1
|
Bastos-Gonçalves R, Coimbra B, Rodrigues AJ. The mesopontine tegmentum in reward and aversion: From cellular heterogeneity to behaviour. Neurosci Biobehav Rev 2024; 162:105702. [PMID: 38718986 DOI: 10.1016/j.neubiorev.2024.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
The mesopontine tegmentum, comprising the pedunculopontine tegmentum (PPN) and the laterodorsal tegmentum (LDT), is intricately connected to various regions of the basal ganglia, motor systems, and limbic systems. The PPN and LDT can regulate the activity of different brain regions of these target systems, and in this way are in a privileged position to modulate motivated behaviours. Despite recent findings, the PPN and LDT have been largely overlooked in discussions about the neural circuits associated with reward and aversion. This review aims to provide a timely and comprehensive resource on past and current research, highlighting the PPN and LDT's connectivity and influence on basal ganglia and limbic, and motor systems. Seminal studies, including lesion, pharmacological, and optogenetic/chemogenetic approaches, demonstrate their critical roles in modulating reward/aversive behaviours. The review emphasizes the need for further investigation into the associated cellular mechanisms, in order to clarify their role in behaviour and contribution for different neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ricardo Bastos-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Abburi C, McDaid J. Ethanol interaction with α3β4 nicotinic acetylcholine receptors in neurons of the laterodorsal tegmentum. Alcohol Clin Exp Res 2021; 45:2495-2505. [PMID: 34625982 DOI: 10.1111/acer.14727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nicotinic acetylcholine receptors (nAChRs) play a key role in the rewarding effects of ethanol (EtOH), and while several nAChR subtypes have been implicated, attention has recently shifted to a role for the α3β4 nAChR. The laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic nucleus that sends excitatory projections to the ventral tegmental area, is an Integral part of the brain reward pathway. Here we investigate a potential role for LDTg α3β4 nAChRs in EtOH self-administration and reward. METHODS Sprague-Dawley rats were given ad libitum access to a 20% EtOH solution, as part of a two-bottle choice paradigm. Approximately 1 week after removal of EtOH access, we measured LDTg α3β4 nAChR current responses to focal application of acetylcholine (ACh), using whole-cell patch clamp electrophysiology recordings in acute brain slices. In addition, we used whole-cell electrophysiology to assess the acute effects of EtOH on the sensitivity of LDTg α3β4 nAChRs. RESULTS Focal application of ACh onto LDTg neurons resulted in large α3β4 nAChR-mediated inward currents, the magnitude of which showed a positive correlation with levels of EtOH self-administration. In addition, using brain slices taken from EtOH-naïve rats, bath application of EtOH resulted in a moderate potentiation of LDTg α3β4 nAChR sensitivity. CONCLUSIONS Using a rat model, increased α3β4 nAChR function was associated with greater EtOH self-administration, with α3β4 nAChR function also acutely potentiated by EtOH. Assuming that similar findings apply to humans, the α3β4 nAChR could be a therapeutic target in the treatment of EtOH use disorder.
Collapse
Affiliation(s)
- Chandrika Abburi
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| | - John McDaid
- Department of Anesthesia and Critical Care, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois, 60637, USA
| |
Collapse
|
3
|
Hernandez NS, Weir VR, Ragnini K, Merkel R, Zhang Y, Mace K, Rich MT, Pierce RC, Schmidt HD. GLP-1 receptor signaling in the laterodorsal tegmental nucleus attenuates cocaine seeking by activating GABAergic circuits that project to the VTA. Mol Psychiatry 2021; 26:4394-4408. [PMID: 33257815 PMCID: PMC8164646 DOI: 10.1038/s41380-020-00957-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 11/09/2022]
Abstract
An emerging preclinical literature suggests that targeting central glucagon-like peptide-1 receptors (GLP-1Rs) may represent a novel approach to treating cocaine use disorder. However, the exact neural circuits and cell types that mediate the suppressive effects of GLP-1R agonists on cocaine-seeking behavior are largely unknown. The laterodorsal tegmental nucleus (LDTg) expresses GLP-1Rs and functions as a neuroanatomical hub connecting the nucleus tractus solitarius (NTS), the primary source of central GLP-1, with midbrain and forebrain nuclei known to regulate cocaine-seeking behavior. The goal of this study was to characterize the role of LDTg GLP-1R-expressing neurons and their projections to the ventral tegmental area (VTA) in the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we showed that administration of the GLP-1R agonist exendin-4 (Ex-4) directly into the LDTg significantly attenuated cocaine seeking at a dose that did not affect sucrose seeking, ad libitum food intake, or body weight. In addition, our studies revealed that selectively activating NTS-to-LDTg circuits attenuated cocaine seeking via a GLP-1R-dependent mechanism. We also demonstrated, for the first time, that GLP-1Rs are expressed primarily on GABAergic neurons in the LDTg and that the efficacy of Ex-4 to reduce cocaine seeking depends, in part, on activation of LDTg-to-VTA GABAergic projections. Taken together, these studies identify a central mechanism by which Ex-4 attenuates cocaine seeking and highlight GABAergic GLP-1R-expressing circuits in the midbrain as important anti-craving pathways in regulating cocaine craving-induced relapse.
Collapse
Affiliation(s)
- Nicole S. Hernandez
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vanessa R. Weir
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Kael Ragnini
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Riley Merkel
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Yafang Zhang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyla Mace
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Phildelphia, PA 19104
| | - Matthew T. Rich
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - R. Christopher Pierce
- Brain Health Institute and Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854
| | - Heath D. Schmidt
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104,Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
4
|
Neurobiology of reward-related learning. Neurosci Biobehav Rev 2021; 124:224-234. [PMID: 33581225 DOI: 10.1016/j.neubiorev.2021.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/23/2022]
Abstract
A major goal in psychology is to understand how environmental stimuli associated with primary rewards come to function as conditioned stimuli, acquiring the capacity to elicit similar responses to those elicited by primary rewards. Our neurobiological model is predicated on the Hebbian idea that concurrent synaptic activity on the primary reward neural substrate-proposed to be ventral tegmental area (VTA) dopamine (DA) neurons-strengthens the synapses involved. We propose that VTA DA neurons receive both a strong unconditioned stimulus signal (acetylcholine stimulation of DA cells) from the primary reward capable of unconditionally activating DA cells and a weak stimulus signal (glutamate stimulation of DA cells) from the neutral stimulus. Through joint stimulation the weak signal is potentiated and capable of activating the VTA DA cells, eliciting a conditioned response. The learning occurs when this joint stimulation initiates intracellular second-messenger cascades resulting in enhanced glutamate-DA synapses. In this review we present evidence that led us to propose this model and the most recent evidence supporting it.
Collapse
|
5
|
Kaneda K. Neuroplasticity in cholinergic neurons of the laterodorsal tegmental nucleus contributes to the development of cocaine addiction. Eur J Neurosci 2018; 50:2239-2246. [DOI: 10.1111/ejn.13962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology Institute of Medical, Pharmaceutical and Health Sciences Kanazawa University Kanazawa 920‐1192 Japan
| |
Collapse
|
6
|
Reiner DJ, Leon RM, McGrath LE, Koch-Laskowski K, Hahn JD, Kanoski SE, Mietlicki-Baase EG, Hayes MR. Glucagon-Like Peptide-1 Receptor Signaling in the Lateral Dorsal Tegmental Nucleus Regulates Energy Balance. Neuropsychopharmacology 2018; 43:627-637. [PMID: 28920591 PMCID: PMC5770766 DOI: 10.1038/npp.2017.225] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023]
Abstract
The neurobiological substrates that mediate the anorectic effects of both endogenous glucagon-like peptide-1 (GLP-1) and exogenous GLP-1 receptor (GLP-1R) agonists are an active area of investigation. As the lateral dorsal tegmental nucleus (LDTg) expresses the GLP-1R and represents a potential neuroanatomical hub connecting the nucleus tractus solitarius (NTS), the major central source of GLP-1, with the other nuclei in the midbrain and forebrain, we tested the hypothesis that GLP-1R signaling in the LDTg controls food intake. Direct activation of LDTg GLP-1R suppresses food intake through a reduction in average meal size and independent of nausea/malaise. Immunohistochemical data show that GLP-1-producing neurons in the NTS project to the LDTg, providing anatomical evidence of endogenous central GLP-1 in the LDTg. Pharmacological blockade of LDTg GLP-1Rs with exendin-(9-39) dose-dependently increases food intake and attenuates the hypophagic effects of gastric distension. As GLP-1 mimetics are administered systemically in humans, we evaluated whether peripherally administered GLP-1R agonists access the LDTg to affect feeding. Immunohistochemical data show that a systemically administered fluorescent GLP-1R agonist accesses the LDTg and is juxtaposed with neurons. Additionally, blockade of LDTg GLP-1Rs attenuates the hypophagic effects of a systemic GLP-1R agonist. Together, these data indicate that LDTg GLP-1R signaling controls energy balance and underscores the role of the LDTg in integrating energy balance-relevant signals to modulate feeding.
Collapse
Affiliation(s)
- David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Rosa M Leon
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Lauren E McGrath
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Kieran Koch-Laskowski
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Joel D Hahn
- Neurobiology Section, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Department of Biological Sciences, University of Pennsylvania, Center for Neurobiology and Behavior, Philadelphia, PA, USA,Department of Psychiatry, University of Pennsylvania, Center for Neurobiology and Behavior, 125 S. 31st St, Philadelphia, PA 19104, USA, Tel: +1 215 573 6070, Fax: +1 215 573 2041, E-mail:
| |
Collapse
|
7
|
Reiner DJ, Mietlicki-Baase EG, Olivos DR, McGrath LE, Zimmer DJ, Koch-Laskowski K, Krawczyk J, Turner CA, Noble EE, Hahn JD, Schmidt HD, Kanoski SE, Hayes MR. Amylin Acts in the Lateral Dorsal Tegmental Nucleus to Regulate Energy Balance Through Gamma-Aminobutyric Acid Signaling. Biol Psychiatry 2017; 82:828-838. [PMID: 28237459 PMCID: PMC5503810 DOI: 10.1016/j.biopsych.2016.12.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pancreatic- and brain-derived hormone amylin promotes negative energy balance and is receiving increasing attention as a promising obesity therapeutic. However, the neurobiological substrates mediating amylin's effects are not fully characterized. We postulated that amylin acts in the lateral dorsal tegmental nucleus (LDTg), an understudied neural processing hub for reward and homeostatic feeding signals. METHODS We used immunohistochemical and quantitative polymerase chain reaction analyses to examine expression of the amylin receptor complex in rat LDTg tissue. Behavioral experiments were performed to examine the mechanisms underlying the hypophagic effects of amylin receptor activation in the LDTg. RESULTS Immunohistochemical and quantitative polymerase chain reaction analyses show expression of the amylin receptor complex in the LDTg. Activation of LDTg amylin receptors by the agonist salmon calcitonin dose-dependently reduces body weight, food intake, and motivated feeding behaviors. Acute pharmacological studies and longer-term adeno-associated viral knockdown experiments indicate that LDTg amylin receptor signaling is physiologically and potentially preclinically relevant for energy balance control. Finally, immunohistochemical data indicate that LDTg amylin receptors are expressed on gamma-aminobutyric acidergic neurons, and behavioral results suggest that local gamma-aminobutyric acid receptor signaling mediates the hypophagia after LDTg amylin receptor activation. CONCLUSIONS These findings identify the LDTg as a novel nucleus with therapeutic potential in mediating amylin's effects on energy balance through gamma-aminobutyric acid receptor signaling.
Collapse
Affiliation(s)
- David J Reiner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth G Mietlicki-Baase
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Diana R Olivos
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lauren E McGrath
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Derek J Zimmer
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kieran Koch-Laskowski
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joanna Krawczyk
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christopher A Turner
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania; Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emily E Noble
- Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, California
| | - Joel D Hahn
- Neurobiology Section, University of Southern California, Los Angeles, California
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, Los Angeles, California
| | - Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Janickova H, Rosborough K, Al-Onaizi M, Kljakic O, Guzman MS, Gros R, Prado MAM, Prado VF. Deletion of the vesicular acetylcholine transporter from pedunculopontine/laterodorsal tegmental neurons modifies gait. J Neurochem 2017; 140:787-798. [DOI: 10.1111/jnc.13910] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Helena Janickova
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Kaie Rosborough
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Mohammed Al-Onaizi
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Ornela Kljakic
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Monica S. Guzman
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Robert Gros
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Marco A. M. Prado
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| | - Vania F. Prado
- Robarts Research Institute; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Anatomy and Cell Biology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
- Department of Physiology and Pharmacology; Schulich School of Medicine & Dentistry; University of Western Ontario; London Ontario Canada
| |
Collapse
|
9
|
Lambert MØ, Ipsen TH, Kohlmeier KA. Acute cocaine exposure elicits rises in calcium in arousal-related laterodorsal tegmental neurons. Pharmacol Res Perspect 2016; 5:e00282. [PMID: 28596834 PMCID: PMC5461641 DOI: 10.1002/prp2.282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
Cocaine has strong reinforcing properties, which underlie its high addiction potential. Reinforcement of use of addictive drugs is associated with rises in dopamine (DA) in mesoaccumbal circuitry. Excitatory afferent input to mesoaccumbal circuitry sources from the laterodorsal tegmental nucleus (LDT). Chronic, systemic cocaine exposure has been shown to have cellular effects on LDT cells, but acute actions of local application have never been demonstrated. Using calcium imaging, we show that acute application of cocaine to mouse brain slices induces calcium spiking in cells of the LDT. Spiking was attenuated by tetrodotoxin (TTX) and low calcium solutions, and abolished by prior exhaustion of intracellular calcium stores. Further, DA receptor antagonists reduced these transients, whereas DA induced rises with similar spiking kinetics. Amphetamine, which also results in elevated levels of synaptic DA, but via a different pharmacological action than cocaine, induced calcium spiking with similar profiles. Although large differences in spiking were not noted in an animal model associated with a heightened proclivity of acquiring addiction‐related behavior, the prenatal nicotine exposed mouse (PNE), subtle differences in cocaine's effect on calcium spiking were noted, indicative of a reduction in action of cocaine in the LDT associated with exposure to nicotine during gestation. When taken together, our data indicate that acute actions of cocaine do include effects on LDT cells. Considering the role of intracellular calcium in cellular excitability, and of the LDT in addiction circuitry, our data suggest that cocaine effects in this nucleus may contribute to the high addiction potential of this drug.
Collapse
Affiliation(s)
- Mads Ødum Lambert
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Theis Højland Ipsen
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology Faculty of Health Sciences Universitetsparken 2 University of Copenhagen Copenhagen 2100 Denmark
| |
Collapse
|
10
|
Oliva I, Wanat MJ. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors. Front Psychiatry 2016; 7:30. [PMID: 27014097 PMCID: PMC4780106 DOI: 10.3389/fpsyt.2016.00030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 01/10/2023] Open
Abstract
Drug-related behaviors in both humans and rodents are commonly thought to arise from aberrant learning processes. Preclinical studies demonstrate that the acquisition and expression of many drug-dependent behaviors involves the ventral tegmental area (VTA), a midbrain structure comprised of dopamine, GABA, and glutamate neurons. Drug experience alters the excitatory and inhibitory synaptic input onto VTA dopamine neurons, suggesting a critical role for VTA afferents in mediating the effects of drugs. In this review, we present evidence implicating the VTA in drug-related behaviors, highlight the diversity of neuronal populations in the VTA, and discuss the behavioral effects of selectively manipulating VTA afferents. Future experiments are needed to determine which VTA afferents and what neuronal populations in the VTA mediate specific drug-dependent behaviors. Further studies are also necessary for identifying the afferent-specific synaptic alterations onto dopamine and non-dopamine neurons in the VTA following drug administration. The identification of neural circuits and adaptations involved with drug-dependent behaviors can highlight potential neural targets for pharmacological and deep brain stimulation interventions to treat substance abuse disorders.
Collapse
Affiliation(s)
- Idaira Oliva
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| | - Matthew J Wanat
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio , San Antonio, TX , USA
| |
Collapse
|