1
|
Derman RC, Matthew Lattal K. Acute stress persistently alters instrumental motivation without affecting appetitive Pavlovian conditioning, extinction, or contextual renewal. Neurobiol Learn Mem 2023; 202:107771. [PMID: 37182757 PMCID: PMC10404028 DOI: 10.1016/j.nlm.2023.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
In two experiments, we adapted the stress-enhanced fear learning approach to evaluate the persistent effects of acute stress on appetitive learning and motivation in adult male Long Evans rats. In Experiment 1, we found that exposure to a battery of footshocks in one context had no effect on the acquisition, extinction, or contextual renewal of an appetitive Pavlovian discrimination in different contexts. However, when rats were subsequently trained to respond on a progressive ratio instrumental schedule, rats with a history of shock showed lower response rates and progressive ratio break points. Extinction of the shock-associated context had little effect on progressive ratio responding. In Experiment 2, we replicated this instrumental responding deficit with a continuous reinforcement schedule when the Pavlovian phases did not intervene in the time between shock and instrumental testing. Our findings here demonstrate that highly stressful acute experiences produce long-lasting deficits in instrumental motivation for food in male rats.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
2
|
NLRP3 Inflammasome Is Involved in Cocaine-Mediated Potentiation on Behavioral Changes in CX3CR1-Deficient Mice. J Pers Med 2021; 11:jpm11100963. [PMID: 34683104 PMCID: PMC8540128 DOI: 10.3390/jpm11100963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/25/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
Microglia, the primary immunocompetent cells of the brain, are suggested to play a role in the development of drug addiction. Previous studies have identified the microglia-derived pro-inflammatory factor IL1β can promote the progression of cocaine addiction. Additionally, the activation status of microglia and “two-hit hypothesis” have been proposed in the field of drug addiction to explain how early life stress (ELS) could significantly increase the incidence of drug addiction in later life. However, the mechanisms underlying microglia prime and full activation and their roles in drug addiction remain greatly unexplored. Here, we employed CX3CR1-GFP mice (CX3CR1 functional deficiency, CX3CR1−/−) to explore whether primed microglia could potentiate cocaine-mediated behavioral changes and the possible underlying mechanisms. CX3CR1−/− mice revealed higher hyperlocomotion activity and conditional place preference than wild-type (WT) mice did under cocaine administration. In parallel, CX3CR1−/− mice showed higher activity of NLR family pyrin domain-containing 3 (NLRP3) inflammasome than WT mice. Interestingly, CX3CR1 deficiency itself could prime NLRP3 signaling by increasing the expression of NLPR3 and affect lysosome biogenesis under basal conditions. Taken together, our findings demonstrated that the functional status of microglia could have an impact on cocaine-mediated reward effects, and NLRP3 inflammasome activity was associated with this phenomenon. This study was consistent with the two-hit hypothesis and provided solid evidence to support the involvement of microglia in drug addiction. Targeting the NLRP3 inflammasome may represent a novel therapeutic approach for ameliorating or blocking the development of drug addiction.
Collapse
|
3
|
Repeated cocaine exposure prior to fear conditioning induces persistency of PTSD-like symptoms and enhancement of hippocampal and amygdala cell density in male rats. Brain Struct Funct 2021; 226:2219-2241. [PMID: 34195855 DOI: 10.1007/s00429-021-02320-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Pre- and post-trauma drug use can interfere with recovery from post-traumatic stress disorder (PTSD). However, the biological underpinnings of this interference are poorly understood. Here we examined the effect of pre-fear conditioning cocaine self-administration on PTSD-like symptoms in male rats, and defined impairment of fear extinction as difficulty to recover from PTSD. We also examined cell density changes in brain regions suspected of being involved in resistance to PTSD recovery. Before footshock stress testing, rats were trained to self-administer cocaine during 20 consecutive days, after which they were exposed to footshocks, while other rats continued to self-administer cocaine until the end of the experiment. Upon assessment of three PTSD-like symptoms (fear during situational reminders, anxiety-like behavior, and impairment of recognition memory) and fear extinction learning and memory, changes in cell density were measured in the medial prefrontal cortex, hippocampus, and amygdala. Results show that pre-footshock cocaine exposure did not affect fear during situational reminders. Fear conditioning did not lead to an increase in cocaine consumption. However, in footshock stressed rats, cocaine induced a reduction of anxiety-like behavior, an aggravation of recognition memory decline, and an impairment of extinction memory. These behavioral alterations were associated with increased cell density in the hippocampal CA1, CA2, and CA3 regions and basolateral amygdala, but not in the medial prefrontal cortex. Our findings suggest that enhancement of cell density in the hippocampus and amygdala may be changes associated with drug use, interfering with PTSD recovery.
Collapse
|
4
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
5
|
Kuijer EJ, Ferragud A, Milton AL. Retrieval-Extinction and Relapse Prevention: Rewriting Maladaptive Drug Memories? Front Behav Neurosci 2020; 14:23. [PMID: 32153373 PMCID: PMC7044236 DOI: 10.3389/fnbeh.2020.00023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
Addicted individuals are highly susceptible to relapse when exposed to drug-associated conditioned stimuli (CSs; "drug cues") even after extensive periods of abstinence. Until recently, these maladaptive emotional drug memories were believed to be permanent and resistant to change. The rediscovery of the phenomenon of memory reconsolidation-by which retrieval of the memory can, under certain conditions, destabilize the previously stable memory before it restabilizes in its new, updated form-has led to the hypothesis that it may be possible to disrupt the strong maladaptive drug-memories that trigger a relapse. Furthermore, recent work has suggested that extinction training "within the reconsolidation window" may lead to a long-term reduction in relapse without the requirement for pharmacological amnestic agents. However, this so-called "retrieval-extinction" effect has been inconsistently observed in the literature, leading some to speculate that rather than reflecting memory updating, it may be the product of facilitation of extinction. In this mini review article, we will focus on factors that might be responsible for the retrieval-extinction effects on preventing drug-seeking relapse and how inter-individual differences may influence this therapeutically promising effect. A better understanding of the psychological and neurobiological mechanisms underpinning the "retrieval-extinction" paradigm, and individual differences in boundary conditions, should provide insights with the potential to optimize the translation of "retrieval-extinction" to clinical populations.
Collapse
Affiliation(s)
- Eloise J. Kuijer
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Leiden University Medical Centre, Leiden University, Leiden, Netherlands
| | - Antonio Ferragud
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Dutta AK, Santra S, Harutyunyan A, Das B, Lisieski MJ, Xu L, Antonio T, Reith ME, Perrine SA. D-578, an orally active triple monoamine reuptake inhibitor, displays antidepressant and anti-PTSD like effects in rats. Eur J Pharmacol 2019; 862:172632. [DOI: 10.1016/j.ejphar.2019.172632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
|
7
|
Matonda-Ma-Nzuzi T, Didone V, Seutin V, Tirelli E, Quertemont E. Investigating the reciprocal relationships between locomotor sensitization to ethanol and PTSD-like clusters in DBA/2J mice. Behav Brain Res 2019; 368:111909. [PMID: 30986492 DOI: 10.1016/j.bbr.2019.111909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/15/2019] [Accepted: 04/11/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are two conditions that co-occur frequently. The mechanistic explanations of this co-morbidity are still unclear. The goal of this study was twofold. First to investigate whether PTSD reduces the threshold for the acquisition of ethanol sensitization in an animal model of PTSD. Then to investigate whether ethanol sensitization modulates the expression of PTSD. METHODS 152 female inbred DBA/2 J mice were submitted to an inescapable footshock paradigm to induce a PTSD-like condition (PTSDLC) and to a paradigm of locomotor sensitization to ethanol. In a first experiment, mice were submitted to the PTSDLC and then repeatedly injected with either saline, 1 g/kg ethanol or 2 g/kg ethanol. Their sensitization to the locomotor stimulant effects of ethanol was then tested in an open field. In a second experiment, mice were first sensitized to the locomotor stimulant effects of ethanol and then tested for their behavioral response to PTSDLC. RESULTS In the first experiment, PTSDLC failed to induce a significant locomotor sensitization at the subthreshold dose of 1 g/kg ethanol. However, with 2 g/kg ethanol, a stronger ethanol sensitization was observed in mice submitted to the footshock relative to the control group. In the second experiment, ethanol sensitization increased only some of the behavioral clusters of PTSDLC, namely the fear generalization in a new context. CONCLUSION PTSDLC did not reduce the dose threshold for the acquisition of ethanol sensitization but strengthened the development of ethanol sensitization with effective doses. This suggests that PTSD might interact with one of the mechanisms underlying the development of alcohol sensitization. When the relationship between ethanol sensitization and PTSDLC is tested in the reverse direction, the present study only shows a significant effect of ethanol administration on the "sensitized fear" PTSD cluster.
Collapse
Affiliation(s)
- Thierry Matonda-Ma-Nzuzi
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium; Laboratory of Neurophysiology, GIGA Neurosciences, all at Liège University, B-4000, Sart Tilman, Liège, Belgium; Département de psychiatrie, Faculté de médecine, Université de Kinshasa, Democratic Republic of the Congo
| | - Vincent Didone
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium
| | - Vincent Seutin
- Laboratory of Neurophysiology, GIGA Neurosciences, all at Liège University, B-4000, Sart Tilman, Liège, Belgium
| | - Ezio Tirelli
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium
| | - Etienne Quertemont
- Psychology & Neuroscience of Cognition - PsyNCogn, Liège University, Belgium.
| |
Collapse
|
8
|
Piggott VM, Bosse KE, Lisieski MJ, Strader JA, Stanley JA, Conti AC, Ghoddoussi F, Perrine SA. Single-Prolonged Stress Impairs Prefrontal Cortex Control of Amygdala and Striatum in Rats. Front Behav Neurosci 2019; 13:18. [PMID: 31114487 PMCID: PMC6502983 DOI: 10.3389/fnbeh.2019.00018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/21/2019] [Indexed: 12/17/2022] Open
Abstract
Medial prefrontal cortex (mPFC), amygdala, and striatum neurocircuitry has been shown to play an important role in post-traumatic stress disorder (PTSD) pathology in humans. Clinical studies show hypoactivity in the mPFC and hyperactivity in the amygdala and striatum of PTSD patients, which has been associated with decreased mPFC glutamate levels. The ability to refine neurobiological characteristics of PTSD in an animal model is critical in furthering our mechanistic understanding of the disease. To this end, we exposed male rats to single-prolonged stress (SPS), a validated model of PTSD, and hypothesized that traumatic stress would differentially activate mPFC subregions [prelimbic (PL) and infralimbic (IL) cortices] and increase striatal and amygdalar activity, which would be associated with decreased mPFC glutamate levels. in vivo, neural activity in the subregions of the mPFC, amygdala, and striatum was measured using manganese-enhanced magnetic resonance imaging (MEMRI), and glutamate and N-acetylaspartate (NAA) levels in the mPFC and the dorsal striatum (dSTR) were measured using proton magnetic resonance spectroscopy (1H-MRS) longitudinally, in rats exposed to SPS or control conditions. As hypothesized, SPS decreased MEMRI-based neural activity in the IL, but not PL, cortex concomitantly increasing activity within the basolateral amygdala (BLA) and dorsomedial striatum (dmSTR). 1H-MRS studies in a separate cohort revealed SPS decreased glutamate levels in the mPFC and increased NAA levels in the dSTR. These results confirm previous findings that suggest SPS causes mPFC hypoactivation as well as identifies concurrent hyperactivation in dmSTR and BLA, effects which parallel the clinical neuropathology of PTSD.
Collapse
Affiliation(s)
- Veronica M. Piggott
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kelly E. Bosse
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Michael J. Lisieski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - John A. Strader
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Shane A. Perrine
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
9
|
Le Dorze C, Tassin JP, Chauveau F, Gisquet-Verrier P. Behavioral and Noradrenergic Sensitizations in Vulnerable Traumatized Rats Suggest Common Bases with Substance Use Disorders. Mol Neurobiol 2018; 56:611-620. [PMID: 29754278 DOI: 10.1007/s12035-018-1053-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/29/2018] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to strengthen our hypothesis of a common physiological basis for post-traumatic stress disorder (PTSD) and substance use disorders. This paper investigates the possibility that rats exposed to a PTSD model exhibit noradrenergic and behavioral sensitization, as observed following repeated drugs of abuse injections. First, rats received a single prolonged stress (SPS), combining three consecutive stressors. They were then tested, 2 weeks after the trauma for PTSD-like symptoms to discriminate between vulnerable and resilient rats. When microdialysis was performed in the prelimbic cortex (Experiment 1), larger increases of noradrenaline (NA) release in response to amphetamine were observed in vulnerable rats when compared to control and resilient animals. Experiment 2 showed that trauma-vulnerable rats exhibited increases in locomotor activity relative to controls, in response to an exposure to trauma-associated cues. These data demonstrate that a single trauma exposure induces in vulnerable animals both, a noradrenergic sensitization evidenced within the prelimbic cortex and behavioral sensitization obtained after a physiologic activation of the noradrenergic system. However, Experiment 3 showed that when NA system was activated by amphetamine (1 mg/kg), a decrease in behavioral sensitization was obtained in vulnerable rats. We proposed that this decreased locomotor activity results from an additional stress-induced increased reactivity of mesocortical dopaminergic neurons, known to counteract the consequences of cortical noradrenergic release in rats. These results support our hypothesis that noradrenergic sensitization represents a common physiological basis, involved both in PTSD and drug addiction and suggest new common therapeutic approaches for these pathologies.
Collapse
Affiliation(s)
- Claire Le Dorze
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Bât 446, 91405, Orsay, France
| | - Jean-Pol Tassin
- Sorbonne Universite, Neuroscience Paris Seine, UMCR18, CNRS UMR 8246, Inserm U1130, 7 Quai St Bernard, 75252, Paris, France
| | - Fréderic Chauveau
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge Cedex, France
| | - Pascale Gisquet-Verrier
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), Université Paris-Sud, CNRS UMR 9197, Université Paris-Saclay, Bât 446, 91405, Orsay, France.
| |
Collapse
|
10
|
Davidson TL, Hargrave SL, Kearns DN, Clasen MM, Jones S, Wakeford AGP, Sample CH, Riley AL. Cocaine impairs serial-feature negative learning and blood-brain barrier integrity. Pharmacol Biochem Behav 2018; 170:56-63. [PMID: 29753886 DOI: 10.1016/j.pbb.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Previous research has shown that diets high in fat and sugar [a.k.a., Western diets (WD)] can impair performance of rats on hippocampal-dependent learning and memory problems, an effect that is accompanied by selective increases in hippocampal blood brain barrier (BBB) permeability. Based on these types of findings, it has been proposed that overeating of a WD (and its resulting obesity) may be, in part, a consequence of impairments in these anatomical substrates and cognitive processes. Given that drug use (and addiction) represents another behavioral excess, the present experiments assessed if similar outcomes might occur with drug exposure by evaluating the effects of cocaine administration on hippocampal-dependent memory and on the integrity of the BBB. Experiment 1 of the present series of studies found that systemic cocaine administration in rats also appears to have disruptive effects on the same hippocampal-dependent learning and memory mechanism that has been proposed to underlie the inhibition of food intake. Experiment 2 demonstrated that the same regimen of cocaine exposure that produced disruptions in learning and memory in Experiment 1 also produced increased BBB permeability in the hippocampus, but not in the striatum. Although the predominant focus of previous research investigating the etiologies of substance use and abuse has been on the brain circuits that underlie the motivational properties of drugs, the current investigation implicates the possible involvement of hippocampal memory systems in such behaviors. It is important to note that these positions are not mutually exclusive and that neuroadaptations in these two circuits might occur in parallel that generate dysregulated drug use in a manner similar to that of excessive eating.
Collapse
Affiliation(s)
- Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States.
| | - Sara L Hargrave
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - David N Kearns
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Matthew M Clasen
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Alison G P Wakeford
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States
| | - Anthony L Riley
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC 20016, United States.
| |
Collapse
|
11
|
Seo JY, Ko YH, Ma SX, Lee BR, Lee SY, Jang CG. Repeated restraint stress reduces the acquisition and relapse of methamphetamine-conditioned place preference but not behavioral sensitization. Brain Res Bull 2018; 139:99-104. [DOI: 10.1016/j.brainresbull.2018.01.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 01/01/2023]
|
12
|
Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA. Single-Prolonged Stress: A Review of Two Decades of Progress in a Rodent Model of Post-traumatic Stress Disorder. Front Psychiatry 2018; 9:196. [PMID: 29867615 PMCID: PMC5962709 DOI: 10.3389/fpsyt.2018.00196] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/25/2018] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common, costly, and often debilitating psychiatric condition. However, the biological mechanisms underlying this disease are still largely unknown or poorly understood. Considerable evidence indicates that PTSD results from dysfunction in highly-conserved brain systems involved in stress, anxiety, fear, and reward. Pre-clinical models of traumatic stress exposure are critical in defining the neurobiological mechanisms of PTSD, which will ultimately aid in the development of new treatments for PTSD. Single prolonged stress (SPS) is a pre-clinical model that displays behavioral, molecular, and physiological alterations that recapitulate many of the same alterations observed in PTSD, illustrating its validity and giving it utility as a model for investigating post-traumatic adaptations and pre-trauma risk and protective factors. In this manuscript, we review the present state of research using the SPS model, with the goals of (1) describing the utility of the SPS model as a tool for investigating post-trauma adaptations, (2) relating findings using the SPS model to findings in patients with PTSD, and (3) indicating research gaps and strategies to address them in order to improve our understanding of the pathophysiology of PTSD.
Collapse
Affiliation(s)
- Michael J Lisieski
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Alana C Conti
- Research and Development Service, John D. Dingell Veterans Affairs Medical Center, Detroit, MI, United States.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, United States
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States.,Mental Health Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
13
|
Binge-pattern cocaine administration causes long-lasting behavioral hyperarousal but does not enhance vulnerability to single prolonged stress in rats. Psychiatry Res 2017; 257:95-101. [PMID: 28750215 DOI: 10.1016/j.psychres.2017.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/05/2017] [Accepted: 07/13/2017] [Indexed: 11/21/2022]
Abstract
Cocaine use disorder and post-traumatic stress disorder (PTSD) commonly co-occur. This could be due to vulnerability to post-traumatic symptoms conferred by previous exposure to cocaine. Therefore, we combined chronic binge-pattern cocaine with a model of psychological trauma (single prolonged stress) to determine whether the behavioral effects of psychological trauma are enhanced in cocaine-sensitized individuals. Adult male Sprague Dawley rats received 14 days of cocaine (15mg/kg/injection) or saline in a binge pattern (3 injections per day, 1h apart). Seven days after the last injection animals were exposed to traumatic stress or a control procedure. Seven days after stress, activity and anxiety-like behaviors were measured. Binge-pattern cocaine increased locomotor activity in the open field and elevated plus maze, and both cocaine and SPS exposure increased the rapidity with which rats moved through grooming sequences. Neither binge-pattern cocaine nor SPS increased anxiety-like behaviors, and no interactions were found between binge-pattern cocaine exposure and SPS exposure. A behavioral phenotype categorization approach demonstrated that cocaine-exposed groups expressed a high incidence of hyperactivity-like symptoms. These results suggest that binge-pattern cocaine exposure causes a long-lasting hyper-exploratory phenotype but does not make individuals more vulnerable to a later traumatic stress exposure.
Collapse
|
14
|
Hofford RS, Prendergast MA, Bardo MT. Modified single prolonged stress reduces cocaine self-administration during acquisition regardless of rearing environment. Behav Brain Res 2017; 338:143-152. [PMID: 29061385 DOI: 10.1016/j.bbr.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022]
Abstract
Until recently, there were few rodent models available to study the interaction of post-traumatic stress disorder (PTSD) and drug taking. Like PTSD, single prolonged stress (SPS) produces hypothalamic-pituitary-adrenal (HPA) axis dysfunction and alters psychostimulant self-administration. Other stressors, such as isolation stress, also alter psychostimulant self-administration. However, it is currently unknown if isolation housing combined with SPS can alter the acquisition or maintenance of cocaine self-administration. The current study applied modified SPS (modSPS; two hours restraint immediately followed by cold swim stress) to rats raised in an isolation condition (Iso), enrichment condition (Enr), or standard condition (Std) to measure changes in cocaine self-administration and HPA markers. Regardless of rearing condition, rats exposed to modSPS had greater corticosterone (CORT) release and reduced cocaine self-administration during initial acquisition compared to non-stressed controls. In addition, during initial acquisition, rats that received both Iso rearing and modSPS showed a more rapid increase in cocaine self-administration across sessions compared to Enr and Std rats exposed to modSPS. Following initial acquisition, a dose response analysis showed that Iso rats were overall most sensitive to changes in cocaine unit dose; however, modSPS had no effect on the cocaine dose response curve. Further, there was no effect of either modSPS or differential rearing on expression of glucocorticoid receptor (GR) in hypothalamus, medial prefrontal cortex, amygdala, or nucleus accumbens. By using modSPS in combination with Iso housing, this study identified unique contributions of each stressor to acquisition of cocaine self-administration.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Mark A Prendergast
- Department of Psychology, University of Kentucky, Lexington, KY, 40536, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
15
|
Malikowska N, Fijałkowski Ł, Nowaczyk A, Popik P, Sałat K. Antidepressant-like activity of venlafaxine and clonidine in mice exposed to single prolonged stress - A model of post-traumatic stress disorder. Pharmacodynamic and molecular docking studies. Brain Res 2017; 1673:1-10. [PMID: 28797691 DOI: 10.1016/j.brainres.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a growing issue worldwide characterized by stress and anxiety in response to re-experiencing traumatic events which strongly impair patient's quality of life and social functions. Available antidepressant and anxiolytic drugs are not efficacious in the majority of treated individuals. This necessitates a significant medical demand to develop novel therapeutic strategies for PTSD. EXPERIMENTAL APPROACH Animal model of PTSD was induced using a mouse single prolonged stress protocol (mSPS). To assess the activity of venlafaxine and clonidine, the forced swim test (FST) was used repeatedly 24h, 3days, 8days, 15days and 25days after mSPS. To get insight into a possible mechanism of anti-PTSD action, molecular docking procedure was utilized for the most active drug. This in silico part comprised molecular docking of enantiomers of venlafaxine to human transporters for serotonin (hSERT), norepinephrine (hNET) and dopamine (hDAT). KEY RESULTS In mSPS-subjected mice FST revealed the effectiveness of venlafaxine, however in non SPS-subjected mice both venlafaxine and clonidine were active. Molecular docking studies indicated that the affinity of venlafaxine to monoamine transporters is growing in the following rank order: hDAT<hNET<hSERT. Both venlafaxine enantiomers present different selectivity and binding mode. CONCLUSION AND IMPLICATIONS Venlafaxine but not clonidine was effective in an animal model of PTSD. Its mechanism of action, i.e., SERT, NET and DAT inhibition indicates potential drug targets for PTSD treatment. We expect that these results will contribute to a broader application of VLX in PTSD patients.
Collapse
Affiliation(s)
- Natalia Malikowska
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| | - Łukasz Fijałkowski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
| | - Piotr Popik
- Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| |
Collapse
|
16
|
Abstract
The present experiment tested whether the elasticity of demand for self-administered cocaine in rats is dose-dependent. Subjects lever pressed for three different doses of intravenous cocaine - 0.11, 0.33, and 1.0 mg/kg/infusion - on a demand procedure where the number of lever presses required per infusion increased within a session. The main finding was that demand for the 0.11 mg/kg dose was more elastic than it was for the two larger doses. There was no difference in demand elasticity between the 0.33 and 1.0 mg/kg doses. These results parallel findings previously reported in monkeys. The present study also demonstrated that a within-session procedure can be used to generate reliable demand curves.
Collapse
|
17
|
Hadad NA, Wu L, Hiller H, Krause EG, Schwendt M, Knackstedt LA. Conditioned stress prevents cue-primed cocaine reinstatement only in stress-responsive rats. Stress 2016; 19:406-18. [PMID: 27181613 DOI: 10.1080/10253890.2016.1189898] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neurobiological mechanisms underlying comorbid posttraumatic stress disorder (PTSD) and cocaine use disorder (CUD) are unknown. We aimed to develop an animal model of PTSD + CUD to examine the neurobiology underlying cocaine-seeking in the presence of PTSD comorbidity. Rats were exposed to cat urine once for 10-minutes and tested for anxiety-like behaviors one week later. Subsequently, rats underwent long-access (LgA) cocaine self-administration and extinction training. Rats were re-exposed to the trauma context and then immediately tested for cue-primed reinstatement of cocaine-seeking. Plasma and brains were collected afterwards for corticosterone assays and real-time qPCR analysis. Urine-exposed (UE; n = 23) and controls not exposed to urine (Ctrl; n = 11) did not differ in elevated plus maze behavior, but UE rats displayed significantly reduced habituation of the acoustic startle response (ASR) relative to Ctrl rats. A median split of ASR habituation scores was used to classify stress-responsive rats. UE rats (n = 10) self-administered more cocaine on Day 1 of LgA than control rats (Ctrl + Coc; n = 8). Re-exposure to the trauma context prevented cocaine reinstatement only in stress-responsive rats. Ctrl + Coc rats had lower plasma corticosterone concentrations than Ctrls, and decreased gene expression of corticotropin releasing hormone (CRH) and Glcci1 in the hippocampus. Rats that self-administered cocaine displayed greater CRH expression in the amygdala that was independent of urine exposure. While we did not find that cat urine exposure induced a PTSD-like phenotype in our rats, the present study underscores the need to separate stressed rats into cohorts based on anxiety-like behavior in order to study individual vulnerability to PTSD + CUD.
Collapse
Affiliation(s)
- Natalie A Hadad
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| | - Lizhen Wu
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| | - Helmut Hiller
- b Department of Pharmacodynamics , University of Florida , Gainesville , FL , USA
| | - Eric G Krause
- b Department of Pharmacodynamics , University of Florida , Gainesville , FL , USA
| | - Marek Schwendt
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| | - Lori A Knackstedt
- a Department of Psychology , University of Florida , Gainesville , FL , USA
| |
Collapse
|
18
|
Ferland CL, Reichel CM, McGinty JF. Effects of oxytocin on methamphetamine-seeking exacerbated by predator odor pre-exposure in rats. Psychopharmacology (Berl) 2016; 233:1015-24. [PMID: 26700240 PMCID: PMC5003622 DOI: 10.1007/s00213-015-4184-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/03/2015] [Indexed: 01/13/2023]
Abstract
RATIONALE The endogenous oxytocin system has emerged as an inhibitor of drug-seeking and stress in preclinical models. OBJECTIVES The goal of this study was to examine whether systemic oxytocin administration attenuated methamphetamine (METH)-seeking in rats pre-exposed to a predator odor threat. METHODS In Experiment 1, rats were exposed for 5 days to the predator odor, 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), or saline before METH self-administration began. After extinction training, rats were injected with 1 mg/kg, ip oxytocin (OXT) or saline 30 min before a cue-induced reinstatement test followed by re-extinction and a TMT-induced reinstatement test. In Experiment 2, TMT pre-exposure was followed by 10 days of 1 mg/kg OXT or saline injections before METH self-administration, extinction, and a TMT-induced reinstatement test. RESULTS In Experiment 1, TMT pre-exposed rats that were injected with saline 30 min before reinstatement exhibited greater drug-seeking induced by conditioned cues or TMT than that exhibited by saline pre-exposed rats. A single injection of OXT 30 min before reinstatement suppressed METH-seeking in both saline- and TMT pre-exposed rats. In Experiment 2, TMT pre-exposed rats that received saline injections for 10 days prior to METH self-administration exhibited enhanced drug-seeking induced by TMT during stress-induced reinstatement. OXT injections for 10 days prior to METH self-administration blocked only the stress-induced exacerbation of drug-seeking in TMT pre-exposed rats. CONCLUSIONS These results support further research on the development of oxytocin as a novel therapeutic drug that has enduring effects on drug-seeking exacerbated by stress.
Collapse
Affiliation(s)
| | | | - Jacqueline F. McGinty
- Correspondence: Jacqueline McGinty, Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Ave MSC 510, Charleston, SC 29425 USA, Tel: 843-792-9036, Fax: 843-792-4423,
| |
Collapse
|
19
|
Enman NM, Arthur K, Ward SJ, Perrine SA, Unterwald EM. Anhedonia, Reduced Cocaine Reward, and Dopamine Dysfunction in a Rat Model of Posttraumatic Stress Disorder. Biol Psychiatry 2015; 78:871-9. [PMID: 26115790 PMCID: PMC4644715 DOI: 10.1016/j.biopsych.2015.04.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) co-occurs with substance use disorders at high rates, but the neurobiological basis of this relationship is largely unknown. PTSD and drug addiction each involve dysregulation of brain reward circuitry; therefore, the identification of pathology of the mesolimbic dopamine system may aid in understanding their functional relationship. Dopamine reward dysfunction also may be relevant to the mechanisms underlying the PTSD symptoms of anhedonia and emotional numbing. METHODS Single-prolonged stress (SPS) was used as a rat model of PTSD, and a series of behavioral and neuropharmacologic assays were applied to assess the impact of SPS on reward, cocaine intake, and components of the striatal dopamine system. RESULTS Exposure to SPS increased anhedonia-like behaviors and decreased the rewarding properties of cocaine compared with control handling. Altered cocaine intake during extended access self-administration sessions was observed in rats exposed to SPS, further suggesting a difference in the reinforcing properties of cocaine following severe stress. SPS reduced tissue content of dopamine and its metabolites in the striatum, as well as altered striatal dopamine transporter and D2, but not D1, receptor densities. CONCLUSIONS These results support a role for altered dopaminergic transmission in reduced reward function in PTSD. Pathology of the dopamine system and the degradation of reward processes may contribute to PTSD symptomology and have implications for co-occurring psychiatric disorders such as substance abuse or depression.
Collapse
Affiliation(s)
- Nicole M. Enman
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Kayti Arthur
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Sara J. Ward
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Shane A. Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ellen M. Unterwald
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA, Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| |
Collapse
|