactivation of nuclear factor kappa B (NF-κB)/NF-κB inhibitor-α pathway. Voluntary wheel running also promoted the recovery of the spatial learning memory impairment. Conclusions Voluntary wheel running after brain inflammation enhanced spatial learning memory by suppressing proinflammatory cytokine secretion and apoptosis cell death. Voluntary wheel running is also expected to be effective in inflammatory diseases of the urogenital system.
Collapse
|
9
|
BDNF receptor antagonism during the induction of morphine dependence exacerbates the severity of physical dependence and ameliorates psychological dependence in rats. Neurosci Lett 2020; 737:135332. [PMID: 32860885 DOI: 10.1016/j.neulet.2020.135332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) during induction of morphine dependence on the severity of physical and psychological dependence and the cerebrospinal fluid (CSF) BDNF levels in morphine-dependent and withdrawn rats. Rats became morphine-dependent by increasing daily doses of morphine for 7 days, along with ANA-12 injection. Then, rats were tested for the severity of physical dependence on morphine (spontaneous withdrawal signs), anxiety-like (the elevated plus maze), depressive-like (sucrose preference test) behaviors after spontaneous morphine withdrawal. Also, the CSF BDNF levels were assessed 2 h after the last dose of morphine and day 13 after morphine withdrawal in morphine-dependent and withdrawn rats. We found that the morphine withdrawal signs were significantly higher in morphine dependent rats receiving ANA-12 on days of 5-7 after morphine withdrawal, also ANA-12 exacerbated overall dependence severity. While, the percentage of time spent in the open arms and sucrose preference were higher in morphine-dependent rats receiving ANA-12 than morphine-dependent rats receiving saline. Also, the ANA-12 injection decreased the CSF BDNF levels following morphine dependence, while increased it after morphine withdrawal. We conclude that the ANA-12 exacerbated the severity of physical morphine dependence but attenuated the anxiety/depressive-like behaviors in morphine-dependent and withdrawn rats. Also, ANA-12 injection was able to reverse the changes in the CSF BDNF levels. Therefore, ANA-12 is not more likely to complete treatment for opiate addiction.
Collapse
|
10
|
Morgan MM, Peecher DL, Streicher JM. Use of home cage wheel running to assess the behavioural effects of administering a mu/delta opioid receptor heterodimer antagonist for spontaneous morphine withdrawal in the rat. Behav Brain Res 2020; 397:112953. [PMID: 33031872 DOI: 10.1016/j.bbr.2020.112953] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Opioid abuse is a major health problem. The objective of the present study was to evaluate the potentially disruptive side effects and therapeutic potential of a novel antagonist (D24M) of the mu-/delta-opioid receptor (MOR/DOR) heterodimer in male rats. Administration of high doses of D24M (1 & 10 nmol) into the lateral ventricle did not disrupt home cage wheel running. Repeated twice daily administration of increasing doses of morphine (5-20 mg/kg) over 5 days depressed wheel running and induced antinociceptive tolerance measured with the hot plate test. Administration of D24M had no effect on morphine tolerance, but tended to prolong morphine antinociception in non-tolerant rats. Spontaneous morphine withdrawal was evident as a decrease in body weight, a reduction in wheel running and an increase in sleep during the normally active dark phase of the circadian cycle, and an increase in wheel running and wakefulness in the normally inactive light phase. Administration of D24M during the dark phase on the third day of withdrawal had no effect on wheel running. These data provide additional evidence for the clinical relevance of home cage wheel running as a method to assess spontaneous opioid withdrawal in rats. These data also demonstrate that blocking the MOR/DOR heterodimer does not produce disruptive side effects or block the antinociceptive effects of morphine. Although administration of D24M had no effect on morphine withdrawal, additional studies are needed to evaluate withdrawal to continuous morphine administration and other opioids in rats with persistent pain.
Collapse
Affiliation(s)
- Michael M Morgan
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686, United States.
| | - Danielle L Peecher
- Department of Psychology, Washington State University Vancouver, 14204 NE Salmon Creek Ave., Vancouver, WA, 98686, United States.
| | - John M Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, LSN563, Box 245050, 1501 N. Campbell Ave., Tucson, AZ, 85724, United States.
| |
Collapse
|
11
|
Covington EC, Argoff CE, Ballantyne JC, Cowan P, Gazelka HM, Hooten WM, Kertesz SG, Manhapra A, Murphy JL, Stanos SP, Sullivan MD. Ensuring Patient Protections When Tapering Opioids: Consensus Panel Recommendations. Mayo Clin Proc 2020; 95:2155-2171. [PMID: 33012347 DOI: 10.1016/j.mayocp.2020.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022]
Abstract
Long-term opioid therapy has the potential for serious adverse outcomes and is often used in a vulnerable population. Because adverse effects or failure to maintain benefits is common with long-term use, opioid taper or discontinuation may be indicated in certain patients. Concerns about the adverse individual and population effects of opioids have led to numerous strategies aimed at reductions in prescribing. Although opioid reduction efforts have had generally beneficial effects, there have been unintended consequences. Abrupt reduction or discontinuation has been associated with harms that include serious withdrawal symptoms, psychological distress, self-medicating with illicit substances, uncontrolled pain, and suicide. Key questions remain about when and how to safely reduce or discontinue opioids in different patient populations. Thus, health care professionals who reduce or discontinue long-term opioid therapy require a clear understanding of the associated benefits and risks as well as guidance on the best practices for safe and effective opioid reduction. An interdisciplinary panel of pain clinicians and one patient advocate formulated recommendations on tapering methods and ongoing pain management in primary care with emphasis on patient-centered, integrated, comprehensive treatment models employing a biopsychosocial perspective.
Collapse
Affiliation(s)
- Edward C Covington
- Neurological Center for Pain (Emeritus), Cleveland Clinic, Cleveland, OH.
| | | | - Jane C Ballantyne
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle
| | | | - Halena M Gazelka
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - W Michael Hooten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Stefan G Kertesz
- Birmingham Veterans Affairs Medical Center and Division of Preventive Medicine, University of Alabama School of Medicine, Birmingham, AL
| | - Ajay Manhapra
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT; New England Mental Illness Research and Education Center, West Haven, CT; Advanced Pain Clinic, Hampton VA Medical Center, Hampton, VA
| | - Jennifer L Murphy
- James A. Haley Veterans Hospital and Department of Neurology, University of South Florida Morsani College of Medicine, Tampa
| | | | - Mark D Sullivan
- Department of Psychiatry and Behavioral Sciences, Department of Anesthesiology and Pain Medicine, and Department of Bioethics and Humanities, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
12
|
Smethells JR, Greer A, Dougen B, Carroll ME. Effects of voluntary exercise and sex on multiply-triggered heroin reinstatement in male and female rats. Psychopharmacology (Berl) 2020; 237:453-463. [PMID: 31712970 PMCID: PMC7023997 DOI: 10.1007/s00213-019-05381-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/16/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND The rise in heroin addiction has heightened the need for novel and effective treatments. Physical exercise has been shown as an effective treatment for stimulant abuse in clinical and pre-clinical research. However, this treatment has not yet been tested on opioid addiction. This study examined the effects of physical activity (wheel running) on heroin-seeking in rats within a reinstatement paradigm (i.e., heroin relapse model). METHODS Female and male rats were trained to self-administer intravenous heroin (0.015 mg/kg). Once trained, rats were placed into extinction (i.e., heroin abstinence) for 21 days with continuous access to a locked or unlocked running wheel. After extinction, rats were tested for drug- (heroin, caffeine, and yohimbine) and cue-primed reinstatement of heroin-seeking. RESULTS Females completed more wheel revolutions than males across all study phases. Access to an unlocked running wheel reduced extinction and reinstatement of heroin-seeking, with greater reductions in females than males across several reinstatement conditions. In the locked wheel group, female rats showed greater reinstatement of heroin-seeking than males across several priming conditions. CONCLUSIONS Wheel running reduced heroin-seeking in male and female rats, with females showing a more robust effect during reinstatement. The locked wheel group allowed an examination of sex differences in heroin reinstatement, which revealed that females showed greater vulnerability to heroin reinstatement than males, but with no other sex differences observed in maintenance or extinction. Overall, the results indicate that voluntary physical exercise may be an effective treatment for heroin dependence in humans.
Collapse
Affiliation(s)
- J. R. Smethells
- Research Fellow, Pharmaco-Neuro-Immunology Training Program,University of Minnesota, Minneapolis, MN, USA,Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - A. Greer
- Department of Biological Science, University of Minnesota, Minneapolis, MN, USA
| | - B. Dougen
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M. E. Carroll
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
13
|
Shahroodi A, Mohammadi F, Vafaei AA, Miladi-Gorji H, Bandegi AR, Rashidy-Pour A. Impact of different intensities of forced exercise on deficits of spatial and aversive memory, anxiety-like behavior, and hippocampal BDNF during morphine abstinence period in male rats. Metab Brain Dis 2020; 35:135-147. [PMID: 31773433 DOI: 10.1007/s11011-019-00518-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/14/2019] [Indexed: 10/25/2022]
Abstract
Forced exercise can alleviate cognitive-behavioral deficits in an experimental model of addiction. However, the effects of different intensities of forced exercise in improving behavioral, cognitive and biochemical deficits during morphine abstinence period are not well investigated. Thus, the current work examined the effects of different loads of forced exercise on cognition functions, anxiety behavior and BDNF changes in the hippocampus, and prefrontal cortex (PFC), and also serum levels of BDNF and corticosterone during the abstinent period in male rats. Animals received morphine injections (10 mg/kg, twice a day) for 10 consecutive days. Then, the animals were exposed to a 4-week forced exercise training program under low, moderate or high intensities (30 min per session on 5 days a week), which accompanied by behavioral and biochemical tests. In Experiment 1, anxiety-like behaviors using elevated plus maze (EPM), and light/dark box (L/D box) were examined. In Experiment 2, cognitive functions using T-maze alteration and passive avoidance tasks were tested, which accompanied by BDNF measurements in the hippocampus and PFC. In Experiment 3, serum levels of BDNF and corticosterone following the termination of forced exercise regimen were measured. Morphine-abstinent animals exhibited anxiogenic -like behaviors in the EPM, but not L/D box. They also exhibited impaired T-maze alternation performance and passive avoidance memory, and a decline in hippocampal BDNF, but not PFC. Forced exercise at a moderate intensity alleviated anxiety, cognitive and BDNF defects in morphine-abstinent animals. The high load exercise enhanced serum levels of corticosterone in both saline and morphine groups. Thus, regular moderate forced exercise may be beneficial in preserving cognitive and mood functions in male addicts during the abstinent period and drug rehabilitation.
Collapse
Affiliation(s)
- Azadeh Shahroodi
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, 15131-38111, Iran
| | - Fatemeh Mohammadi
- Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, 15131-38111, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, 15131-38111, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Miladi-Gorji
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, 15131-38111, Iran
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Reza Bandegi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, 15131-38111, Iran
- Laboratory of Endocrine Research, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, 15131-38111, Iran.
- Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
14
|
Mohammadian J, Miladi-Gorji H. Age- and sex-related changes in the severity of physical and psychological dependence in morphine-dependent rats. Pharmacol Biochem Behav 2019; 187:172793. [PMID: 31639387 DOI: 10.1016/j.pbb.2019.172793] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Gender- and age-dependent effects on the severity of morphine dependence are still controversial. The aim of this study was to investigate the effects of age and sex on the severity of physical and psychological dependence in morphine-dependent rats. The adult/aged male and female Wistar rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. Then, rats were tested for the severity of physical dependence on morphine (spontaneous withdrawal signs), anxiety-like (the elevated plus maze), depressive-like (sucrose preference test) and grooming behaviors after spontaneous morphine withdrawal. We found that the morphine withdrawal signs decreased after 3 and 7 days of withdrawal in female and male rats respectively, while there was no significant difference in overall dependence severity between the two sexes or ages. Also, we found that the withdrawal of morphine led to increased anxiety, depression and obsessive-compulsive behavior in the D (dependent)/Adult male and female rats. Also, the D/aged female and male rats exhibited a reduction in depressive-like behavior than the D/Adult rats. Moreover, the D/female rats exhibited a decreased obsessive-compulsive behavior in both age groups than male rats. We conclude that age has no effect on the duration of withdrawal from morphine and overall dependence severity. While, the duration of withdrawal from morphine was lower in female than male rats. Our results showed a sex difference on the duration of morphine withdrawal and an age difference in the expression of psychological dependence on morphine. Thus, therapeutic strategies may be different for opiate-dependent individuals in physical and psychological dimensions.
Collapse
Affiliation(s)
- Javad Mohammadian
- Faculty of Psychology and Educational Sciences, University of Semnan, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center of Physiology, Semnan, University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
15
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
16
|
Alizadeh M, Zahedi-Khorasani M, Miladi-Gorji H. Treadmill exercise attenuates the severity of physical dependence, anxiety, depressive-like behavior and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment. Neurosci Lett 2018; 681:73-77. [PMID: 29859324 DOI: 10.1016/j.neulet.2018.05.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 09/30/2022]
Abstract
This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT.
Collapse
Affiliation(s)
- Maryam Alizadeh
- Laboratory of Animal Addiction Models, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdi Zahedi-Khorasani
- Laboratory of Animal Addiction Models, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
17
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
18
|
Ahmadalipour A, Ghodrati-Jaldbakhan S, Samaei SA, Rashidy-Pour A. Deleterious effects of prenatal exposure to morphine on the spatial learning and hippocampal BDNF and long-term potentiation in juvenile rats: Beneficial influences of postnatal treadmill exercise and enriched environment. Neurobiol Learn Mem 2018; 147:54-64. [DOI: 10.1016/j.nlm.2017.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/26/2017] [Accepted: 11/22/2017] [Indexed: 11/26/2022]
|
19
|
Mokhtari-Zaer A, Hosseini M, Boskabady MH. The effects of exercise on depressive- and anxiety-like behaviors as well as lung and hippocampus oxidative stress in ovalbumin-sensitized juvenile rats. Respir Physiol Neurobiol 2017; 248:55-62. [PMID: 29224851 DOI: 10.1016/j.resp.2017.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/01/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022]
Abstract
Allergic asthma during early life period has been reported to be associated with neurochemical and behavioral disorders, including anxiety and depression. We aimed to determine the effects of exercise on depressive- and anxiety-like behaviors as well as lung and hippocampus oxidative stress in ovalbumin (OVA)-sensitized juvenile rats. Animals were divided into 4 groups including control (non-exercised and non-sensitized), Exe (exercise and non-sensitized); OVA (non-exercised and OVA-sensitized); and OVA+Exe (exercised and OVA-sensitized). The rats were subjected to chronic OVA sensitization followed by 4 weeks of treadmill exercise training. Compared to the control group, the OVA group had an increase in anxiety- and depressive-like behavior, lung inflammation, and oxidative stress index in the lung and hippocampus. Compared to the OVA group, the OVA+Exe group had a decline in anxiety- and depressive-like behavior, lung inflammation, and oxidative stress index in the lung and hippocampus. No significant difference in terms of the above-mentioned parameters, were found between the control group and the Exe group. Exercise decreased depressive- and anxiety-like behaviors in OVA-sensitized juvenile rats; this effect might have been mainly mediated by improvement in antioxidant system.
Collapse
Affiliation(s)
- Amin Mokhtari-Zaer
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Lynch WJ, Abel J, Robinson AM, Smith MA. Exercise as a Sex-Specific Treatment for Substance Use Disorder. CURRENT ADDICTION REPORTS 2017; 4:467-481. [PMID: 29404264 PMCID: PMC5796660 DOI: 10.1007/s40429-017-0177-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Exercise is a promising treatment for substance use disorder that may reduce withdrawal symptoms and prevent relapse. In this review, we discuss recent evidence from clinical and preclinical studies for its efficacy, from a behavioral to a molecular level, in order to understand the exercise conditions that lead to beneficial effects. We also highlight the few recent findings of sex-specific differences. RECENT FINDINGS Clinical and preclinical findings show that exercise decreases withdrawal symptoms, including craving, in both males and females. Evidence from clinical studies support the efficacy of exercise to prevent relapse to smoking, although further research is needed to examine sex differences, establish long-term efficacy, and to determine if effects extend to other substance use disorders. Preclinical findings also support the potential utility of exercise to prevent relapse with evidence suggesting that its efficacy is enhanced in males, and mediated by blocking drug-induced adaptations that occur during early abstinence. SUMMARY Sex differences and timing of exercise availability during abstinence should be considered in future studies examining exercise as an intervention for relapse. A better understanding of the neurobiological mechanisms underlying the efficacy of exercise to reduce withdrawal symptoms and prevent relapse is needed to guide its development as a sex-specific treatment.
Collapse
Affiliation(s)
- Wendy J Lynch
- Associate Professor of Psychiatry and Neurobehavioral Sciences University of Virginia: P.O. Box 801402, Charlottesville, VA 22904 434-243-0580 (phone); 434-973-7031 (fax)
| | - Jean Abel
- Assistant Professor of Psychiatry and Neurobehavioral Sciences University of Virginia; P.O. Box 801402, Charlottesville, VA 22904-1402 434) 243-5767 (phone); 434-973-7031 (fax)
| | - Andrea M Robinson
- Postdoctoral Fellow of Psychology Davidson College: Box 7136 Davidson, NC 28035 704-894-3012 (phone); 704-894-2512 (fax)
| | - Mark A Smith
- Professor of Psychology Davidson College, Davidson, NC 28035 704-894-2470 (phone); 704-894-2512 (fax)
| |
Collapse
|
21
|
Mehdizadeh H, Pourahmad J, Taghizadeh G, Vousooghi N, Yoonessi A, Naserzadeh P, Behzadfar L, Rouini MR, Sharifzadeh M. Mitochondrial impairments contribute to spatial learning and memory dysfunction induced by chronic tramadol administration in rat: Protective effect of physical exercise. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:426-433. [PMID: 28757160 DOI: 10.1016/j.pnpbp.2017.07.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/06/2017] [Accepted: 07/26/2017] [Indexed: 01/15/2023]
Abstract
Despite the worldwide use of tramadol, few studies have been conducted about its effects on memory and mitochondrial function, and controversial results have been reported. Recently, there has been an increasing interest in physical exercise as a protective approach to neuronal and cognitive impairments. Therefore, the aim of this study was to investigate the effects of physical exercise on spatial learning and memory and brain mitochondrial function in tramadol-treated rats. After completion of 2-week (short-term) and 4-week (long-term) treadmill exercise regimens, male Wistar rats received tramadol (20, 40, 80mg/kg/day) intraperitoneally for 30days. Then spatial learning and memory was assessed by Morris water maze test (MWM). Moreover, brain mitochondrial function was evaluated by determination of mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), mitochondrial swelling and cytochrome c release from mitochondria. Chronic administration of tramadol impaired spatial learning and memory as well as brain mitochondrial function as indicated by increased ROS level, MMP collapse, increased mitochondrial swelling and cytochrome c release from mitochondria. Conversely, treadmill exercise significantly attenuated the impairments of spatial learning and memory and brain mitochondrial dysfunction induced by tramadol. The results revealed that chronic tramadol treatment caused memory impairments through induction of brain mitochondrial dysfunction. Furthermore, pre-exposure to physical exercise markedly mitigated these impairments through its positive effects on brain mitochondrial function.
Collapse
Affiliation(s)
- Hajar Mehdizadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghorban Taghizadeh
- Department of Occupational Therapy, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran; Rehabilitation Research Center, Faculty of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Yoonessi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ladan Behzadfar
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Ghodrati-Jaldbakhan S, Ahmadalipour A, Rashidy-Pour A, Vafaei AA, Miladi-Gorji H, Alizadeh M. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats. Brain Res 2017; 1663:20-28. [DOI: 10.1016/j.brainres.2017.02.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
|
23
|
Abstract
This paper is the thirty-eighth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2015 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
24
|
Hammami-Abrand Abadi A, Miladi-Gorji H. Effects of environmental enrichment on behavioral and spatial cognitive deficits in morphine-dependent and -withdrawn rats. Can J Physiol Pharmacol 2017; 95:163-169. [DOI: 10.1139/cjpp-2016-0168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study was designed to examine the effect of environmental enrichment during morphine dependence and withdrawal on morphine-induced behavioral and spatial cognitive disorders in morphine-withdrawn rats. Adult male Wistar rats (190 ± 20 g) were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days. Rats were reared in SE or EE during the development of dependence on morphine and withdrawal. Then, rats were tested for spatial learning and memory (the water maze), spontaneous withdrawal signs, and grooming behavior. We found that the EE blocked chronic morphine-induced partial impairments of spatial memory retention. Moreover, the EE diminished the occurrence of spontaneous morphine withdrawal signs as mild and the self-grooming behavior. Our findings showed that EE ameliorates chronic morphine-induced partial deficits of spatial cognition, obsessive-like behavior, and the overall severity of the morphine withdrawal. Thus, environmental enrichment may be a potential therapeutic strategy for spatial memory and behavioral deficits in morphine-dependent individuals.
Collapse
Affiliation(s)
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
25
|
Seo H, Park CH, Choi S, Kim W, Jeon BD, Ryu S. Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. J Exerc Nutrition Biochem 2016; 20:16-23. [PMID: 27757383 PMCID: PMC5067423 DOI: 10.20463/jenb.2016.09.20.3.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 01/05/2023] Open
Abstract
[Purpose] To determine whether voluntary exercise (wheel running) has the potential of relieving stress. [Methods] In this study, restraint stress with or without voluntary wheel running was performed for mice housed in individual cages. A total of 21 ICR male mice were assigned into control (CON), restraint stress with voluntary exercise (RSVE), or restraint stress (RS) without voluntary exercise groups (n = 7 each). [Results] No significant difference in body weight increase was found among the three groups, although CON and RS groups had a tendency of having smaller body weight increase compared to the RSVE group. No significant difference in the expression level of liver heat shock protein 70, Bcl-2, or p53 was found among the three groups. However, caspase-3 protein level in RS group was significantly higher than that in the other two groups. Blood cortisol concentration in RS was higher (p < 0.05) than that in RSVE or CON group. It was the lowest (p < 0.05) in the RSVE group. [Conclusion] Our findings suggest that apoptosis caused by chronic restraint stress might be suppressed by voluntary exercise in mice.
Collapse
Affiliation(s)
- Hyobin Seo
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| | - Chun-Hyung Park
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| | - Seokrip Choi
- Department of Sports Rehabilitation, Daegu Health College, Daegu Republic of Korea
| | - Woocheol Kim
- Department of Sports Rehabilitation, Daegu Health College, Daegu Republic of Korea
| | - Byung-Duk Jeon
- Department of Physical Education Leisure, Suseong College, Daegu Republic of Korea
| | - Seungpil Ryu
- Department of Leisure Sports, Kyungpook National University, Sangju Republic of Korea
| |
Collapse
|
26
|
Taghizadeh G, Pourahmad J, Mehdizadeh H, Foroumadi A, Torkaman-Boutorabi A, Hassani S, Naserzadeh P, Shariatmadari R, Gholami M, Rouini MR, Sharifzadeh M. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment. Free Radic Biol Med 2016; 99:11-19. [PMID: 27451936 DOI: 10.1016/j.freeradbiomed.2016.07.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function.
Collapse
Affiliation(s)
- Ghorban Taghizadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Mehdizadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Shariatmadari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Neuroscience, School of Advanced Science and Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A. Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 2016; 157:19-24. [DOI: 10.1016/j.lfs.2016.05.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 05/21/2016] [Accepted: 05/23/2016] [Indexed: 12/23/2022]
|
28
|
Shafiee SM, Vafaei AA, Rashidy-Pour A. Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise. Neuroscience 2016; 329:151-61. [PMID: 27181637 DOI: 10.1016/j.neuroscience.2016.04.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/13/2023]
Abstract
Hypothyroidism during early development leads to numerous morphological, biochemical and functional changes in developing brain. In this study, we investigated the effects of voluntary and treadmill exercise on learning, memory and hippocampal BDNF levels in both hypothyroid male and female rat pups. To induce hypothyroidism in the mothers, 6-propyl-2-thiouracil (PTU) was added to their drinking water (100mg/L) from their embryonic day 6 to their postnatal day (PND) 21. For 14days, from PNDs 31 to 44, the rat pups were trained with one of the two different exercise protocols, namely the mild treadmill exercise and the voluntary wheel exercise. On PNDs 45-52, a water maze was used for testing their learning and memory ability. The rats were sacrificed one day later and their BDNF levels were then measured in the hippocampus. The findings of the present study indicate that hypothyroidism during the fetal period and the early postnatal period is associated with the impairment of spatial learning and memory and reduced hippocampal BDNF levels in both male and female rat offspring. Both the short-term treadmill exercise and the voluntary wheel exercise performed during the postnatal period reverse the behavioral and neurochemical deficits induced by developmental thyroid hormone insufficiency in both male and female rat offspring. The findings of this study thus demonstrate a marked reversibility of both behavioral and neurochemical disorders induced by developmental thyroid hormone insufficiency through the performance of exercise.
Collapse
Affiliation(s)
- Seyed Morteza Shafiee
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center and Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
29
|
Hamilton GF, Rhodes JS. Exercise Regulation of Cognitive Function and Neuroplasticity in the Healthy and Diseased Brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 135:381-406. [PMID: 26477923 DOI: 10.1016/bs.pmbts.2015.07.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regular exercise broadly enhances physical and mental health throughout the lifespan. Animal models have provided us with the tools to gain a better understanding of the underlying biochemical, physiological, and morphological mechanisms through which exercise exerts its beneficial cognitive effects. One brain region in particular, the hippocampus, is especially responsive to exercise. It is critically involved in learning and memory and is one of two regions in the mammalian brain that continues to generate new neurons throughout life. Exercise prevents the decline of the hippocampus from aging and ameliorates many neurodegenerative diseases, in part by increasing adult hippocampal neurogenesis but also by activating a multitude of molecular mechanisms that promote brain health. In this chapter, we first describe some rodent models used to study effects of exercise on the brain. Then we review the rodent work focusing on the mechanisms behind which exercise improves cognition and brain health in both the normal and the diseased brain, with emphasis on the hippocampus.
Collapse
Affiliation(s)
- Gilian F Hamilton
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Justin S Rhodes
- Department of Psychology, The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|