1
|
Orije JEMJ, Raymaekers SR, Majumdar G, De Groof G, Jonckers E, Ball GF, Verhoye M, Darras VM, Van der Linden A. Unraveling the Role of Thyroid Hormones in Seasonal Neuroplasticity in European Starlings ( Sturnus vulgaris). Front Mol Neurosci 2022; 15:897039. [PMID: 35836548 PMCID: PMC9275473 DOI: 10.3389/fnmol.2022.897039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid hormones clearly play a role in the seasonal regulation of reproduction, but any role they might play in song behavior and the associated seasonal neuroplasticity in songbirds remains to be elucidated. To pursue this question, we first established seasonal patterns in the expression of thyroid hormone regulating genes in male European starlings employing in situ hybridization methods. Thyroid hormone transporter LAT1 expression in the song nucleus HVC was elevated during the photosensitive phase, pointing toward an active role of thyroid hormones during this window of possible neuroplasticity. In contrast, DIO3 expression was high in HVC during the photostimulated phase, limiting the possible effect of thyroid hormones to maintain song stability during the breeding season. Next, we studied the effect of hypothyroidism on song behavior and neuroplasticity using in vivo MRI. Both under natural conditions as with methimazole treatment, circulating thyroid hormone levels decreased during the photosensitive period, which coincided with the onset of neuroplasticity. This inverse relationship between thyroid hormones and neuroplasticity was further demonstrated by the negative correlation between plasma T3 and the microstructural changes in several song control nuclei and cerebellum. Furthermore, maintaining hypothyroidism during the photostimulated period inhibited the increase in testosterone, confirming the role of thyroid hormones in activating the hypothalamic-pituitary-gonadal (HPG) axis. The lack of high testosterone levels influenced the song behavior of hypothyroid starlings, while the lack of high plasma T4 during photostimulation affected the myelination of several tracts. Potentially, a global reduction of circulating thyroid hormones during the photosensitive period is necessary to lift the brake on neuroplasticity imposed by the photorefractory period, whereas local fine-tuning of thyroid hormone concentrations through LAT1 could activate underlying neuroplasticity mechanisms. Whereas, an increase in circulating T4 during the photostimulated period potentially influences the myelination of several white matter tracts, which stabilizes the neuroplastic changes. Given the complexity of thyroid hormone effects, this study is a steppingstone to disentangle the influence of thyroid hormones on seasonal neuroplasticity.
Collapse
Affiliation(s)
- Jasmien E. M. J. Orije
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sander R. Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Gaurav Majumdar
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Geert De Groof
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Gregory F. Ball
- Department of Psychology, Neuroscience and Cognitive Science Program, University of Maryland, College Park, College Park, MD, United States
| | - Marleen Verhoye
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Leuven, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Riters LV, Polzin BJ, Maksimoski AN, Stevenson SA, Alger SJ. Birdsong and the Neural Regulation of Positive Emotion. Front Psychol 2022; 13:903857. [PMID: 35814050 PMCID: PMC9258629 DOI: 10.3389/fpsyg.2022.903857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Birds are not commonly admired for emotional expression, and when they are, the focus is typically on negative states; yet vocal behavior is considered a direct reflection of an individual's emotional state. Given that over 4000 species of songbird produce learned, complex, context-specific vocalizations, we make the case that songbirds are conspicuously broadcasting distinct positive emotional states and that hearing songs can also induce positive states in other birds. Studies are reviewed that demonstrate that that the production of sexually motivated song reflects an emotional state of anticipatory reward-seeking (i.e., mate-seeking), while outside the mating context song in gregarious flocks reflects a state of intrinsic reward. Studies are also reviewed that demonstrate that hearing song induces states of positive anticipation and reward. This review brings together numerous studies that highlight a potentially important role for the songbird nucleus accumbens, a region nearly synonymous with reward in mammals, in positive emotional states that underlie singing behavior and responses to song. It is proposed that the nucleus accumbens is part of an evolutionarily conserved circuitry that contributes context-dependently to positive emotional states that motivate and reward singing behavior and responses to song. Neural mechanisms that underlie basic emotions appear to be conserved and similar across vertebrates. Thus, these findings in songbirds have the potential to provide insights into interventions that can restore positive social interactions disrupted by mental health disorders in humans.
Collapse
Affiliation(s)
- Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Brandon J. Polzin
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sharon A. Stevenson
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sarah J. Alger
- Department of Biology, University of Wisconsin—Stevens Point, Stevens Point, WI, United States
| |
Collapse
|
3
|
Wijesena HR, Nonneman DJ, Keel BN, Lents CA. Gene expression in the amygdala and hippocampus of cyclic and acyclic gilts. J Anim Sci 2022; 100:6497483. [PMID: 34984470 PMCID: PMC8801052 DOI: 10.1093/jas/skab372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/02/2022] [Indexed: 01/07/2023] Open
Abstract
Age at first estrus is the earliest phenotypic indicator of future reproductive success of gilts. Prebreeding anestrus is a major reason for reproductive failure leading to culling of replacement gilts. The two types of prebreeding anestrus are delay in attaining puberty (prepubertal anestrus, PPA) and silent ovulation (behavioral anestrus, BA). Neural tissues such as amygdala and hippocampus play a major role in regulating sexual behavior, social interactions, and receptivity to males. Differences in gene expression in the amygdala and hippocampus of gilts were analyzed in three comparisons: 1) PPA cases and cyclic controls at follicular phase of estrous cycle, 2) BA cases and cyclic controls at luteal phase of estrous cycle, and 3) gilts at different stages of the ovarian cycle (cyclic gilts at follicular phase and luteal phase of estrous cycle) to gain functional understanding of how these rarely studied tissues may differ between pubertal phenotypes and different stages of the estrous cycle of gilts. Differentially expressed genes (DEG) between PPA and BA cases and their respective cyclic controls were involved in neurological and behavioral disorders as well as nervous system functions that could directly or indirectly involved in development of behaviors related to estrus. The comparison between cyclic follicular and luteal phase control gilts identified the greatest number of DEG in the hippocampus and amygdala. These DEG were involved in adult neurogenesis and neural synapse (e.g., GABAergic, dopamine, cholinergic), suggesting that these tissues undergo structural changes and synaptic plasticity in gilts. This is the first report to demonstrate that the stage of estrous cycle is associated with dynamic changes in gene expression within porcine hippocampus and amygdala and indicates a role of gonadal steroids in regulating their biology.
Collapse
Affiliation(s)
- Hiruni R Wijesena
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Dan J Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Brittney N Keel
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA
| | - Clay A Lents
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA,Corresponding author:
| |
Collapse
|
4
|
Alger SJ, Kelm-Nelson CA, Stevenson SA, Juang C, Gammie SC, Riters LV. Complex patterns of dopamine-related gene expression in the ventral tegmental area of male zebra finches relate to dyadic interactions with long-term female partners. GENES BRAIN AND BEHAVIOR 2019; 19:e12619. [PMID: 31634415 DOI: 10.1111/gbb.12619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to multiple efferent targets are implicated in pair bonding, yet the role of the VTA in the maintenance of long-term pair bonds is not well characterized. Complex interactions between numerous neuromodulators modify activity in the VTA, suggesting that individual differences in patterns of gene expression in this region may explain individual differences in long-term social interactions in bonded pairs. To test this hypothesis we used RNA-seq to measure expression of over 8000 annotated genes in male zebra finches in established male-female pairs. Weighted gene co-expression network analysis identified a gene module that contained numerous dopamine-related genes with TH found to be the most connected gene of the module. Genes in this module related to male agonistic behaviors as well as bonding-related behaviors produced by female partners. Unsupervised learning approaches identified two groups of males that differed with respect to expression of numerous genes. Enrichment analyses showed that many dopamine-related genes and modulators differed between these groups, including dopamine receptors, synthetic and degradative enzymes, the avian dopamine transporter and several GABA- and glutamate-related genes. Many of the bonding-related behaviors closely associated with VTA gene expression in the two male groups were produced by the male's partner, rather than the male himself. Collectively, results highlight numerous candidate genes in the VTA that can be explored in future studies and raise the possibility that the molecular/genetic organization of the VTA may be strongly shaped by a social partner and/or the strength of the pair bond.
Collapse
Affiliation(s)
- Sarah J Alger
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin
| | - Cynthia A Kelm-Nelson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sharon A Stevenson
- Department of Surgery, Division of Otolaryngology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charity Juang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Stephen C Gammie
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
5
|
Tumurbaatar T, Kanasaki H, Oride A, Hara T, Okada H, Tsutsui K, Kyo S. Action of neurotensin, corticotropin-releasing hormone, and RFamide-related peptide-3 in E2-induced negative feedback control: studies using a mouse arcuate nucleus hypothalamic cell model. Biol Reprod 2019; 99:1216-1226. [PMID: 29961889 DOI: 10.1093/biolre/ioy145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/24/2018] [Indexed: 11/13/2022] Open
Abstract
The recently established immortalized hypothalamic cell model mHypoA-55 possesses characteristics similar to those of Kiss-1 neurons in the arcuate nucleus (ARC) region of the hypothalamus. Here, we show that Kiss-1 gene expression in these cells was downregulated by 17β-estradiol (E2) under certain conditions. Both neurotensin (NT) and corticotropin-releasing hormone (CRH) were expressed in these cells and upregulated by E2. Stimulation of mHypoA-55 cells with NT and CRH significantly decreased Kiss-1 mRNA expression. A mammalian gonadotropin-inhibitory hormone homolog, RFamide-related peptide-3 (RFRP-3), was also found to be expressed in mHypoA-55 cells, and RFRP-3 expression in these cells was increased by exogenous melatonin stimulation. E2 stimulation also upregulated RFRP-3 expression in these cells. Stimulation of mHypoA-55 cells with RFRP-3 significantly increased the expression of NT and CRH. Furthermore, melatonin stimulation resulted in the increase of both NT and CRH mRNA expression in mHypoA-55 cells. On the other hand, in experiments using mHypoA-50 cells, which were originally derived from hypothalamic neurons in the anteroventral periventricular nucleus, Kiss-1 gene expression was upregulated by both NT and CRH, although E2 increased both NT and CRH expression, similarly to the mHypoA-55 cells. Our observations using the hypothalamic ARC cell model mHypoA-55 suggest that NT and CRH have inhibitory effects on Kiss-1 gene expression under the influence of E2 in association with RFRP-3 expression. Thus, these neuropeptides might be involved in E2-induced negative feedback mechanisms.
Collapse
Affiliation(s)
- Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Tomomi Hara
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Science, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, Tokyo, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
6
|
Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM. Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 2018; 68:57-74. [PMID: 29478718 PMCID: PMC5906039 DOI: 10.1016/j.npep.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Pharmacologic treatment with the neuropeptide neurotensin (Nts) modifies motivated behaviors such as feeding, locomotor activity, and reproduction. Dopamine (DA) neurons of the ventral tegmental area (VTA) control these behaviors, and Nts directly modulates the activity of DA neurons via Nts receptor-1. While Nts sources to the VTA have been described in starlings and rats, the endogenous sources of Nts to the VTA of mice remain incompletely understood, impeding determination of which Nts circuits orchestrate specific behaviors in this model. To overcome this obstacle we injected the retrograde tracer Fluoro-Gold into the VTA of mice that express GFP in Nts neurons. Identification of GFP-Nts cells that accumulate Fluoro-Gold revealed the Nts afferents to the VTA in mice. Similar to rats, most Nts afferents to the VTA of mice arise from the medial and lateral preoptic areas (POA) and the lateral hypothalamic area (LHA), brain regions that are critical for coordination of feeding and reproduction. Additionally, the VTA receives dense input from Nts neurons in the nucleus accumbens shell (NAsh) of mice, and minor Nts projections from the amygdala and periaqueductal gray area. Collectively, our data reveal multiple populations of Nts neurons that provide direct afferents to the VTA and which may regulate specific aspects of motivated behavior. This work lays the foundation for understanding endogenous Nts actions in the VTA, and how circuit-specific Nts modulation may be useful to correct motivational and affective deficits in neuropsychiatric disease.
Collapse
Affiliation(s)
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Merullo DP, Asogwa CN, Sanchez-Valpuesta M, Hayase S, Pattnaik BR, Wada K, Riters LV. Neurotensin and neurotensin receptor 1 mRNA expression in song-control regions changes during development in male zebra finches. Dev Neurobiol 2018; 78:671-686. [PMID: 29569407 DOI: 10.1002/dneu.22589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine-related measures change throughout development in song-control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song-control regions of male zebra finches in four stages of the song learning process: pre-subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre-subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671-686, 2018.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Chinweike N Asogwa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
8
|
Co-localization patterns of neurotensin receptor 1 and tyrosine hydroxylase in brain regions involved in motivation and social behavior in male European starlings. J Chem Neuroanat 2018; 89:1-10. [PMID: 29407461 DOI: 10.1016/j.jchemneu.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/29/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
Animals communicate in distinct social contexts to convey information specific to those contexts, such as sexual or agonistic motivation. In seasonally-breeding male songbirds, seasonal changes in day length and increases in testosterone stimulate sexually-motivated song directed at females for courtship and reproduction. Dopamine and testosterone may act in the same brain regions to stimulate sexually-motivated singing. The neuropeptide neurotensin, acting at the neurotensin receptor 1 (NTR1), can strongly influence dopamine transmission. The goal of this study was to gain insight into the degree to which seasonal changes in physiology modify interactions between neurotensin and dopamine to adjust context-appropriate communication. Male European starlings were examined in physiological conditions that stimulate season-typical forms of communication: late summer/early fall non-breeding condition (low testosterone; birds sing infrequently), late fall non-breeding condition (low testosterone; birds produce non-sexually motivated song), and spring breeding condition (high testosterone; males produce sexually-motivated song). Double fluorescent immunolabeling was performed to detect co-localization patterns between tyrosine hydroxylase (TH; the rate-limiting enzyme in dopamine synthesis) and NTR1 in brain regions implicated in motivation and song production (the ventral tegmental area, medial preoptic nucleus, periaqueductal gray, and lateral septum). Co-localization between TH and NTR1 was present in the ventral tegmental area for all physiological conditions, and the number of co-localized cells did not differ across conditions. Immunolabeling for TH and NTR1 was also present in the other examined regions, although no co-localization was seen. These results support the hypothesis that interactions between NTR1 and dopamine in the ventral tegmental area may modulate vocalizations, but suggest that testosterone- or photoperiod-induced changes in NTR1/TH co-localization do not underlie seasonally-appropriate adjustment of communication.
Collapse
|
9
|
Merullo DP, Angyal CS, Stevenson SA, Riters LV. Song in an Affiliative Context Relates to the Neural Expression of Dopamine- and Neurotensin-Related Genes in Male European Starlings. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:81-92. [PMID: 27614972 DOI: 10.1159/000448191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022]
Abstract
Some animals, including songbirds, vocalize at high rates when alone or in large groups. In songbirds, vocal behavior in these contexts is important for song learning and group cohesion. It is not obviously targeted at any particular individual and is described as 'undirected'. Studies suggest a role for dopamine (DA) in undirected song. The neuropeptide neurotensin (NT) can enhance dopaminergic signaling upon binding to the NT receptor 1 (NTR1) and is found in regions where DA can influence song, including the ventral tegmental area (VTA), septum, and the song control nucleus Area X. To begin to test the hypothesis that NT and DA in these regions interact to influence undirected song, we used quantitative real-time PCR to relate undirected singing to mRNA expression of NT, NTR1, tyrosine hydroxylase (TH; a synthetic enzyme for DA) and D1 and D2 receptors in male European starlings. TH and NT expression in VTA, and NT and D1 expression in Area X, positively correlated with song. NT markers also correlated positively with DA markers in VTA. Given the role of VTA projections to Area X in song learning, these results suggest that interactions between NT and DA in these regions may contribute to vocal learning. In septum, NTR1 expression positively correlated with song and NT and DA markers were correlated, suggesting that NT in this region may influence dopaminergic transmission to facilitate undirected vocalizations. Overall, these findings implicate interactions between NT and DA in affiliative communication.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, Madison, Wis., USA
| | | | | | | |
Collapse
|
10
|
Merullo DP, Cordes MA, Susan DeVries M, Stevenson SA, Riters LV. Neurotensin neural mRNA expression correlates with vocal communication and other highly-motivated social behaviors in male European starlings. Physiol Behav 2015; 151:155-61. [PMID: 26192712 DOI: 10.1016/j.physbeh.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 12/31/2022]
Abstract
Vocalizations coordinate social interactions in many species and often are important for behaviors such as mate attraction or territorial defense. Although the neural circuitry underlying vocal communication is well-known for some animal groups, such as songbirds, the motivational processes that regulate vocal signals are not as clearly understood. Neurotensin (NT) is a neuropeptide implicated in motivation that can modulate the activity of dopaminergic neurons. Dopaminergic projections from the ventral tegmental area (VTA) are key to mediating highly motivated, goal-directed behaviors, including sexually-motivated birdsong. However, the role of NT in modifying vocal communication or other social behaviors has not been well-studied. Here in European starlings (Sturnus vulgaris) we analyzed relationships between sexually-motivated song and NT and NT1 receptor (NTSR1) expression in VTA. Additionally, we examined NT and NTSR1 expression in four regions that receive dopaminergic projections from VTA and are involved in courtship song: the medial preoptic nucleus (POM), the lateral septum (LS), Area X, and HVC. Relationships between NT and NTSR1 expression and non-vocal courtship and agonistic behaviors were also examined. NT expression in Area X positively related to sexually-motivated song production. NT expression in POM positively correlated with non-vocal courtship behavior and agonistic behavior. NT expression in POM was greatest in males owning nesting sites, and the opposite pattern was observed for NTSR1 expression in LS. These results are the first to implicate NT in Area X in birdsong, and further highlight NT as a potential neuromodulator for the control of vocal communication and other social behaviors.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - M Susan DeVries
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|