1
|
Moretti J, Rodger J. A little goes a long way: Neurobiological effects of low intensity rTMS and implications for mechanisms of rTMS. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100033. [PMID: 36685761 PMCID: PMC9846462 DOI: 10.1016/j.crneur.2022.100033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 01/25/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widespread technique in neuroscience and medicine, however its mechanisms are not well known. In this review, we consider intensity as a key therapeutic parameter of rTMS, and review the studies that have examined the biological effects of rTMS using magnetic fields that are orders of magnitude lower that those currently used in the clinic. We discuss how extensive characterisation of "low intensity" rTMS has set the stage for translation of new rTMS parameters from a mechanistic evidence base, with potential for innovative and effective therapeutic applications. Low-intensity rTMS demonstrates neurobiological effects across healthy and disease models, which include depression, injury and regeneration, abnormal circuit organisation, tinnitus etc. Various short and long-term changes to metabolism, neurotransmitter release, functional connectivity, genetic changes, cell survival and behaviour have been investigated and we summarise these key changes and the possible mechanisms behind them. Mechanisms at genetic, molecular, cellular and system levels have been identified with evidence that low-intensity rTMS and potentially rTMS in general acts through several key pathways to induce changes in the brain with modulation of internal calcium signalling identified as a major mechanism. We discuss the role that preclinical models can play to inform current clinical research as well as uncover new pathways for investigation.
Collapse
Affiliation(s)
- Jessica Moretti
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia,Perron Institute for Neurological and Translational Science, Perth, WA, Australia,Corresponding author. School of Biological Sciences M317, The University of Western Australia, 35 Stirling Highway, Crawley WA, 6009, Australia.
| |
Collapse
|
2
|
Online LI-rTMS during a Visual Learning Task: Differential Impacts on Visual Circuit and Behavioral Plasticity in Adult Ephrin-A2A5 -/- Mice. eNeuro 2018; 5:eN-NRS-0163-17. [PMID: 29464193 PMCID: PMC5815844 DOI: 10.1523/eneuro.0163-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces plasticity in normal and abnormal neural circuitries, an effect that may be influenced by intrinsic brain activity during treatment. Here, we study potential synergistic effects between low-intensity rTMS (LI-rTMS) and concurrent neural activity in promoting circuit reorganization and enhancing visual behavior. We used ephrin-A2A5–/– mice, which are known to possess visuotopic mapping errors that are ameliorated by LI-rTMS, and assessed the impact of stimulation when mice were engaged in a visual learning task. A detachable coil was affixed to each mouse, and animals underwent 2 wk of 10-min daily training in a two-choice visual discrimination task with concurrent LI-rTMS or sham stimulation. No-task controls (+LI-rTMS/sham) were placed in the task arena without visual task training. At the end of the experiment, visuomotor tracking behavior was assessed, and corticotectal and geniculocortical pathway organization was mapped by injections of fluorescent tracers into the primary visual cortex. Consistent with previous results, LI-rTMS alone improved geniculocortical and corticotectal topography, but combining LI-rTMS with the visual learning task prevented beneficial corticotectal reorganization and had no additional effect on geniculocortical topography or visuomotor tracking performance. Unexpectedly, there was a significant increase in the total number of trials completed by task + LI-rTMS mice in the visual learning task. Comparison with wild-type mice revealed that ephrin-A2A5–/– mice had reduced accuracy and response rates, suggesting a goal-directed behavioral deficit, which was improved by LI-rTMS. Our results suggest that concurrent brain activity during behavior interacts with LI-rTMS, altering behavior and different visual circuits in an abnormal system.
Collapse
|
3
|
Sheleg M, Yu Q, Go C, Wagner GC, Kusnecov A, Zhou R. Decreased maternal behavior and anxiety in ephrin-A5 -/- mice. GENES, BRAIN, AND BEHAVIOR 2017; 16:271-284. [PMID: 27535576 PMCID: PMC5812292 DOI: 10.1111/gbb.12319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 07/28/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Abstract
During development of the nervous system, molecular signals mediating cell-cell interactions play critical roles in the guidance of axonal growth and establishment of synaptic functions. The Eph family of tyrosine kinase receptors and their ephrin ligands has been shown to mediate neuronal interactions in the development of topographic axon projection maps in several brain regions, and the loss of Eph activities result in defects in select axonal pathways. However, effects of deficiencies of the Eph signals on animal behavior have not been well documented. In this study, we showed that inactivation of a ligand of the Eph receptors, ephrin-A5, resulted in defects in maternal behavior and alterations in anxiety. Female ephrin-A5 -/- mice show significant defects in nest building and pup retrieval. In addition, lower levels of anxiety were observed in both male and female null mice. These changes were not due to deficiencies in estradiol, progesterone or corticosterone levels. Our observations suggest that ephrin-A5 plays a key role in the development and/or function of neural pathways mediating mouse maternal care and anxiety.
Collapse
Affiliation(s)
- Michal Sheleg
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Qili Yu
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Christine Go
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - George C. Wagner
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
- Department of Psychology, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Renping Zhou
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Li S, Wu Z, Chen Y, Kang Z, Wang H, He P, Zhang X, Hu T, Zhang Q, Cai Y, Xu X, Guan M. Diagnostic and prognostic value of tissue and circulating levels of Ephrin-A2 in prostate cancer. Tumour Biol 2015; 37:5365-74. [PMID: 26561474 DOI: 10.1007/s13277-015-4398-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022] Open
Abstract
Ephrin-A2, a member of the Eph/ephrin family, is associated with tumorigenesis and tumor progression. This study aimed to assess the diagnostic and prognostic value of both serum and tissue levels of Ephrin-A2 in prostate cancer (PCa) management. One hundred and forty-five frozen prostate tissues, 55 paraffin-embedded prostate tissues, 88 serum samples, and seven prostate cell lines (RWPE-1, LNCaP, LNCaP-LN3, PC-3, PC-3M, PC-3M-LN4, and DU145) were examined via quantitative reverse transcription-PCR (qRT-PCR), immunohistochemistry, enzyme-linked immunosorbent assay, and western blotting. Induced Ephrin-A2 messenger RNA (mRNA) or protein expression was detected in 8.6 % (5/58) benign prostatic hyperplasia (BPH), 59.8 % (52/87) PCa, and five prostate cancer cell lines. Ephrin-A2 immunostaining was present in 6.7 % (1/15) patients with BPHs and 62.5 % (25/40) clinically localized PCa. Accordingly, serum Ephrin-A2 was significantly higher in PCa patients compared to those in the BPH patients and controls (P < 0.001). The expression of Ephrin-A2 was higher in tumor patients with an elevated Gleason score or T3-T4 staging. Ephrin-A2 expression was correlated with Ki-67 expression in PCa patients, both at the gene scale and protein level. Our data indicate that Ephrin-A2 is a potential diagnostic and prognostic biomarker and a promising molecular therapeutic target to attenuate prostate cancer progression.
Collapse
Affiliation(s)
- Shibao Li
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhiyuan Wu
- Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China
| | - Yuming Chen
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Zhihua Kang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Ping He
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Tingting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China
| | - Qunfeng Zhang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yanqun Cai
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China.,Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xiao Xu
- Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, 12 Central Urumqi Road, Shanghai, China. .,Department of Laboratory Medicine, Huashan Hospital North, Fudan University, Shanghai, China. .,Central Laboratory, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Sheleg M, Yochum CL, Richardson JR, Wagner GC, Zhou R. Ephrin-A5 regulates inter-male aggression in mice. Behav Brain Res 2015; 286:300-7. [PMID: 25746458 PMCID: PMC4390541 DOI: 10.1016/j.bbr.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
The Eph family of receptor tyrosine kinases play key roles in both the patterning of the developing nervous system and neural plasticity in the mature brain. To determine functions of ephrin-A5, a GPI-linked ligand to the Eph receptors, in animal behavior regulations, we examined effects of its inactivation on male mouse aggression. When tested in the resident-intruder paradigm for offensive aggression, ephrin-A5-mutant animals (ephrin-A5(-/-)) exhibited severe reduction in conspecific aggression compared to wild-type controls. On the contrary, defensive aggression in the form of target biting was higher in ephrin-A5(-/-) mice, indicating that the mutant mice are capable of attacking behavior. In addition, given the critical role of olfaction in aggressive behavior, we examined the ability of the ephrin-A5(-/-) mice to smell and found no differences between the mutant and control animals. Testosterone levels in the mutant mice were also found to be within the normal range. Taken together, our data reveal a new role of ephrin-A5 in the regulation of aggressive behavior in mice.
Collapse
Affiliation(s)
- Michal Sheleg
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Carrie L Yochum
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
| | - George C Wagner
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA; Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA.
| | - Renping Zhou
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|