1
|
Luo B. Insights into the advances in therapeutic drugs for neuroinflammation-related diseases. Int J Neurosci 2024; 134:1256-1281. [PMID: 37722706 DOI: 10.1080/00207454.2023.2260088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Studies have shown that neurodegenerative diseases such as AD and PD are related to neuroinflammation. Neuroinflammation is a common inflammatory condition that can lead to a variety of dysfunction in the body. At present, it is no medications specifically approved to prevent or cure neuroinflammation, so even though many drugs can temporarily control the neurological symptoms of neuroinflammation, but no one can reverse the progress of neuroinflammation, let al.one completely cure neuroinflammation. Therefore, it is urgent to develop new drug development for neuroinflammation treatment. In this review, we highlight the therapeutic advancement in the field of neurodegenerative disorders, by focusing on the impact of neuroinflammation treatment has on these conditions, and the effective drugs for the treatment of neuroinflammation and neurodegenerative diseases and their latest research progress are reviewed according to the related signaling pathway, as well as the prospect of their clinical application is also discussed. The purpose of this review is to enable specialists to better understand the mechanisms underlying neuroinflammation and anti-inflammatory drugs, promote the development of therapeutic drugs for neuroinflammation and neurodegenerative diseases, and further provide therapeutic references for clinical neurologists.
Collapse
Affiliation(s)
- Bozhi Luo
- School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
2
|
Herman RJ, Hayes MR, Audrain-McGovern J, Ashare RL, Schmidt HD. Liraglutide attenuates nicotine self-administration as well as nicotine seeking and hyperphagia during withdrawal in male and female rats. Psychopharmacology (Berl) 2023; 240:1373-1386. [PMID: 37129617 PMCID: PMC11088902 DOI: 10.1007/s00213-023-06376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
RATIONALE Nicotine cessation is associated with increased consumption of highly palatable foods and body weight gain in most smokers. Concerns about body weight gain are a major barrier to maintaining long-term smoking abstinence, and current treatments for nicotine use disorder (NUD) delay, but do not prevent, body weight gain during abstinence. Glucagon-like peptide-1 receptor (GLP-1R) agonists reduce food intake and are FDA-approved for treating obesity. However, the effects of GLP-1R agonist monotherapy on nicotine seeking and withdrawal-induced hyperphagia are unknown. OBJECTIVES We screened the efficacy of the long-lasting GLP-1R agonist liraglutide to reduce nicotine-mediated behaviors including voluntary nicotine taking, as well as nicotine seeking and hyperphagia during withdrawal. METHODS Male and female rats self-administered intravenous nicotine (0.03 mg/kg/inf) for ~21 days. Daily liraglutide administration (25 μg/kg, i.p.) started on the last self-administration day and continued throughout the extinction and reinstatement phases of the experiment. Once nicotine taking was extinguished, the reinstatement of nicotine-seeking behavior was assessed after an acute priming injection of nicotine (0.2 mg/kg, s.c.) and re-exposure to conditioned light cues. Using a novel model of nicotine withdrawal-induced hyperphagia, intake of a high fat diet (HFD) was measured during home cage abstinence in male and female rats with a history of nicotine self-administration. RESULTS Liraglutide attenuated nicotine self-administration and reinstatement in male and female rats. Repeated liraglutide attenuated withdrawal-induced hyperphagia and body weight gain in male and female rats at a dose that was not associated with malaise-like effects. CONCLUSIONS These findings support further studies investigating the translational potential of GLP-1R agonists to treat NUD.
Collapse
Affiliation(s)
- R J Herman
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA
| | - J Audrain-McGovern
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA
| | - R L Ashare
- Department of Psychology, College of Arts and Sciences, University at Buffalo, SUNY, Buffalo, NY, USA
| | - H D Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA.
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, 125 South 31st Street, TRL Room 2215, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Maurer JJ, Wimmer ME, Turner CA, Herman RJ, Zhang Y, Ragnini K, Ferrante J, Kimmey BA, Crist RC, Christopher Pierce R, Schmidt HD. Paternal nicotine taking elicits heritable sex-specific phenotypes that are mediated by hippocampal Satb2. Mol Psychiatry 2022; 27:3864-3874. [PMID: 35595980 PMCID: PMC9675874 DOI: 10.1038/s41380-022-01622-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/08/2023]
Abstract
Nicotine intake, whether through tobacco smoking or e-cigarettes, remains a global health concern. An emerging preclinical literature indicates that parental nicotine exposure produces behavioral, physiological, and molecular changes in subsequent generations. However, the heritable effects of voluntary parental nicotine taking are unknown. Here, we show increased acquisition of nicotine taking in male and female offspring of sires that self-administered nicotine. In contrast, self-administration of sucrose and cocaine were unaltered in male and female offspring suggesting that the intergenerational effects of paternal nicotine taking may be reinforcer specific. Further characterization revealed memory deficits and increased anxiety-like behaviors in drug-naive male, but not female, offspring of nicotine-experienced sires. Using an unbiased, genome-wide approach, we discovered that these phenotypes were associated with decreased expression of Satb2, a transcription factor known to play important roles in synaptic plasticity and memory formation, in the hippocampus of nicotine-sired male offspring. This effect was sex-specific as no changes in Satb2 expression were found in nicotine-sired female offspring. Finally, increasing Satb2 levels in the hippocampus prevented the escalation of nicotine intake and rescued the memory deficits associated with paternal nicotine taking in male offspring. Collectively, these findings indicate that paternal nicotine taking produces heritable sex-specific molecular changes that promote addiction-like phenotypes and memory impairments in male offspring.
Collapse
Affiliation(s)
- John J Maurer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu E Wimmer
- Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, 19122, USA
| | - Christopher A Turner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rae J Herman
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yafang Zhang
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kael Ragnini
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Julia Ferrante
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Blake A Kimmey
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard C Crist
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - R Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Schmidt HD, Rupprecht LE, Addy NA. Neurobiological and Neurophysiological Mechanisms Underlying Nicotine Seeking and Smoking Relapse. MOLECULAR NEUROPSYCHIATRY 2019; 4:169-189. [PMID: 30815453 PMCID: PMC6388439 DOI: 10.1159/000494799] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/23/2018] [Indexed: 12/19/2022]
Abstract
Tobacco-related morbidity and mortality continue to be a significant public health concern. Unfortunately, current FDA-approved smoking cessation pharmacotherapies have limited efficacy and are associated with high rates of relapse. Therefore, a better understanding of the neurobiological and neurophysiological mechanisms that promote smoking relapse is needed to develop novel smoking cessation medications. Here, we review preclinical studies focused on identifying the neurotransmitter and neuromodulator systems that mediate nicotine relapse, often modeled in laboratory animals using the reinstatement paradigm, as well as the plasticity-dependent neurophysiological mechanisms that facilitate nicotine reinstatement. Particular emphasis is placed on how these neuroadaptations relate to smoking relapse in humans. We also highlight a number of important gaps in our understanding of the neural mechanisms underlying nicotine reinstatement and critical future directions, which may lead toward the development of novel, target pharmacotherapies for smoking cessation.
Collapse
Affiliation(s)
- Heath D. Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura E. Rupprecht
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nii A. Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Sciences, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Trigo JM, Le Foll B. Nicotine Self-Administration as Paradigm for Medication Discovery for Smoking Cessation: Recent Findings in Medications Targeting the Cholinergic System. Methods Mol Biol 2019; 2011:165-193. [PMID: 31273700 DOI: 10.1007/978-1-4939-9554-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tobacco kills every year approximately six million people as a direct result of direct use, and it is still considered one of the most excruciating threats for human health worldwide. The low successful rates of the currently available pharmacotherapies to assist in quitting tobacco use suggest there is a need for more effective treatments.The intravenous self-administration (IVSA) paradigm is considered the gold standard to study voluntary drug intake in animal models, including nicotine. The IVSA paradigm has been used to identify key mechanisms involved in the addictive properties of nicotine in both rodents and nonhuman primates. In this chapter we describe how the IVSA paradigm has served to further investigate the role of nicotinic acetylcholine receptors (nAChRs) in the reinforcing properties of nicotine. Notably, this review will cover recent advances (i.e., research carried out during the past decade) using the IVSA paradigm, with a focus on the status of research on current smoking cessation medications (such as varenicline and bupropion) and of other nAChR ligands.The combination of the IVSA paradigm with pharmacological and genetic tools (e.g., knockout animals) has greatly contributed to our understanding of the role of specific subtype nAChRs in nicotine reinforcement processes. We also discuss some of the limitations of the IVSA paradigm so these can be taken into consideration when interpreting and designing new studies.
Collapse
Affiliation(s)
- Jose M Trigo
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
- Addictions Division, CAMH, Toronto, ON, Canada.
| |
Collapse
|
6
|
Attenuation of nicotine taking and seeking in rats by the stoichiometry-selective alpha4beta2 nicotinic acetylcholine receptor positive allosteric modulator NS9283. Psychopharmacology (Berl) 2017; 234:475-484. [PMID: 27844094 DOI: 10.1007/s00213-016-4475-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/02/2016] [Indexed: 12/16/2022]
Abstract
RATIONALE The rewarding and reinforcing effects of nicotine are produced, in large part, by activation of neuronal α4β2* nicotinic acetylcholine receptors (nAChRs), pentameric protein complexes comprised of different stoichiometries of α4 and β2 subunits. However, little is known about the functional role of distinct subtypes of α4β2* nAChRs in nicotine addiction. OBJECTIVES NS9283 represents a new class of stoichiometry-selective positive allosteric modulators (PAMs) that selectively bind to α4β2 nAChRs containing three α4 and two β2 subunits (3(α4)2(β2) nAChRs). The present experiments were designed to determine the effects of NS9283 on nicotine self-administration and the reinstatement of nicotine-seeking behavior, an animal model of smoking relapse. Parallel studies of sucrose self-administration and reinstatement were conducted in separate cohorts of rats to determine if the effects of NS9283 generalized to other reinforced behaviors. RESULTS Acute and repeated administration of NS9283 dose-dependently reduced nicotine self-administration and reinstatement in male Sprague Dawley rats. These effects were reinforcer specific as no effects of NS9283 on sucrose self-administration and reinstatement were noted. NS9283 also failed to substitute for nicotine in supporting self-administration behavior suggesting that, at the doses tested, NS9283 alone is not reinforcing. CONCLUSION Taken together, these results provide compelling evidence that stoichiometry-selective PAMs of 3(α4)2(β2) nAChRs attenuate nicotine taking and seeking in rats and suggest that targeting 3(α4)2(β2) nAChRs may represent a promising therapeutic strategy for preventing smoking relapse.
Collapse
|
7
|
Henningfield JE, Smith TT, Kleykamp BA, Fant RV, Donny EC. Nicotine self-administration research: the legacy of Steven R. Goldberg and implications for regulation, health policy, and research. Psychopharmacology (Berl) 2016; 233:3829-3848. [PMID: 27766371 PMCID: PMC5588156 DOI: 10.1007/s00213-016-4441-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND RATIONALE Steven R. Goldberg was a pioneering behavioral pharmacologist whose intravenous drug self-administration studies advanced the understanding of conditioned stimuli and schedules of reinforcement as determinants of pattern and persistence of drug-seeking behavior, and in particular, the importance of nicotine in tobacco use. His passing in 2014 led to invitations to contribute articles to psychopharmacology dedicated to his work. OBJECTIVES The objectives of this review are to summarize and put into historical perspective Goldberg's contributions to elucidate the reinforcing effects of nicotine and to summarize the implications of his research for medication development, tobacco regulation, and potential tobacco control policy options. This includes a review of intravenous nicotine self-administration research from the 1960s to 2016. RESULTS Goldberg's application of behavioral pharmacology methods to investigate nicotine reinforcement and the influence of schedule of reinforcement and conditioned stimuli on nicotine administration contributed to the conclusions of the US National Institute on Drug Abuse, and the Surgeon General, that nicotine met the criteria as a dependence-producing drug and cigarette smoking as a prototypic drug dependency or "addiction." Equally important, this work has been systematically extended to other species and applied to address a range of factors relevant to tobacco use, medication development, regulation, and public health policy. CONCLUSIONS Steven R. Goldberg was a pioneering scientist whose systematic application of the science of behavioral pharmacology advanced the understanding of tobacco and nicotine use and contributed to the scientific foundation for tobacco product regulation and potential public health tobacco control policy development.
Collapse
Affiliation(s)
- Jack E Henningfield
- Pinney Associates, 4800 Montgomery Lane, Suite 400, Bethesda, MD, 20814, USA.
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tracy T Smith
- University of Pittsburgh Cancer Institute, 4120 Sennott Square, 210 S. Bouquet Street, Pittsburgh, PA, 15260, USA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, 4120 Sennott Square, 210 S. Bouquet Street, Pittsburgh, PA, 15260, USA
| | - Bethea A Kleykamp
- Pinney Associates, 4800 Montgomery Lane, Suite 400, Bethesda, MD, 20814, USA
| | - Reginald V Fant
- Pinney Associates, 4800 Montgomery Lane, Suite 400, Bethesda, MD, 20814, USA
| | - Eric C Donny
- Department of Psychology, University of Pittsburgh, 210 S. Bouquet Street, Pittsburgh, PA, 15260, USA
| |
Collapse
|
8
|
Ashare RL, Kimmey BA, Rupprecht LE, Bowers ME, Hayes MR, Schmidt HD. Repeated administration of an acetylcholinesterase inhibitor attenuates nicotine taking in rats and smoking behavior in human smokers. Transl Psychiatry 2016; 6:e713. [PMID: 26784967 PMCID: PMC5068882 DOI: 10.1038/tp.2015.209] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/08/2015] [Accepted: 10/30/2015] [Indexed: 01/14/2023] Open
Abstract
Tobacco smoking remains the leading cause of preventable death worldwide and current smoking cessation medications have limited efficacy. Thus, there is a clear need for translational research focused on identifying novel pharmacotherapies for nicotine addiction. Our previous studies demonstrated that acute administration of an acetylcholinesterase inhibitor (AChEI) attenuates nicotine taking and seeking in rats and suggest that AChEIs could be repurposed for smoking cessation. Here, we expand upon these findings with experiments designed to determine the effects of repeated AChEI administration on voluntary nicotine taking in rats as well as smoking behavior in human smokers. Rats were trained to self-administer intravenous infusions of nicotine (0.03 mg kg(-1) per 0.59 ml) on a fixed-ratio-5 schedule of reinforcement. Once rats maintained stable nicotine taking, galantamine or donepezil was administered before 10 consecutive daily nicotine self-administration sessions. Repeated administration of 5.0 mg kg(-1) galantamine and 3.0 mg kg(-1) donepezil attenuated nicotine self-administration in rats. These effects were reinforcer-specific and not due to adverse malaise-like effects of drug treatment as repeated galantamine and donepezil administration had no effects on sucrose self-administration, ad libitum food intake and pica. The effects of repeated galantamine (versus placebo) on cigarette smoking were also tested in human treatment-seeking smokers. Two weeks of daily galantamine treatment (8.0 mg (week 1) and 16.0 mg (week 2)) significantly reduced smoking rate as well as smoking satisfaction and reward compared with placebo. This translational study indicates that repeated AChEI administration reduces nicotine reinforcement in rats and smoking behavior in humans at doses not associated with tolerance and/or adverse effects.
Collapse
Affiliation(s)
- R L Ashare
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - B A Kimmey
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - L E Rupprecht
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M E Bowers
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - H D Schmidt
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Mohamed TS, Jayakar SS, Hamouda AK. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation. Front Mol Neurosci 2015; 8:71. [PMID: 26635524 PMCID: PMC4658446 DOI: 10.3389/fnmol.2015.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/06/2015] [Indexed: 12/23/2022] Open
Abstract
Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.
Collapse
Affiliation(s)
- Tasnim S Mohamed
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA
| | - Selwyn S Jayakar
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Ayman K Hamouda
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M Health Sciences Center Kingsville, TX, USA ; Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Sciences Center Bryan, TX, USA
| |
Collapse
|
10
|
Berry JN, Engle SE, McIntosh JM, Drenan RM. α6-Containing nicotinic acetylcholine receptors in midbrain dopamine neurons are poised to govern dopamine-mediated behaviors and synaptic plasticity. Neuroscience 2015. [PMID: 26210579 DOI: 10.1016/j.neuroscience.2015.07.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acetylcholine (ACh) acts through nicotinic and muscarinic ACh receptors in the ventral midbrain and striatal areas to influence dopamine (DA) transmission. This cholinergic control of DA transmission is important for processes such as attention and motivated behavior, and is manipulated by nicotine in tobacco products. Identifying and characterizing the key ACh receptors involved in cholinergic control of DA transmission could lead to small molecule therapeutics for treating disorders involving attention, addiction, Parkinson's disease, and schizophrenia. α6-Containing nicotinic acetylcholine receptors (nAChRs) are highly and specifically expressed in midbrain DA neurons, making them an attractive drug target. Here, we used genetic, pharmacological, behavioral, and biophysical approaches to study this nAChR subtype. For many experiments, we used mice expressing mutant α6 nAChRs ("α6L9S" mice) that increase the sensitivity of these receptors to agonists such as ACh and nicotine. Taking advantage of a simple behavioral phenotype exhibited by α6L9S mice, we compared the ability of full versus partial α6(∗) nAChR agonists to activate α6(∗) nAChRs in vivo. Using local infusions of both agonists and antagonists into the brain, we demonstrate that neurons and nAChRs in the midbrain are sufficient to account for this behavioral response. To complement these behavioral studies, we studied the ability of in vivo α6(∗) nAChR activation to support plasticity changes in midbrain DA neurons that are relevant to behavioral sensitization and addiction. By coupling local infusion of drugs and brain slice patch-clamp electrophysiology, we show that activating α6(∗) nAChRs in midbrain DA areas is sufficient to enhance glutamatergic transmission in ventral tegmental area (VTA) DA neurons. Together, these results from in vivo studies strongly suggest that α6(∗) nAChRs expressed by VTA DA neurons are positioned to strongly influence both DA-mediated behaviors and the induction of synaptic plasticity by nicotine.
Collapse
Affiliation(s)
- J N Berry
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - S E Engle
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - J M McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT 84148, USA; Departments of Biology and Psychiatry, University of Utah, Salt Lake City, UT 84148, USA
| | - R M Drenan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|