1
|
Thomas J, Jezzard P, Webb AJS. Low-frequency oscillations in the brain show differential regional associations with severity of cerebral small vessel disease: a systematic review. Front Neurosci 2023; 17:1254209. [PMID: 37719157 PMCID: PMC10501452 DOI: 10.3389/fnins.2023.1254209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Background Cerebral small vessel disease (cSVD) is associated with endothelial dysfunction but the pathophysiology is poorly understood. Low-frequency oscillations (LFOs) in the BOLD signal partly reflect cerebrovascular function and have the potential to identify endothelial dysfunction in cSVD. A systematic review was performed to assess the reported relationships between imaging markers of cSVD and LFOs. Methods Medline and EMBASE were searched for original studies reporting an association between LFOs and STRIVE-defined imaging markers of cSVD, including: white matter hyperintensities (WMH), enlarged perivascular spaces, lacunes, CADASIL, and cerebral microbleeds, from inception to September 1, 2022. Variations in LFOs were extracted, where available, on a global, tissue-specific, or regional level, in addition to participant demographics, data acquisition, methods of analysis, and study quality. Where a formal meta-analysis was not possible, differences in the number of studies reporting LFO magnitude by presence or severity of cSVD were determined by sign test. Results 15 studies were included from 841 titles. Studies varied in quality, acquisition parameters, and in method of analysis. Amplitude of low-frequency fluctuation (ALFF) in resting state fMRI was most commonly assessed (12 studies). Across 15 studies with differing markers of cSVD (9 with WMH; 1 with cerebral microbleeds; 1 with lacunar infarcts; 1 with CADASIL; 3 with multiple markers), LFOs in patients with cSVD were decreased in the posterior cortex (22 of 32 occurrences across all studies, p = 0.05), increased in the deep grey nuclei (7 of 7 occurrences across all studies, p = 0.016), and potentially increased in the temporal lobes (9 of 11 occurrences across all studies, p = 0.065). Conclusion Despite limited consensus on the optimal acquisition and analysis methods, there was reasonably consistent regional variation in LFO magnitude by severity of cSVD markers, supporting its potential as a novel index of endothelial dysfunction. We propose a consistent approach to measuring LFOs to characterise targetable mechanisms underlying cSVD.
Collapse
Affiliation(s)
- James Thomas
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Peter Jezzard
- FMRIB Division, Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Alastair J. S. Webb
- Nuffield Department of Clinical Neurosciences, Wolfson Centre for Prevention of Stroke and Dementia, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Yang N, Chen S, Liu S, Ling S, Chen L. Increased low frequency fluctuation in the brain after acupuncture treatment in CSVDCI patients: A randomized control trial study. Front Neurosci 2023; 17:1125418. [PMID: 36922926 PMCID: PMC10010105 DOI: 10.3389/fnins.2023.1125418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 03/02/2023] Open
Abstract
Background Cerebral small vessel disease (CSVD) is one of two cognition-impairing diseases. Acupuncture (Acu) is a flexible treatment with few adverse effects and is thus widely used to treat neurological problems. Methods We recruited a total of 60 patients and assigned them to two groups (n = 30 each group). During the study, some participants were excluded by quality control, and a total of 44 subjects (25 Acu and 19 controls) were completed to investigate the therapeutic efficacy of acupuncture on CSVD cognitive impairment (CSVDCI). The following demographic and clinical variables were compared between the two groups: gender, age, education, smoking, alcohol, Montreal cognitive assessment (MoCA), symbol digit modalities test (SDMT), verbal fluency test (VFT), digit span task (DST), Boston naming test (BNT) scores, and amplitude of low-frequency fluctuation (ALFF) under the typical band (0.01-0.08 Hz). Mixed effect analysis was utilized to test for differences between the two groups before and after the treatment. Results Following acupuncture treatment, the Acu group scored higher on MoCA, SDMT, VFT, DST, and BNT compared to controls (P < 0.05). The brain regions showing substantially greater ALFF values in the Acu group were the right inferior temporal gyrus, left middle occipital gyrus, left superior occipital gyrus, left insula, bilateral postcentral gyrus, right superior parietal gyrus, right cerebellum, right precuneus, and right precentral gyrus (P < 0.005, no correction). The ALFF values in the right inferior temporal gyrus (P = 0.027), left middle occipital gyrus (P = 0.005), left superior occipital gyrus (P = 0.011), and right superior parietal gyrus (P = 0.043) were positively associated with MoCA. Conclusion We found that acupuncture modulates the functional activity of temporal, occipital, and parietal regions of the brain in CSVDCI patients.
Collapse
Affiliation(s)
- Nan Yang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Sina Chen
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Shuxue Liu
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Shuiqiao Ling
- Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China
| | - Lidian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Xu X, Chen YC, Yin X, Zuo T, Feng G, Xu K. Dynamic functional connections in leukoaraiosis patients without cognitive impairment: A pilot study. Front Aging Neurosci 2022; 14:944485. [PMID: 36118700 PMCID: PMC9476943 DOI: 10.3389/fnagi.2022.944485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Leukoaraiosis (LA) is a major public issue that affects elderly adults. However, the underlying neuropathological mechanism of LA without cognitive impairment requires examination. The present study aimed to explore the dynamic functional network connectivity (dFNC) in LA patients without cognitive impairment. Methods Twenty-three patients with LA and 20 well-matched healthy controls were recruited for the present study. Each subject underwent magnetic resonance imaging (MRI) scanning and cognition evaluations. Spatial independent component analysis was conducted to evaluate dynamic functional connectivity. The differences in dFNC were determined and correlated with cognitive performance. Results Compared with controls, LA without cognitive impairment showed aberrant dFNC in State 1, involving increased connectivity in the default mode network (DMN) with the executive control network (ECN). In addition, decreased connectivity in the DMN with the salience network (SN) was found in State 3. Furthermore, the decreased number of transitions between states was positively associated with the visuospatial/executive score (Spearman's rho = 0.452, p = 0.031), and the longer mean dwell time in State 1 was negatively associated with the Montreal Cognitive Assessment (MoCA) score (Spearman's rho = – 0.420, p = 0.046). Conclusion These findings enrich our understanding of the neural mechanisms underlying LA and may serve as a potential imaging biomarker for investigating and recognizing the LA at an early stage.
Collapse
Affiliation(s)
- Xingru Xu
- Department of Radiology, Affiliated Lianyungang Traditional Chinese Medicine Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Taosheng Zuo
- Department of Radiology, Affiliated Lianyungang Traditional Chinese Medicine Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Guangkui Feng
- Department of Neurology, Affiliated Lianyungang Traditional Chinese Medicine Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
- *Correspondence: Guangkui Feng
| | - Kaixi Xu
- Department of Radiology, Affiliated Lianyungang Traditional Chinese Medicine Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
- Kaixi Xu
| |
Collapse
|
4
|
Meng F, Yang Y, Jin G. Research Progress on MRI for White Matter Hyperintensity of Presumed Vascular Origin and Cognitive Impairment. Front Neurol 2022; 13:865920. [PMID: 35873763 PMCID: PMC9301233 DOI: 10.3389/fneur.2022.865920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
White matter hyperintensity of presumed vascular origin (WMH) is a common medical imaging manifestation in the brains of middle-aged and elderly individuals. WMH can lead to cognitive decline and an increased risk of cognitive impairment and dementia. However, the pathogenesis of cognitive impairment in patients with WMH remains unclear. WMH increases the risk of cognitive impairment, the nature and severity of which depend on lesion volume and location and the patient's cognitive reserve. Abnormal changes in microstructure, cerebral blood flow, metabolites, and resting brain function are observed in patients with WMH with cognitive impairment. Magnetic resonance imaging (MRI) is an indispensable tool for detecting WMH, and novel MRI techniques have emerged as the key approaches for exploring WMH and cognitive impairment. This article provides an overview of the association between WMH and cognitive impairment and the application of dynamic contrast-enhanced MRI, structural MRI, diffusion tensor imaging, 3D-arterial spin labeling, intravoxel incoherent motion, magnetic resonance spectroscopy, and resting-state functional MRI for examining WMH and cognitive impairment.
Collapse
Affiliation(s)
- Fanhua Meng
- North China University of Science and Technology, Tangshan, China
| | - Ying Yang
- Department of Radiology, China Emergency General Hospital, Beijing, China
| | - Guangwei Jin
- Department of Radiology, China Emergency General Hospital, Beijing, China
- *Correspondence: Guangwei Jin
| |
Collapse
|
5
|
Ni L, Sun W, Yang D, Huang L, Shao P, Wang C, Xu Y. The Cerebrovascular Reactivity-Adjusted Spontaneous Brain Activity Abnormalities in White Matter Hyperintensities Related Cognitive Impairment: A Resting-State Functional MRI Study. J Alzheimers Dis 2022; 86:691-701. [PMID: 35124642 DOI: 10.3233/jad-215216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The BOLD signal is regulated by neuronal activity and vascular physiology. The evolution pattern of brain activities after modulating the vascular factors in white matter hyperintensities (WMHs) related cognitive impairment (CI) was unknown. OBJECTIVE To explore the "pure" low-frequency fluctuation (ALFF) alterations after adjusting the cerebrovascular reactivity (CVR) factor. METHODS In this study, 111 WMHs subjects including 55 with CI (WMH-CI) and 56 without CI (WMH-no-CI), and 72 normal controls (NCs) underwent resting-state fMRI. The CVR and ALFF maps were derived using BOLD data. A voxel-wise Pearson analysis was performed to detect the relationship between CVR and ALFF maps. The ANCOVA analysis with and without CVR as a covariate was conducted to explore the effect of CVR on ALFF analysis. Correlation between the ALFF alterations and cognitive performance was conducted in WMH-CI subjects. The receiver operating characteristic curve was constructed to assess the diagnostic performance of ALFF indexes to determine the occurrence of CI. RESULTS There was a significant widespread correlation between the CVR and ALFF maps. The ALFF alterations between the WMH groups and NC group with CVR as covariate were more than those without CVR as covariate. WMH-CI subjects showed further ALFF alterations when compared with WMH-no-CI subjects. The abnormal ALFF values were significantly associated with poor performance. The combination of inferior frontal gyrus and middle frontal gyrus to PCC provided an incremental contribution to the occurrence of CI. CONCLUSION More areas with abnormal ALFF values which were specific to the WMHs related cognitive dysfunction were detected when considering the impact of CVR.
Collapse
Affiliation(s)
- Ling Ni
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenshan Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Dan Yang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lili Huang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Pengfei Shao
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chong Wang
- Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Neurology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Li H, Jia X, Li Y, Jia X, Yang Q. Aberrant Amplitude of Low-Frequency Fluctuation and Degree Centrality within the Default Mode Network in Patients with Vascular Mild Cognitive Impairment. Brain Sci 2021; 11:1534. [PMID: 34827533 PMCID: PMC8615791 DOI: 10.3390/brainsci11111534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate whole-brain spontaneous activities changes in patients with vascular mild cognitive impairment (VaMCI), and to evaluate the relationships between these brain alterations and their neuropsychological assessments. Thirty-one patients with VaMCI and thirty-one healthy controls (HCs) underwent structural MRI and resting-state functional MRI (rs-fMRI) and neuropsychological assessments. The functional alterations were determined by the amplitude of low-frequency fluctuation (ALFF) and degree centrality (DC). The gray matter volume (GMV) changes were analyzed using voxel-based morphometry (VBM). Linear regression analysis was used to evaluate the relationships between the structural and functional changes of brain regions and neuropsychological assessments. The VaMCI group had significantly lower scores in the Montreal Cognitive Assessment (MoCA), and higher scores on the Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale (HAMD). Compared to the HCs, the VaMCI group exhibited GM atrophy in the right precentral gyrus (PreCG) and right inferior temporal gyrus (ITG). VaMCI patients further exhibited significantly decreased brain activity within the default mode network (DMN), including the bilateral precuneus (PCu), angular gyrus (AG), and medial frontal gyrus (medFG). Linear regression analysis revealed that the decreased ALFF was independently associated with lower MoCA scores, and the GM atrophy was independently associated with higher HAMD scores. The current finding suggested that aberrant spontaneous brain activity in the DMN might subserve as a potential biomarker of VaMCI, which may highlight the underlying mechanism of cognitive decline in cerebral small vessel disease.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing 100020, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing 100020, China
| | - Yingying Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
| | - Xuejia Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; (H.L.); (X.J.); (Y.L.); (X.J.)
- Key Laboratory of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing 100020, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing 100020, China
| |
Collapse
|
7
|
Xing Y, Yang J, Zhou A, Wang F, Tang Y, Jia J. Altered brain activity mediates the relationship between white matter hyperintensity severity and cognition in older adults. Brain Imaging Behav 2021; 16:899-908. [PMID: 34671890 DOI: 10.1007/s11682-021-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 11/26/2022]
Abstract
White matter hyperintensities (WMHs) on magnetic resonance imaging are commonly found in older adults. The mechanisms underpinning the dose-dependent association between WMH severity and cognition are not well understood. This study aimed to investigate how brain activity changes with WMH severity, and if altered brain activity mediates the relationship between WMH and cognitive function. A total of 35 participants with moderate to severe WMHs (Fazekas grade 2 or 3) and 34 participants with mild WMHs (Fazekas grade 1), who were cognitively normal, were included. Resting-state brain function was analyzed using the amplitude of low-frequency fluctuation (ALFF). A mean fractional anisotropy (FA) value of 20 tract-specific regions of interest was calculated. Mediation analysis was used to assess whether ALFF values mediated the relationship between WMH and cognition. The results showed that compared to those with mild WMHs, participants with confluent WMHs had worse memory and naming ability and also had increased ALFF in the right middle frontal gyrus and decreased ALFF in the left middle occipital gyrus. After controlling for age, gender, education and apolipoprotein E (ApoE) ε4 status, increased ALFF in the right prefrontal cortex was associated with worse immediate recall and recognition, and ALFF values mediated the relationships between both Fazekas scores and FA values and memory. In conclusion, our study suggests that cognitively normal adults with high WMH load exhibit subclinical cognitive dysfunction and altered spontaneous brain activity. The mediating effects of brain activity help to shed light on our understanding of the relationship between WMHs and cognition.
Collapse
Affiliation(s)
- Yi Xing
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Disorders, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China
| | - Jianwei Yang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Disorders, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Disorders, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China
| | - Fen Wang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Disorders, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Disorders, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China.
| | - Jianping Jia
- Innovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, National Clinical Research Center for Geriatric Disorders, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education of the People's Republic of China, Beijing, China.
| |
Collapse
|
8
|
Zhang X, Xue C, Cao X, Yuan Q, Qi W, Xu W, Zhang S, Huang Q. Altered Patterns of Amplitude of Low-Frequency Fluctuations and Fractional Amplitude of Low-Frequency Fluctuations Between Amnestic and Vascular Mild Cognitive Impairment: An ALE-Based Comparative Meta-Analysis. Front Aging Neurosci 2021; 13:711023. [PMID: 34531735 PMCID: PMC8438295 DOI: 10.3389/fnagi.2021.711023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Changes in the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF) have provided stronger evidence for the pathophysiology of cognitive impairment. Whether the altered patterns of ALFF and fALFF differ in amnestic cognitive impairment (aMCI) and vascular mild cognitive impairment (vMCI) is largely unknown. The purpose of this study was to explore the ALFF/fALFF changes in the two diseases and to further explore whether they contribute to the diagnosis and differentiation of these diseases. Methods: We searched PubMed, Ovid, and Web of Science databases for articles on studies using the ALFF/fALFF method in patients with aMCI and vMCI. Based on the activation likelihood estimation (ALE) method, connectivity modeling based on coordinate meta-analysis and functional meta-analysis was carried out. Results: Compared with healthy controls (HCs), patients with aMCI showed increased ALFF/fALFF in the bilateral parahippocampal gyrus/hippocampus (PHG/HG), right amygdala, right cerebellum anterior lobe (CAL), left middle temporal gyrus (MTG), left cerebrum temporal lobe sub-gyral, left inferior temporal gyrus (ITG), and left cerebrum limbic lobe uncus. Meanwhile, decreased ALFF/fALFF values were also revealed in the bilateral precuneus (PCUN), bilateral cuneus (CUN), and bilateral posterior cingulate (PC) in patients with aMCI. Compared with HCs, patients with vMCI predominantly showed decreased ALFF/fALFF in the bilateral CUN, left PCUN, left PC, and right cingulate gyrus (CG). Conclusions: The present findings suggest that ALFF and fALFF displayed remarkable altered patterns between aMCI and vMCI when compared with HCs. Thus, the findings of this study may serve as a reliable tool for distinguishing aMCI from vMCI, which may help understand the pathophysiological mechanisms of these diseases.
Collapse
Affiliation(s)
- Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Cao
- Division of Statistics and Data Science, Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shaojun Zhang
- Department of Statistics, University of Florida, Gainesville, FL, United States
| | - Qingling Huang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Guan S, Kong X, Duan S, Ren Q, Huang Z, Li Y, Wang W, Gong G, Meng X, Ma X. Neuroimaging Anomalies in Community-Dwelling Asymptomatic Adults With Very Early-Stage White Matter Hyperintensity. Front Aging Neurosci 2021; 13:715434. [PMID: 34483884 PMCID: PMC8415566 DOI: 10.3389/fnagi.2021.715434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
White matter hyperintensity (WMH) is common in healthy adults in their 60s and can be seen as early as in their 30s and 40s. Alterations in the brain structural and functional profiles in adults with WMH have been repeatedly studied but with a focus on late-stage WMH. To date, structural and functional MRI profiles during the very early stage of WMH remain largely unexplored. To address this, we investigated multimodal MRI (structural, diffusion, and resting-state functional MRI) profiles of community-dwelling asymptomatic adults with very early-stage WMH relative to age-, sex-, and education-matched non-WMH controls. The comparative results showed significant age-related and age-independent changes in structural MRI-based morphometric measures and resting-state fMRI-based measures in a set of specific gray matter (GM) regions but no global white matter changes. The observed structural and functional anomalies in specific GM regions in community-dwelling asymptomatic adults with very early-stage WMH provide novel data regarding very early-stage WMH and enhance understanding of the pathogenesis of WMH.
Collapse
Affiliation(s)
- Shuai Guan
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiangyu Kong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shifei Duan
- Department of Radiology, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Qingguo Ren
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhaodi Huang
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ye Li
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangshui Meng
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiangxing Ma
- Department of Radiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Distinctive Alterations of Functional Connectivity Strength between Vascular and Amnestic Mild Cognitive Impairment. Neural Plast 2021; 2021:8812490. [PMID: 34104193 PMCID: PMC8159649 DOI: 10.1155/2021/8812490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/02/2020] [Accepted: 04/30/2021] [Indexed: 11/18/2022] Open
Abstract
Widespread structural and functional alterations have been reported in the two highly prevalent mild cognitive impairment (MCI) subtypes, amnestic MCI (aMCI) and vascular MCI (VaMCI). However, the changing pattern in functional connectivity strength (FCS) remains largely unclear. The aim of the present study is to detect the differences of FCS and to further explore the detailed resting-state functional connectivity (FC) alterations among VaMCI subjects, aMCI subjects, and healthy controls (HC). Twenty-six aMCI subjects, 31 VaMCI participants, and 36 HC participants underwent cognitive assessments and resting-state functional MRI scans. At first, one-way ANCOVA and post hoc analysis indicated significant decreased FCS in the left middle temporal gyrus (MTG) in aMCI and VaMCI groups compared to HC, especially in the VaMCI group. Then, we selected the left MTG as a seed to further explore the detailed resting-state FC alterations among the three groups, and the results indicated that FC between the left MTG and some frontal brain regions were significantly decreased mainly in VaMCI. Finally, partial correlation analysis revealed that the FC values between the left MTG and left inferior frontal gyrus were positively correlated with the cognitive performance episodic memory and negatively related to the living status. The present study demonstrated that different FCS alterations existed in aMCI and VaMCI. These findings may provide a novel insight into the understanding of pathophysiological mechanisms underlying different MCI subtypes.
Collapse
|
11
|
Wang J, Chen H, Liang H, Wang W, Liang Y, Liang Y, Zhang Y. Low-Frequency Fluctuations Amplitude Signals Exhibit Abnormalities of Intrinsic Brain Activities and Reflect Cognitive Impairment in Leukoaraiosis Patients. Med Sci Monit 2019; 25:5219-5228. [PMID: 31302662 PMCID: PMC6650186 DOI: 10.12659/msm.915528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background This study aimed to explore the amplitude of low-frequency fluctuations (ALFF) for whole-brain in leukoaraiosis (LA) patients suffering from cognitive decline or impairment. Material/Methods Patients were selected by employing magnetic resonance imaging (MRI) technique. According to results of the clinical dementia rating and Montreal cognitive assessment (MoCA), patients were divided into 3 groups: LA patients diagnosed as vascular mild-cognitive impairment (LA-VaMCI, n=28), LA patients diagnosed as vascular-dementia (LA-VaD, n=18), and normal individuals (NC, n=28). Executive functions were evaluated by using the Stroop test and Trail Making Test (TMT). The higher scores in TMT test mean greater impairments. Changes for the ALFF were measured by using resting-state functional MRI (rs-fMRI) technique. Correlations between ALFF and cognition scores were analyzed. Results It was found that widespread differences in ALFF were present predominantly in the posterior cingulate cortex/precuneus (PCC/PCu) and in the right inferior temporal gyrus (ITG). Compared with the NC group, ALFF values in PCC/PCu were significantly decreased (F=3.273, P=0.022) and ALFF values were significantly increased (F=2.864, P=0.033) in temporal regions of the LA-VaD patients. ALFF values in LA-VaMCI patients were significantly increased in ITG compared to that in the NC group (F=1.064, P=0.042) and the LA-VaD group (F=2.725, P=0.037). Impairment in executive functions were positively correlated with average ALFF of the left PCu. Conclusions This research showed that LA patients exhibited abnormal intrinsic-brain activities. Furthermore, altered ALFF was positively correlated with executive function scores.
Collapse
Affiliation(s)
- Jinfang Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland).,Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei, China (mainland)
| | - Hongyan Chen
- Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei, China (mainland)
| | - Huazheng Liang
- School of Medicine, Western Sydney University, Sydney, NSW, Austria
| | - Wanming Wang
- Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei, China (mainland)
| | - Yi Liang
- Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei, China (mainland)
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China (mainland)
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland).,Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
12
|
Chen H, Li Y, Liu Q, Shi Q, Wang J, Shen H, Chen X, Ma J, Ai L, Zhang YM. Abnormal Interactions of the Salience Network, Central Executive Network, and Default-Mode Network in Patients With Different Cognitive Impairment Loads Caused by Leukoaraiosis. Front Neural Circuits 2019; 13:42. [PMID: 31275116 PMCID: PMC6592158 DOI: 10.3389/fncir.2019.00042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Leukoaraiosis (LA) is associated with cognitive impairment in the older people which can be demonstrated in functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI). This study is to explore the FC changes in LA patients with different cognitive status by three network models. Fifty-three patients with LA were divided into three groups: the normal cognition (LA-NC; n = 14, six males), mild cognitive impairment (LA-MCI; n = 27, 13 males), and vascular dementia (LA-VD; n = 12, six males), according to the Mini Mental State Exam (MMSE) and Clinical Dementia Rating (CDR). The three groups and 30 matched healthy controls (HCs; 11 males) underwent rs-fMRI. The data of rs-fMRI were analyzed by independent components analysis (ICA) and region of interest (ROI) analysis by the REST toolbox. Then the FC was respectively analyzed by the default-mode network (DMN), salience networks (SNs) and the central executive network (CEN) with their results compared among the different groups. For inter-brain network analysis, there were negative FC between the SN and DMN in LA groups, and the FC decreased when compared with HC group. While there were enhanced inter-brain network FC between the SN and CEN as well as within the SN. The FC in patients with LA can be detected by different network models of rs-fMRI. The multi-model analysis is helpful for the further understanding of the cognitive changes in those patients.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuexiu Li
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
| | - Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qingli Shi
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Pinggu Hospital, Beijing, China
| | - Jingfang Wang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, General Hospital of The Yang Tze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Huicong Shen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xuzhu Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Mei Zhang
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Stroke, National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Key Laboratory of Central Nervous System Injury, Beijing, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Kong F, Ma X, You X, Xiang Y. The resilient brain: psychological resilience mediates the effect of amplitude of low-frequency fluctuations in orbitofrontal cortex on subjective well-being in young healthy adults. Soc Cogn Affect Neurosci 2019; 13:755-763. [PMID: 29939335 PMCID: PMC6121151 DOI: 10.1093/scan/nsy045] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
Psychological resilience reflects the capacity to bounce back from stress, which plays an important role in health and well-being. However, less is known about the neural substrate for psychological resilience and the underlying mechanism for how psychological resilience enhances subjective well-being in the healthy brain. To investigate these issues, we employed fractional amplitude of low-frequency fluctuations (fALFF) measured with resting-state fMRI in 100 young healthy adults. The correlation analysis found that higher psychological resilience was related to lower fALFF in the left orbitofrontal cortex (OFC), which is involved in reward-related processing and emotion regulation. Furthermore, the mediation analysis indicated that psychological resilience acted as a full mediator of the association between the fALFF in left OFC and subjective well-being indicators (i.e. life satisfaction and hedonic balance). Importantly, these results remained significant after controlling for the effect of gray matter volume and regional homogeneity in the region. Overall, the present study provides the further evidence for functional neural substrates of psychological resilience and reveals a potential mechanism that psychological resilience mediates the effect of spontaneous brain activity on subjective well-being.
Collapse
Affiliation(s)
- Feng Kong
- School of Psychology, Shaanxi Normal University, China
| | - Xiaosi Ma
- School of Psychology, Shaanxi Normal University, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, China
| | - Yanhui Xiang
- Department of Psychology, Hunan Normal University, China
| |
Collapse
|
14
|
Yuan J, Feng L, Hu W, Zhang Y. Use of Multimodal Magnetic Resonance Imaging Techniques to Explore Cognitive Impairment in Leukoaraiosis. Med Sci Monit 2018; 24:8910-8915. [PMID: 30531675 PMCID: PMC6296345 DOI: 10.12659/msm.912153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Leukoaraiosis, also referred to as white-matter hyperintensities (WMHs) or age-related white matter changes, is the most frequently seen lesion on brain magnetic resonance images (MRI) in the elderly. LA is a subject of intense research interest, and is correlated with stroke, cognitive impairment or dementia, disturbances, affective disorders, and poor prognoses. Rapid advances in neuroimaging have enabled greater understanding of LA associated with aging-related cognitive decline or dementia. Recently, the techniques of multimodal MRI, such as structural MRI (sMRI), resting-state functional MRI (rs-MRI), cerebrovascular reactivity (CVR), diffusion tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and dynamic contrast-enhanced MRI (DCE-MRI), have been used to explore the underlying mechanism of cognitive impairment in patients with LA. These multimodal MRI techniques may provide further insights into the structural and functional changes of LA with cognitive dysfunction.
Collapse
Affiliation(s)
- Junliang Yuan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Li Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland)
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China (mainland)
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases; Center of Stroke, Beijing Institute for Brain Disorders; Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China (mainland)
| |
Collapse
|
15
|
Wen T, Zhang X, Liang S, Li Z, Xing X, Liu W, Tao J. Electroacupuncture Ameliorates Cognitive Impairment and Spontaneous Low-Frequency Brain Activity in Rats with Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:2596-2605. [PMID: 30220306 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND To evaluate whether electroacupuncture (EA) at Baihui (DU20) and Shenting (DU24) acupoints could improve cognitive function and enhance spontaneous low-frequency brain activity in rats with ischemic stroke. METHODS Total 36 rats were randomly divided into 3 groups-the sham surgery (Sham) group, the middle cerebral artery occlusion induced cognitive deficit (MICD) group, and the MICD with EA (MICD + EA) treatment group. The rats in MICD + EA group received EA treatment at DU20 and DU24 acupoints for 14 consecutive days after the surgery. The Morris water maze test was performed to assess the spatial learning and memory ability of the rats. Magnetic resonance imaging (MRI) was used to investigate the infarction volume and spontaneous low-frequency brain activity of each group. RESULTS After EA for 14 days, the learning and memory ability of the MICD rats was improved, and the brain infarction volume was reduced. Furthermore, basing on the fMRI amplitude of low-frequency fluctuation (ALFF) analysis, the decreased ALFF of the MICD rats was found in auditory cortex, cingulate gyrus, lateral nucleus group of dorsal thalamus, hippocampus, motor cortex, prelimbic cortex, retrosplenial cortex, and sensory cortex compared with the rats in sham group. However, these suppressive regions were notably attenuated after EA treatment. CONCLUSIONS Our results suggested that EA at DU20 and DU24 acupoints could ameliorate cognitive impairment in rats with ischemic stroke, and the protective effect of EA may attribute to reactivating the cognition-related brain regions, such as hippocampus, retrosplenial cortex, cingulate gyrus, prelimbic cortex, and sensory cortex.
Collapse
Affiliation(s)
- Tao Wen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Rehabilitation Department, Hubei Province Hospital of Traditional Chinese Medicine, Wuhan, China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xiufeng Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; Rehabilitation Department, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Shengxiang Liang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China; College of Physical Science and Technology, Zhengzhou University, Zhengzhou, China
| | - Zuanfang Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xuemei Xing
- Rehabilitation Department, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| |
Collapse
|
16
|
Wang S, Zhao Y, Cheng B, Wang X, Yang X, Chen T, Suo X, Gong Q. The optimistic brain: Trait optimism mediates the influence of resting-state brain activity and connectivity on anxiety in late adolescence. Hum Brain Mapp 2018; 39:3943-3955. [PMID: 29923264 DOI: 10.1002/hbm.24222] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 02/05/2023] Open
Abstract
As a hot research topic in the field of psychology and psychiatry, trait optimism reflects the tendency to expect positive outcomes in the future. Consistent evidence has demonstrated the role of trait optimism in reducing anxiety among different populations. However, less is known about the neural bases of trait optimism and the underlying mechanisms for how trait optimism protects against anxiety in the healthy brain. In this investigation, we examined these issues in 231 healthy adolescent students by assessing resting-state brain activity (i.e., fractional amplitude of low-frequency fluctuations, fALFF) and connectivity (i.e., resting-state functional connectivity, RSFC). Whole-brain correlation analyses revealed that higher levels of trait optimism were linked with decreased fALFF in the right orbitofrontal cortex (OFC) and increased RSFC between the right OFC and left supplementary motor cortex (SMC). Mediation analyses further showed that trait optimism mediated the influence of the right OFC activity and the OFC-SMC connectivity on anxiety. Our results remained significant even after excluding the impact of head motion, positive and negative affect and depression. Taken together, this study reveals that fALFF and RSFC are functional neural markers of trait optimism and provides a brain-personality-symptom pathway for protection against anxiety in which fALFF and RSFC affect anxiety through trait optimism.
Collapse
Affiliation(s)
- Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China
| | - Yajun Zhao
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, China
| | - Bochao Cheng
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiuli Wang
- Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China
| | - Xun Yang
- School of Sociology and Psychology, Southwest Minzu University, Chengdu, 610041, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China.,Department of Psychoradiology, Chengdu Mental Health Center, Chengdu, 610036, China.,Department of Psychology, School of Public Administration, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
17
|
Li R, Lai Y, Zhang Y, Yao L, Wu X. Classification of Cognitive Level of Patients with Leukoaraiosis on the Basis of Linear and Non-Linear Functional Connectivity. Front Neurol 2017; 8:2. [PMID: 28154549 PMCID: PMC5243822 DOI: 10.3389/fneur.2017.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
Abstract
Leukoaraiosis (LA) describes diffuse white matter abnormalities apparent in computed tomography (CT) or magnetic resonance (MR) brain scans. Patients with LA generally show varying degrees of cognitive impairment, which can be classified as cognitively normal (CN), mild cognitive impairment (MCI), and dementia. However, a consistent relationship between the degree of LA and the level of cognitive impairment has not yet been established. We used functional magnetic resonance imaging (fMRI) to explore possible neuroimaging biomarkers for classification of cognitive level in LA. Functional connectivity (FC) between brain regions was calculated using Pearson’s correlation coefficient (PCC), maximal information coefficient (MIC), and extended maximal information coefficient (eMIC). Next, FCs with high discriminative power for different cognitive levels in LA were used as features for classification based on support vector machine. CN and MCI were classified with accuracies of 75.0, 61.9, and 91.1% based on features from PCC, MIC, and eMIC, respectively. MCI and dementia were classified with accuracies of 80.1, 86.2, and 87.4% based on features from PCC, MIC, and eMIC, respectively. CN and dementia were classified with accuracies of 80.1, 89.9, and 94.4% based on features from PCC, MIC, and eMIC, respectively. Our results suggest that features extracted from fMRI were efficient for classification of cognitive impairment level in LA, especially, when features were based on a non-linear method (eMIC).
Collapse
Affiliation(s)
- Ranran Li
- College of Information Science and Technology, Beijing Normal University , Beijing , China
| | - Youzhi Lai
- College of Information Science and Technology, Beijing Normal University , Beijing , China
| | - Yumei Zhang
- Neurology Department, Beijing Tiantan Hospital Affiliated with Capital Medical University , Beijing , China
| | - Li Yao
- College of Information Science and Technology, Beijing Normal University, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xia Wu
- College of Information Science and Technology, Beijing Normal University, Beijing, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|