1
|
Shen Y, Huai B, Wang X, Chen M, Shen X, Han M, Su F, Xin T. Automatic sleep-wake classification and Parkinson's disease recognition using multifeature fusion with support vector machine. CNS Neurosci Ther 2024; 30:e14708. [PMID: 38600857 PMCID: PMC11007385 DOI: 10.1111/cns.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS Sleep disturbance is a prevalent nonmotor symptom of Parkinson's disease (PD), however, assessing sleep conditions is always time-consuming and labor-intensive. In this study, we performed an automatic sleep-wake state classification and early diagnosis of PD by analyzing the electrocorticography (ECoG) and electromyogram (EMG) signals of both normal and PD rats. METHODS The study utilized ECoG power, EMG amplitude, and corticomuscular coherence values extracted from normal and PD rats to construct sleep-wake scoring models based on the support vector machine algorithm. Subsequently, we incorporated feature values that could act as diagnostic markers for PD and then retrained the models, which could encompass the identification of vigilance states and the diagnosis of PD. RESULTS Features extracted from occipital ECoG signals were more suitable for constructing sleep-wake scoring models than those from frontal ECoG (average Cohen's kappa: 0.73 vs. 0.71). Additionally, after retraining, the new models demonstrated increased sensitivity to PD and accurately determined the sleep-wake states of rats (average Cohen's kappa: 0.79). CONCLUSION This study accomplished the precise detection of substantia nigra lesions and the monitoring of sleep-wake states. The integration of circadian rhythm monitoring and disease state assessment has the potential to improve the efficacy of therapeutic strategies considerably.
Collapse
Affiliation(s)
- Yin Shen
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Baogeng Huai
- First Clinical Medical College, Shandong University of Traditional Chinese MedicineJinanP. R. China
| | - Xiaofeng Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Min Chen
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Department of RadiologyShandong First Medical University & Shandong Academy of Medical SciencesTaianP. R. China
| | - Xiaoyue Shen
- First Clinical Medical College, Shandong University of Traditional Chinese MedicineJinanP. R. China
| | - Min Han
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
| | - Fei Su
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Department of RadiologyShandong First Medical University & Shandong Academy of Medical SciencesTaianP. R. China
| | - Tao Xin
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongP. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongP. R. China
- Institute of Brain Science and Brain‐inspired Research, Shandong First Medical University & Shandong Academy of Medical SciencesJinanShandongP. R. China
- Shandong Institute of Brain Science and Brain‐inspired ResearchJinanShandongP. R. China
| |
Collapse
|
2
|
Hippocampal and Reticulo-Thalamic Parvalbumin Interneurons and Synaptic Re-Organization during Sleep Disorders in the Rat Models of Parkinson's Disease Neuropathology. Int J Mol Sci 2021; 22:ijms22168922. [PMID: 34445628 PMCID: PMC8396216 DOI: 10.3390/ijms22168922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson’s disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.
Collapse
|
3
|
Fink AM, Burke LA, Sharma K. Lesioning of the pedunculopontine nucleus reduces rapid eye movement sleep, but does not alter cardiorespiratory activities during sleep, under hypoxic conditions in rats. Respir Physiol Neurobiol 2021; 288:103653. [PMID: 33716095 PMCID: PMC8112452 DOI: 10.1016/j.resp.2021.103653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022]
Abstract
To determine how partial lesioning of the pedunculopontine nucleus (PPT) affects sleep, breathing, and blood pressure in rats, ibotenic acid (IBO) was injected bilaterally into the PPT. Sham-injected (saline) and IBO-lesioned rats were first studied under normoxic conditions (40 recordings were obtained from 15 rats, with each recording lasting for 6 daytime hours). Rats were then exposed to intermittent hypoxia for 4 ± 2 days (51 recordings from 12 rats, each lasting 6 daytime hours). The intermittent hypoxia protocol involved an oxygen decline lasting 35 s (to a nadir of 10 %) followed by a 50 s increase to normoxia. The IBO caused an estimated 53 % reduction in PPT neurons. When normoxic, IBO-lesioned rats had remarkedly normal sleep architecture, respiratory rates, and mean arterial pressure. The exposure to intermittent hypoxia evoked tachypnea in both the IBO-lesioned and sham-injected rats. When intermittently hypoxic, IBO-lesioned rats demonstrated a significant reduction in the duration of rapid eye movement (REM) sleep. We conclude that partial lesions of the PPT do not disrupt cardiorespiratory activities, but a reduction in PPT neurons impairs the ability to sustain REM sleep under hypoxic conditions.
Collapse
Affiliation(s)
- Anne M Fink
- Center for Sleep and Health Research, University of Illinois Chicago, 845 S. Damen Ave (MC 802), Room 750, Chicago, IL, 60612, United States.
| | - Larisa A Burke
- Office of Research Facilitation, University of Illinois Chicago, 845 S. Damen Ave (MC 802), Room 615, Chicago, IL, 60612, United States.
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois Chicago, 808 S Wood St (MC 512), Room 666, Chicago, IL, United States.
| |
Collapse
|
4
|
Petrovic J, Radovanovic L, Saponjic J. Prodromal local sleep disorders in a rat model of Parkinson's disease cholinopathy, hemiparkinsonism and hemiparkinsonism with cholinopathy. Behav Brain Res 2020; 397:112957. [PMID: 33038348 DOI: 10.1016/j.bbr.2020.112957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 01/14/2023]
Abstract
We investigated the prodromal alterations of local sleep, particularly the motor cortical and hippocampal sleep, along with spontaneous locomotor activity in the rat models of Parkinson's disease (PD). We performed our experiments in adult, male Wistar rats, chronically implanted for sleep recording and divided into four experimental groups: the control (implanted controls), the bilateral pedunculopontine tegmental nucleus (PPT) lesions (PD cholinopathy), the unilateral substantia nigra pars compacta (SNpc) lesions (hemiparkinsonism) and the unilateral SNpc/bilateral PPT lesions (hemiparkinsonism with PD cholinopathy). We followed their sleep, basal locomotor activity and spatial habituation for 14 days following the surgical procedures. Severe prodromal local sleep disturbances in the hemiparkinsonian rats were expressed as sleep fragmentation and distinct local NREM/REM EEG microstructure alterations in both the motor cortex and the hippocampus. Alongside the state-unrelated role of the dopaminergic control of theta oscillations and NREM/REM related sigma and beta oscillations, we demonstrated that the REM neurochemical regulatory substrate is particularly important in the dopaminergic control of beta oscillations. In addition, hippocampal prodromal sleep disorders in the hemiparkinsonian rats were expressed as NREM/REM fragmentation and the opposite impact of dopaminergic versus cholinergic control of the NREM delta and beta oscillation amplitudes in the hippocampus, likewise in the motor cortex versus the hippocampus. All these distinct prodromal local sleep disorders and the dopaminergic vs. cholinergic impact on NREM/REM EEG microstructure alterations are of fundamental importance for the further development and follow-up of PD-modifying therapies, and for the identification of patients who are at risk of developing PD.
Collapse
Affiliation(s)
- Jelena Petrovic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia.
| | - Ljiljana Radovanovic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia
| | - Jasna Saponjic
- Institute for Biological Research, Sinisa Stankovic - National Institute of Republic of Serbia, Department of Neurobiology, University of Belgrade, Despot Stefan Blvd., 142, 11060, Belgrade, Serbia
| |
Collapse
|
5
|
Petrovic J, Radovanovic L, Saponjic J. Diversity of simultaneous sleep in the motor cortex and hippocampus in rats. J Sleep Res 2020; 30:e13090. [PMID: 32472657 DOI: 10.1111/jsr.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/26/2022]
Abstract
We investigated the homogeneity/heterogeneity of spontaneous sleep, simultaneously recorded in the motor cortex and the hippocampus of control rats, and particularly analysed simultaneous and non-simultaneous motor cortical and hippocampal non-rapid eye movement (NREM)/rapid eye movement (REM) sleep. We demonstrate that the sleep architectures of the motor cortex and hippocampus are different in control rats. There was an increase of NREM duration and a decrease of REM duration in the hippocampus versus the motor cortex. In terms of duration, NREM state is the most heterogeneous in the hippocampus, whereas the REM state is the most heterogeneous in the motor cortex. Whereas the hippocampal NREM duration was increased due to the prolongation of NREM episodes, the hippocampal REM duration decreased due to the decreased number of REM episodes. The heterogeneity of sleep in the motor cortex and hippocampus in control rats was particularly expressed through the inverse alteration of sigma amplitude during NREM sleep and beta/gamma amplitudes during REM sleep in the hippocampus, along with the delta, sigma, beta and gamma amplitudes only during non-simultaneous NREM/REM sleep in the hippocampus. We demonstrated the brain structure-related and NREM/REM state-related heterogeneity of the motor cortical and hippocampal local sleep in control rats. The distinctly altered local NREM/REM states, alongside their episode dynamics and electroencephalographic (EEG) microstructures, suggest the importance of both the local neuronal network substrate and the NREM/REM neurochemical substrate in the control mechanisms of sleep.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljiljana Radovanovic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Ciric J, Kapor S, Perovic M, Saponjic J. Alterations of Sleep and Sleep Oscillations in the Hemiparkinsonian Rat. Front Neurosci 2019; 13:148. [PMID: 30872994 PMCID: PMC6401659 DOI: 10.3389/fnins.2019.00148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/16/2023] Open
Abstract
Our previous studies in the rat model of Parkinson’s disease (PD) cholinopathy demonstrated the sleep-related alterations in electroencephalographic (EEG) oscillations at the cortical and hippocampal levels, cortical drives, and sleep spindles (SSs) as the earliest functional biomarkers preceding hypokinesia. Our aim in this study was to follow the impact of a unilateral substantia nigra pars compacta (SNpc) lesion in rat on the cortical and hippocampal sleep architectures and their EEG microstructures, as well as the cortico-hippocampal synchronizations of EEG oscillations, and the SS and high voltage sleep spindle (HVS) dynamics during NREM and REM sleep. We performed unilateral SNpc lesions using two different concentrations/volumes of 6-hydroxydopamine (6-OHDA; 12 μg/1 μl or 12 μg/2 μl). Whereas the unilateral dopaminergic neuronal loss >50% throughout the overall SNpc rostro-caudal dimension prolonged the Wake state, with no change in the NREM or REM duration, there was a long-lasting theta amplitude augmentation across all sleep states in the motor cortex (MCx), but also in the CA1 hippocampus (Hipp) during both Wake and REM sleep. We demonstrate that SS are the hallmarks of NREM sleep, but that they also occur during REM sleep in the MCx and Hipp of the control rats. Whereas SS are always longer in REM vs. NREM sleep in both structures, they are consistently slower in the Hipp. The dopaminergic neuronal loss increased the density of SS in both structures and shortened them in the MCx during NREM sleep, without changing the intrinsic frequency. Conversely, HVS are the hallmarks of REM sleep in the control rats, slower in the Hipp vs. MCx, and the dopaminergic neuronal loss increased their density in the MCx, but shortened them more consistently in the Hipp during REM sleep. In addition, there was an altered synchronization of the EEG oscillations between the MCx and Hipp in different sleep states, particularly the theta and sigma coherences during REM sleep. We provide novel evidence for the importance of the SNpc dopaminergic innervation in sleep regulation, theta rhythm generation, and SS/HVS dynamics control. We suggest the importance of the underlying REM sleep regulatory substrate to HVS generation and duration and to the cortico-hippocampal synchronizations of EEG oscillations in hemiparkinsonian rats.
Collapse
Affiliation(s)
- Jelena Ciric
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.,School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Ciric J, Lazic K, Kapor S, Perovic M, Petrovic J, Pesic V, Kanazir S, Saponjic J. Sleep disorder and altered locomotor activity as biomarkers of the Parkinson’s disease cholinopathy in rat. Behav Brain Res 2018; 339:79-92. [DOI: 10.1016/j.bbr.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/07/2017] [Accepted: 11/16/2017] [Indexed: 11/30/2022]
|
8
|
Petrovic J, Milosevic V, Zivkovic M, Stojanov D, Milojkovic O, Kalauzi A, Saponjic J. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke. PeerJ 2017; 5:e3839. [PMID: 28970969 PMCID: PMC5623310 DOI: 10.7717/peerj.3839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. Methods We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal–Wallis ANOVA with a post-hoc Mann–Whitney U two-tailed test, and Spearman’s correlation. Results We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered “alpha flow”, indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3–F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric “alpha flow” within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric “alpha flow” represented a permanent consequence of the “hidden” stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Discussion Our study indicates slower EEG alpha generation, synchronization and “flow” as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Vuk Milosevic
- Clinic of Neurology, Clinical Center Nis, Nis, Serbia
| | | | | | - Olga Milojkovic
- Clinic for Mental Health Protection, Clinical Center Nis, Nis, Serbia
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Lazic K, Petrovic J, Ciric J, Kalauzi A, Saponjic J. REM sleep disorder following general anesthesia in rats. Physiol Behav 2017; 168:41-54. [DOI: 10.1016/j.physbeh.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/18/2016] [Accepted: 10/18/2016] [Indexed: 11/16/2022]
|
10
|
Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J. Age-related disorders of sleep and motor control in the rat models of functionally distinct cholinergic neuropathology. Behav Brain Res 2016; 301:273-86. [DOI: 10.1016/j.bbr.2015.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
|
11
|
Lazic K, Petrovic J, Ciric J, Kalauzi A, Saponjic J. Impact of anesthetic regimen on the respiratory pattern, EEG microstructure and sleep in the rat model of cholinergic Parkinson’s disease neuropathology. Neuroscience 2015; 304:1-13. [DOI: 10.1016/j.neuroscience.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/29/2022]
|
12
|
Grace KP, Horner RL. Evaluating the Evidence Surrounding Pontine Cholinergic Involvement in REM Sleep Generation. Front Neurol 2015; 6:190. [PMID: 26388832 PMCID: PMC4555043 DOI: 10.3389/fneur.2015.00190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Rapid eye movement (REM) sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of REM sleep generation posited that induction of the state required activation of the "pontine REM sleep generator" by cholinergic inputs. Here, we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i) the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii) the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii) loss-of-function studies show that endogenous cholinergic input to the PTF is not required for REM sleep generation, and (iv) cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.
Collapse
Affiliation(s)
- Kevin P Grace
- Department of Medicine, University of Toronto , Toronto, ON , Canada
| | - Richard L Horner
- Department of Medicine, University of Toronto , Toronto, ON , Canada ; Department of Physiology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
13
|
Ciric J, Lazic K, Petrovic J, Kalauzi A, Saponjic J. Aging induced cortical drive alterations during sleep in rats. Mech Ageing Dev 2015; 146-148:12-22. [DOI: 10.1016/j.mad.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022]
|
14
|
Azogu I, de la Tremblaye PB, Dunbar M, Lebreton M, LeMarec N, Plamondon H. Acute sleep deprivation enhances avoidance learning and spatial memory and induces delayed alterations in neurochemical expression of GR, TH, DRD1, pCREB and Ki67 in rats. Behav Brain Res 2014; 279:177-90. [PMID: 25433096 DOI: 10.1016/j.bbr.2014.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/06/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
The current study investigated the effects of acute versus repeated periods of sleep deprivation on avoidance learning and spatial memory and on the expression of discrete biochemical brain signals involved in stress regulation, motivation and brain plasticity. Male Long-Evans rats were sleep deprived using the platform-over-water method for a single 4 h period (ASD) or for daily 4h RSD period on five consecutive days (CSD). The Y maze passive avoidance task (YM-PAT) and the Morris water maze (MWM) were used to determine learning and memory 1h following the last SD period. Region-specific changes in glucocorticoid receptors (GR), tyrosine hydroxylase (TH), dopamine 1 receptors (DRD1), phospho-CREB (pCREB) and Ki-67 expression were assessed in the hippocampal formation, hypothalamus and mesolimbic regions 72 h following RSD. Behaviorally, our findings revealed increased latency to re-enter the aversive arm in the YM-PAT and reduced distance traveled and latency to reach the platform in the MWM in ASD rats compared to all other groups, indicative of improved avoidance learning and spatial memory, respectively. Acute SD enhanced TH expression in the ventral tegmental area, nucleus accumbens and A11 neurons of the hypothalamus and DRD1 expression in the lateral hypothalamus. Cell proliferation in the subventricular zone and pCREB expression in the dentate gyrus and CA3 regions was also enhanced following acute SD. In contrast, repeated SD significantly elevated GR-ir at the hypothalamic paraventricular nucleus and CA1 and CA3 layers of the hippocampus compared to all other groups. Our study supports that a brief 4h sleep deprivation period is sufficient to induce delayed neurochemical changes.
Collapse
Affiliation(s)
- Idu Azogu
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Patricia Barra de la Tremblaye
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Megan Dunbar
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Marianne Lebreton
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Nathalie LeMarec
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada
| | - Hélène Plamondon
- School of Psychology, Behavioural Neuroscience Group, University of Ottawa, 136 Jean-Jacques Lussier, Vanier Building, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|