1
|
Impey S, Pelz C, Riparip LK, Tafessu A, Fareh F, Zuloaga DG, Marzulla T, Stewart B, Rosi S, Turker MS, Raber J. Postsynaptic density radiation signature following space irradiation. Front Physiol 2023; 14:1215535. [PMID: 37440997 PMCID: PMC10334289 DOI: 10.3389/fphys.2023.1215535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The response of the brain to space radiation is an important concern for astronauts during space missions. Therefore, we assessed the response of the brain to 28Si ion irradiation (600 MeV/n), a heavy ion present in the space environment, on cognitive performance and whether the response is associated with altered DNA methylation in the hippocampus, a brain area important for cognitive performance. Methods: We determined the effects of 28Si ion irradiation on object recognition, 6-month-old mice irradiated with 28Si ions (600 MeV/n, 0.3, 0.6, and 0.9 Gy) and cognitively tested two weeks later. In addition, we determined if those effects were associated with alterations in hippocampal networks and/or hippocampal DNA methylation. Results: At 0.3 Gy, but not at 0.6 Gy or 0.9 Gy, 28Si ion irradiation impaired cognition that correlated with altered gene expression and 5 hmC profiles that mapped to specific gene ontology pathways. Comparing hippocampal DNA hydroxymethylation following proton, 56Fe ion, and 28Si ion irradiation revealed a general space radiation synaptic signature with 45 genes that are associated with profound phenotypes. The most significant categories were glutamatergic synapse and postsynaptic density. Discussion: The brain's response to space irradiation involves novel excitatory synapse and postsynaptic remodeling.
Collapse
Affiliation(s)
- Soren Impey
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
- Dow Neuroscience Laboratories, Department of Cell and Developmental Biology, Legacy Research Institute, Legacy Health Systems, Oregon Health and Science University, Portland, OR, United States
| | - Carl Pelz
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
| | - Lara-Kirstie Riparip
- Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, United States
| | - Amanuel Tafessu
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
| | - Fatema Fareh
- Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR, United States
| | - Damian G. Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Blair Stewart
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Susanna Rosi
- Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, United States
| | - Mitchell S. Turker
- Department of Molecular and Medical Genetics, Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
2
|
Kessler K, Giannisis A, Bial G, Foquet L, Nielsen HM, Raber J. Behavioral and cognitive performance of humanized APOEε3/ε3 liver mice in relation to plasma apolipoprotein E levels. Sci Rep 2023; 13:1728. [PMID: 36720957 PMCID: PMC9889814 DOI: 10.1038/s41598-023-28165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
Plasma apolipoprotein E levels were previously associated with the risk of developing Alzheimer's disease (AD), levels of cerebrospinal fluid AD biomarkers, cognition and imaging brain measures. Outside the brain, the liver is the primary source of apoE and liver transplantation studies have demonstrated that liver-derived apoE does not cross the blood-brain-barrier. How hepatic apoE may be implicated in behavioral and cognitive performance is not clear. In the current study, we behaviorally tested FRGN mice with humanized liver harboring the ε3/ε3 genotype (E3-human liver (HL)) and compared their behavioral and cognitive performance with that of age-matched ε3/ε3 targeted replacement (E3-TR) mice, the latter produces human apoE3 throughout the body whereas the E3-HL mice endogenously produce human apoE3 only in the liver. We also compared the liver weights and plasma apoE levels, and assessed whether plasma apoE levels were correlated with behavioral or cognitive measures in both models. E3-HL were more active but performed cognitively worse than E3-TR mice. E3-HL mice moved more in the open field containing objects, showed higher activity levels in the Y maze, showed higher activity levels during the baseline period in the fear conditioning test than E3-TR mice, and swam faster than E3-TR mice during training to locate the visible platform in the water maze. However, E3-HL mice showed reduced spatial memory retention in the water maze and reduced fear learning and contextual and cued fear memory than E3-TR mice. Liver weights were greater in E3-HL than E3-TR mice and sex-dependent only in the latter model. Plasma apoE3 levels were similar to those found in humans and comparable in female and male E3-TR mice but higher in female E3-HL mice. Finally, we found correlations between plasma apoE levels and behavioral and cognitive measures which were predominantly model-dependent. Our study demonstrates mouse-model dependent associations between plasma apoE levels, behavior and cognition in an 'AD-neutral' setting and suggests that a humanized liver might be sufficient to induce mouse behavioral and cognitive phenotypes.
Collapse
Affiliation(s)
- Kat Kessler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Andreas Giannisis
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Greg Bial
- Yecuris Corporation, Tualatin, OR, 97062, USA
| | | | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
3
|
Younger S, Boutros S, Cargnin F, Jeon S, Lee JW, Lee SK, Raber J. Behavioral Phenotypes of Foxg1 Heterozygous Mice. Front Pharmacol 2022; 13:927296. [PMID: 35754477 PMCID: PMC9214218 DOI: 10.3389/fphar.2022.927296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
FOXG1 syndrome (FS, aka a congenital variant of Rett syndrome) is a recently defined rare and devastating neurodevelopmental disorder characterized by various symptoms, including severe intellectual disability, autistic features, involuntary, and continuous jerky movements, feeding problems, sleep disturbances, seizures, irritability, and excessive crying. FS results from mutations in a single allele of the FOXG1 gene, leading to impaired FOXG1 function. Therefore, in establishing mouse models for FS, it is important to test if heterozygous (HET) mutation in the Foxg1 gene, mimicking genotypes of the human FS individuals, also manifests phenotypes similar to their symptoms. We analyzed HET mice with a null mutation allele in a single copy of Foxg1, and found that they show various phenotypes resembling the symptoms of the human FS individuals. These include increased anxiety in the open field as well as impairment in object recognition, motor coordination, and fear learning and contextual and cued fear memory. Our results suggest that Foxg1 HET mice recapitulate at least some symptoms of the human FS individuals.
Collapse
Affiliation(s)
- Skyler Younger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | | - Shin Jeon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Soo-Kyung Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
4
|
Promoting and Optimizing the Use of 3D-Printed Objects in Spontaneous Recognition Memory Tasks in Rodents: A Method for Improving Rigor and Reproducibility. eNeuro 2021; 8:ENEURO.0319-21.2021. [PMID: 34503967 PMCID: PMC8489023 DOI: 10.1523/eneuro.0319-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Spontaneous recognition memory tasks are widely used to assess cognitive function in rodents and have become commonplace in the characterization of rodent models of neurodegenerative, neuropsychiatric and neurodevelopmental disorders. Leveraging an animal’s innate preference for novelty, these tasks use object exploration to capture the what, where and when components of recognition memory. Choosing and optimizing objects is a key feature when designing recognition memory tasks. Although the range of objects used in these tasks varies extensively across studies, object features can bias exploration, influence task difficulty and alter brain circuit recruitment. Here, we discuss the advantages of using 3D-printed objects in rodent spontaneous recognition memory tasks. We provide strategies for optimizing their design and usage, and offer a repository of tested, open-source designs for use with commonly used rodent species. The easy accessibility, low-cost, renewability and flexibility of 3D-printed open-source designs make this approach an important step toward improving rigor and reproducibility in rodent spontaneous recognition memory tasks.
Collapse
|
5
|
Ontogeny of spontaneous recognition memory in rodents. Neurobiol Learn Mem 2020; 177:107361. [PMID: 33307181 DOI: 10.1016/j.nlm.2020.107361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/31/2023]
Abstract
Spontaneous recognition memory tasks explore thewhat,whereandwhencomponents of recognition memory. These tasks are widely used in rodents to assess cognitive function across the lifespan. While several neurodevelopmental and mental disorders present symptom onset in early life, very little is known about how memories are expressed in early life, and as a consequence how they may be affected in pathological conditions. In this review, we conduct an analysis of the studies examining the expression of spontaneous recognition memory in young rodents. We compiled studies using four different tasks: novel object recognition, object location, temporal order recognition and object place. First, we identify major sources of variability between early life spontaneous recognition studies and classify them for later comparison. Second, we use these classifications to explore the current knowledge on the ontogeny of each of these four spontaneous recognition memory tasks. We conclude by discussing the possible implications of the relative time of onset for each of these tasks and their respective neural correlates. In compiling this research, we hope to advance on establishing a developmental timeline for the emergence of distinct components of recognition memory, while also identifying key areas of focus for future research. Establishing the ontogenetic profile of rodent spontaneous recognition memory tasks will create a necessary blueprint for cognitive assessment in animal models of neurodevelopmental and mental disorders, a first step towards improved and earlier diagnosis as well as novel intervention strategies.
Collapse
|
6
|
Bellantuono I, de Cabo R, Ehninger D, Di Germanio C, Lawrie A, Miller J, Mitchell SJ, Navas-Enamorado I, Potter PK, Tchkonia T, Trejo JL, Lamming DW. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat Protoc 2020; 15:540-574. [PMID: 31915391 PMCID: PMC7002283 DOI: 10.1038/s41596-019-0256-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer's disease, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of aging and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slow progress. To overcome this, major centers in Europe and the United States skilled in healthspan analysis came together to agree on a toolbox of techniques that can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox, which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose tolerance test (GTT) and insulin tolerance test (ITT), body composition, and energy expenditure. The protocols can be performed longitudinally in the same mouse over a period of 4-6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular, and metabolic health.
Collapse
Affiliation(s)
- I Bellantuono
- Department of Oncology and Metabolism, Healthy Lifespan Institute and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing, University of Sheffield, Sheffield, UK.
| | - R de Cabo
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - D Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1, Bonn, Germany
| | - C Di Germanio
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - A Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - J Miller
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - S J Mitchell
- Department of Molecular Medicine, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - I Navas-Enamorado
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - P K Potter
- Department of Biological and Life Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxfordshire, UK
| | - T Tchkonia
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - J L Trejo
- Department of Translational Neuroscience, Cajal Institute (CSIC), Madrid, Spain
| | - D W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Desbonnet L, O'Tuathaigh CM, O'Leary C, Cox R, Tighe O, Petit EI, Wilson S, Waddington JL. Acute stress in adolescence vs early adulthood following selective deletion of dysbindin-1A: Effects on anxiety, cognition and other schizophrenia-related phenotypes. J Psychopharmacol 2019; 33:1610-1619. [PMID: 31556815 DOI: 10.1177/0269881119875465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND As exposure to stress has been linked to the onset and maintenance of psychotic illness, its pathogenesis may involve environmental stressors interacting with genetic vulnerability. AIM To establish whether acute stress interacts with a targeted mutation of the gene encoding the neurodevelopmental factor dystrobrevin-binding protein 1 (DTNBP1), resulting in a specific loss of the isoform dysbindin-1A, to influence schizophrenia-relevant phenotypes in mice during adolescence and adulthood. METHODS Male and female mice with a heterozygous or homozygous deletion of DTNBP1 were assessed in the open field test following acute restraint stress in adolescence (Day 35) and young adulthood (Day 60-70). Effects of acute restraint stress on memory retention in the novel object recognition test was also assessed in adulthood. Baseline corticosterone was measured in serum samples and, brain-derived neurotrophic factor (BDNF), glucocorticoid and mineralocorticoid receptor gene expression levels were measured in the hippocampus of adult mice. RESULTS In the open field, deletion of dysbindin-1A induced hyperactivity and attenuated the action of stress to reduce hyperactivity in adolescence but not in adulthood; in females deletion of dysbindin-1A attenuated the effect of acute stress to increase anxiety-related behaviour in adolescence but not in adulthood. In the novel object recognition test, deletion of dysbindin-1A impaired memory and also revealed an increase in anxiety-related behaviour and a decrease in hippocampal BDNF gene expression in males. CONCLUSIONS These data suggest that deletion of dysbindin-1A influences behaviours related to schizophrenia and anxiety more robustly in adolescence than in adulthood and that dysbindin-1A influences stress-related responses in a sex-dependent manner.
Collapse
Affiliation(s)
- Lieve Desbonnet
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Psychology, National University of Ireland, Galway, Ireland
| | - Colm Mp O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| | - Clare O'Leary
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Rabin BM, Poulose SM, Bielinski DF, Shukitt-Hale B. Effects of head-only or whole-body exposure to very low doses of 4He (1000 MeV/n) particles on neuronal function and cognitive performance. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:85-92. [PMID: 30797437 DOI: 10.1016/j.lssr.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/21/2018] [Accepted: 02/04/2019] [Indexed: 05/03/2023]
Abstract
On exploratory class missions, astronauts will be exposed to a range of heavy particles which vary in linear energy transfer (LET). Previous research has shown a direct relationship between particle LET and cognitive performance such that, as particle LET decreases the dose needed to affect cognitive performance also decreases. Because a significant portion of the total dose experienced by astronauts may be expected to come from exposure to low LET 4He particles, it would be important to establish the threshold dose of 4He particles that can produce changes in cognitive performance. The results indicated that changes in neuronal function and cognitive performance could be observed following both head-only and whole-body exposures to 4He particles at doses as low as 0.01-0.025 cGy. These results, therefore, suggest the possibility that astronauts on exploratory class missions may be at a greater risk for HZE-induced deficits than previously anticipated.
Collapse
Affiliation(s)
- Bernard M Rabin
- Department of Psychology, UMBC, Baltimore, MD 21250, United States.
| | - Shibu M Poulose
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| | - Donna F Bielinski
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| | - Barbara Shukitt-Hale
- USDA-ARS, Human Nutrition Research Center on Aging at Tufts Univ., Boston, MA 02111, United States
| |
Collapse
|
9
|
Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice. Int J Mol Sci 2018; 19:ijms19041247. [PMID: 29677125 PMCID: PMC5979430 DOI: 10.3390/ijms19041247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022] Open
Abstract
The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear conditioning tests. Taken together, the results indicate that some aspects of cognitive performance are altered in male mice exposed to ⁴He ions, but that the response is task-dependent. Furthermore, the sensitive doses can vary within each task in a non-linear fashion. This highlights the importance of assessing the cognitive and behavioral effects of charged particle exposure with a variety of assays and at multiple doses, given the possibility that lower doses may be more damaging due to the absence of induced compensatory mechanisms at higher doses.
Collapse
|
10
|
Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, Marzulla T, Riparip LK, Stewart B, Rosi S, Turker MS, Raber J. Bi-directional and shared epigenomic signatures following proton and 56Fe irradiation. Sci Rep 2017; 7:10227. [PMID: 28860502 PMCID: PMC5579159 DOI: 10.1038/s41598-017-09191-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/24/2017] [Indexed: 12/04/2022] Open
Abstract
The brain’s response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain’s response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Timothy Jopson
- Brain and Spinal Injury Center, Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amanuel Tafessu
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Fatema Fareh
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Damian Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lara-Kirstie Riparip
- Brain and Spinal Injury Center, Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Blair Stewart
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Susanna Rosi
- Brain and Spinal Injury Center, Departments of Neurological Surgery and Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94110, USA
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Lewis AS, van Schalkwyk GI, Bloch MH. Alpha-7 nicotinic agonists for cognitive deficits in neuropsychiatric disorders: A translational meta-analysis of rodent and human studies. Prog Neuropsychopharmacol Biol Psychiatry 2017; 75:45-53. [PMID: 28065843 PMCID: PMC5446073 DOI: 10.1016/j.pnpbp.2017.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 12/24/2016] [Accepted: 01/03/2017] [Indexed: 12/28/2022]
Abstract
Cognitive dysfunction in schizophrenia (SCZ) and Alzheimer's disease (AD) is a major driver of functional disability but is largely unresponsive to current therapeutics. Animal models of cognitive dysfunction relevant to both disorders suggest the α7 nicotinic acetylcholine receptor (nAChR) may be a promising drug development target, with multiple clinical trials subsequently testing this hypothesis in individuals with SCZ and AD. However, the translational value of rodent cognitive tasks for predicting the overall efficacy of this therapeutic target in clinical trials is unknown. To compare effect sizes between rodent and human studies, we searched PubMed and the Cochrane Library for all randomized, placebo-controlled trials of compounds with pharmacological activity at the α7 nAChR for treatment of cognitive dysfunction in SCZ and AD and identified 18 studies comprising 2670 subjects treated with eight different compounds acting as full or partial agonists. Cognitive outcomes were standardized, and random-effects meta-analyses revealed no statistically significant effects of α7 nAChR agonists on overall cognition or any of eight cognitive subdomains when all doses were included (Range of all cognitive outcomes: Cohen's d=-0.077 to 0.12, negative favoring drug). In contrast, analysis of 29 rodent studies testing the same α7 agonists revealed large effect sizes in multiple commonly used preclinical behavioral tests of cognition (Range: d=-1.18 to - 0.73). Our results suggest that targeting the α7 nAChR with agonists is not a robust treatment for cognitive dysfunction in SCZ or AD and necessitate a better understanding of the translational gap for therapeutics targeting the α7 nAChR.
Collapse
Affiliation(s)
- Alan S. Lewis
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor, Research, New Haven, CT 06508, United States,Corresponding author at: 34 Park Street, 3rd Floor, Research, New Haven, CT 06508, United States. (A.S. Lewis)
| | | | - Michael H. Bloch
- Yale Child Study Center, 230 S. Frontage Road, New Haven, CT 06520, United States
| |
Collapse
|
12
|
Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, Marzulla T, Riparip LK, Stewart B, Rosi S, Turker MS, Raber J. Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression. BMC Genomics 2016; 17:825. [PMID: 27776477 PMCID: PMC5078898 DOI: 10.1186/s12864-016-3110-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Background Astronauts are exposed to 56Fe ions that may pose a significant health hazard during and following prolonged missions in deep space. We showed previously that object recognition requiring the hippocampus, a structure critical for cognitive function, is affected in 2-month-old mice irradiated with 56Fe ions. Here we examined object recognition in 6-month-old mice irradiated with 56Fe ions, a biological age more relevant to the typical ages of astronauts. Moreover, because the mechanisms mediating the detrimental effects of 56Fe ions on hippocampal function are unclear, we examined changes in hippocampal networks involved in synaptic plasticity and memory, gene expression, and epigenetic changes in cytosine methylation (5mC) and hydroxymethylation (5hmC) that could accompany changes in gene expression. We assessed the effects of whole body 56Fe ion irradiation at early (2 weeks) and late (20 weeks) time points on hippocampus-dependent memory and hippocampal network stability, and whether these effects are associated with epigenetic changes in hippocampal DNA methylation (both 5mC and 5hmC) and gene expression. Results At the two-week time point, object recognition and network stability were impaired following irradiation at the 0.1 and 0.4 Gy dose, but not following irradiation at the 0.2 Gy dose. No impairments in object recognition or network stability were seen at the 20-week time point at any irradiation dose used. Consistent with this pattern, the significance of pathways for gene categories for 5hmC was lower, though not eliminated, at the 20-week time point compared to the 2-week time point. Similarly, significant changes were observed for 5mC gene pathways at the 2-week time point, but no significant gene categories were observed at the 20-week time point. Only the 5hmC changes tracked with gene expression changes. Conclusions Dose- and time-dependent epigenomic remodeling in the hippocampus following 56Fe ion exposure correlates with behavioral changes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3110-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Cell, Developmental Biology, and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Timothy Jopson
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, 94110, USA.,Departments of Physical Therapy Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94110, USA.,Neurological Surgery, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amanuel Tafessu
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Fatema Fareh
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Damian Zuloaga
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Lara-Kirstie Riparip
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, 94110, USA.,Departments of Physical Therapy Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94110, USA.,Neurological Surgery, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
| | - Blair Stewart
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Susanna Rosi
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, 94110, USA.,Departments of Physical Therapy Rehabilitation Science, University of California, San Francisco, San Francisco, CA, 94110, USA.,Neurological Surgery, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, CA, 94110, USA
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Oregon Health and Science University, Portland, OR, 97239, USA. .,Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 2015; 135:70-82. [DOI: 10.1016/j.pbb.2015.05.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022]
|