1
|
Nicolas J, King BR, Levesque D, Lazzouni L, Coffey EBJ, Swinnen S, Doyon J, Carrier J, Albouy G. Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves. eLife 2022; 11:73930. [PMID: 35726850 PMCID: PMC9259015 DOI: 10.7554/elife.73930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow wave (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.5–2 Hz) and sigma (12–16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough. Moreover, the increase in sigma power nested in the trough of the potential evoked by the unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, Unversity of Utah, Salt Lake City, United States
| | - David Levesque
- Center for Advanced Research in Sleep Medicine, Universite de Montreal, Montreal, Canada
| | - Latifa Lazzouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Julien Doyon
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
2
|
Lubianiker N, Paret C, Dayan P, Hendler T. Neurofeedback through the lens of reinforcement learning. Trends Neurosci 2022; 45:579-593. [PMID: 35550813 DOI: 10.1016/j.tins.2022.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Despite decades of experimental and clinical practice, the neuropsychological mechanisms underlying neurofeedback (NF) training remain obscure. NF is a unique form of reinforcement learning (RL) task, during which participants are provided with rewarding feedback regarding desired changes in neural patterns. However, key RL considerations - including choices during practice, prediction errors, credit-assignment problems, or the exploration-exploitation tradeoff - have infrequently been considered in the context of NF. We offer an RL-based framework for NF, describing different internal states, actions, and rewards in common NF protocols, thus fashioning new proposals for characterizing, predicting, and hastening the course of learning. In this way we hope to advance current understanding of neural regulation via NF, and ultimately to promote its effectiveness, personalization, and clinical utility.
Collapse
Affiliation(s)
- Nitzan Lubianiker
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Christian Paret
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Talma Hendler
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol school of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Nojima I, Sugata H, Takeuchi H, Mima T. Brain-Computer Interface Training Based on Brain Activity Can Induce Motor Recovery in Patients With Stroke: A Meta-Analysis. Neurorehabil Neural Repair 2021; 36:83-96. [PMID: 34958261 DOI: 10.1177/15459683211062895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain-computer interface (BCI) is a procedure involving brain activity in which neural status is provided to the participants for self-regulation. The current review aims to evaluate the effect sizes of clinical studies investigating the use of BCI-based rehabilitation interventions in restoring upper extremity function and effective methods to detect brain activity for motor recovery. METHODS A computerized search of MEDLINE, CENTRAL, Web of Science, and PEDro was performed to identify relevant articles. We selected clinical trials that used BCI-based training for post-stroke patients and provided motor assessment scores before and after the intervention. The pooled standardized mean differences of BCI-based training were calculated using the random-effects model. RESULTS We initially identified 655 potentially relevant articles; finally, 16 articles fulfilled the inclusion criteria, involving 382 participants. A significant effect of neurofeedback intervention for the paretic upper limb was observed (standardized mean difference = .48, [.16-.80], P = .006). However, the effect estimates were moderately heterogeneous among the studies (I2 = 45%, P = .03). Subgroup analysis of the method of measurement of brain activity indicated the effectiveness of the algorithm focusing on sensorimotor rhythm. CONCLUSION This meta-analysis suggested that BCI-based training was superior to conventional interventions for motor recovery of the upper limbs in patients with stroke. However, the results are not conclusive because of a high risk of bias and a large degree of heterogeneity due to the differences in the BCI interventions and the participants; therefore, further studies involving larger cohorts are required to confirm these results.
Collapse
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy, 84161Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Hisato Sugata
- Faculty of Welfare and Health Science, 6339Oita University, Oita, Japan
| | - Hiroki Takeuchi
- National Hospital Organization, 73721Higashinagoya National Hospital, Nagoya, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, 316844Ritsumeikan University, Kyoto, Japan
| |
Collapse
|
4
|
Cameron EL, Møller P, Karn KS. Effects of COVID-19 on Sense of Smell: Human Factors/Ergonomics Considerations. HUMAN FACTORS 2021:18720821990162. [PMID: 33517793 PMCID: PMC7902264 DOI: 10.1177/0018720821990162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE We review the effects of COVID-19 on the human sense of smell (olfaction) and discuss implications for human-system interactions. We emphasize how critical smell is and how the widespread loss of smell due to COVID-19 will impact human-system interaction. BACKGROUND COVID-19 reduces the sense of smell in people who contract the disease. Thus far, olfaction has received relatively little attention from human factors/ergonomics professionals. While smell is not a primary means of human-system communication, humans rely on smell in many important ways related to both quality of life and safety. METHOD We briefly review and synthesize the rapidly expanding literature through September 2020 on the topic of smell loss caused by COVID-19. We interpret findings in terms of their relevance to human factors/ergonomics researchers and practitioners. RESULTS Since March 2020 dozens of articles have been published that report smell loss in COVID-19 patients. The prevalence and duration of COVID-19-related smell loss is still under investigation, but the available data suggest that it may leave many people with long-term deficits and distortions in sense of smell. CONCLUSION We suggest that the human factors/ergonomics community could become more aware of the importance of the sense of smell and focus on accommodating the increasing number of people with reduced olfactory performance. APPLICATION We present examples of how olfaction can augment human-system communication and how human factors/ergonomics professionals might accommodate people with olfactory dysfunction. While seemingly at odds, both of these goals can be achieved.
Collapse
Affiliation(s)
| | - Per Møller
- Per Møller Consulting, Bagsværd, Denmark
| | - Keith S. Karn
- Human Factors in Context LLC, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Zhao Z, Yao S, Zweerings J, Zhou X, Zhou F, Kendrick KM, Chen H, Mathiak K, Becker B. Putamen volume predicts real-time fMRI neurofeedback learning success across paradigms and neurofeedback target regions. Hum Brain Mapp 2021; 42:1879-1887. [PMID: 33400306 PMCID: PMC7978128 DOI: 10.1002/hbm.25336] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Real-time fMRI guided neurofeedback training has gained increasing interest as a noninvasive brain regulation technique with the potential to modulate functional brain alterations in therapeutic contexts. Individual variations in learning success and treatment response have been observed, yet the neural substrates underlying the learning of self-regulation remain unclear. Against this background, we explored potential brain structural predictors for learning success with pooled data from three real-time fMRI data sets. Our analysis revealed that gray matter volume of the right putamen could predict neurofeedback learning success across the three data sets (n = 66 in total). Importantly, the original studies employed different neurofeedback paradigms during which different brain regions were trained pointing to a general association with learning success independent of specific aspects of the experimental design. Given the role of the putamen in associative learning this finding may reflect an important role of instrumental learning processes and brain structural variations in associated brain regions for successful acquisition of fMRI neurofeedback-guided self-regulation.
Collapse
Affiliation(s)
- Zhiying Zhao
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Luque-García A, Teruel-Martí V, Martínez-Bellver S, Adell A, Cervera-Ferri A, Martínez-Ricós J. Neural oscillations in the infralimbic cortex after electrical stimulation of the amygdala. Relevance to acute stress processing. J Comp Neurol 2019; 526:1403-1416. [PMID: 29473165 DOI: 10.1002/cne.24416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/05/2022]
Abstract
The stress system coordinates the adaptive reactions of the organism to stressors. Therefore, dysfunctions in this circuit may correlate to anxiety-related disorders, including depression. Comprehending the dynamics of this network may lead to a better understanding of the mechanisms that underlie these diseases. The central nucleus of the amygdala (CeA) activates the hypothalamic-pituitary-adrenal axis and brainstem nodes by triggering endocrine, autonomic and behavioral stress responses. The medial prefrontal cortex plays a significant role in regulating reactions to stressors, and is specifically important for limiting fear responses. Brain oscillations reflect neural systems activity. Synchronous neuronal assemblies facilitate communication and synaptic plasticity, mechanisms that cooperatively support the temporal representation and long-term consolidation of information. The purpose of this article was to delve into the interactions between these structures in stress contexts by evaluating changes in oscillatory activity. We particularly analyzed the local field potential in the infralimbic region of the medial prefrontal cortex (IL) in urethane-anesthetized rats after the electrical activation of the central nucleus of the amygdala by mimicking firing rates induced by acute stress. Electrical CeA activation induced a delayed, but significant, change in the IL, with prominent slow waves accompanied by an increase in the theta and gamma activities, and spindles. The phase-amplitude coupling of both slow waves and theta oscillations significantly increased with faster oscillations, including theta-gamma coupling and the nesting of spindles, theta and gamma oscillations in the slow wave cycle. These results are further discussed in neural processing terms of the stress response and memory formation.
Collapse
Affiliation(s)
- Aina Luque-García
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, 46010, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, 46010, Spain
| | - Sergio Martínez-Bellver
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, 46010, Spain
| | - Albert Adell
- Institute of Biomedicine and Biotechnology of Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, 39011, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, 46010, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, 46010, Spain
| |
Collapse
|
7
|
Pavlov YG, Kotchoubey B. Classical conditioning in oddball paradigm: A comparison between aversive and name conditioning. Psychophysiology 2019; 56:e13370. [DOI: 10.1111/psyp.13370] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/24/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yuri G. Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
- Department of Psychology Ural Federal University Ekaterinburg Russian Federation
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology University of Tübingen Tübingen Germany
| |
Collapse
|
8
|
Nouriziabari B, Sarkar S, Tanninen SE, Dayton RD, Klein RL, Takehara-Nishiuchi K. Aberrant Cortical Event-Related Potentials During Associative Learning in Rat Models for Presymptomatic Stages of Alzheimer’s Disease. J Alzheimers Dis 2018; 63:725-740. [DOI: 10.3233/jad-171033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bardia Nouriziabari
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Susmita Sarkar
- Department of Psychology, University of Toronto, Toronto, Canada
| | | | - Robert D. Dayton
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ronald L. Klein
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kaori Takehara-Nishiuchi
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
- Neuroscience Program, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Kotchoubey B, Pavlov YG. Name conditioning in event-related brain potentials. Neurobiol Learn Mem 2017; 145:129-134. [PMID: 28962839 DOI: 10.1016/j.nlm.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/14/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Four experiments are reported in which two harmonic tones (CS+ and CS-) were paired with a participant's own name (SON) and different names (DN), respectively. A third tone was not paired with any other stimulus and served as a standard (frequent stimulus) in a three-stimuli oddball paradigm. The larger posterior positivity (P3) to SON than DN, found in previous studies, was replicated in all experiments. Conditioning of the P3 response was albeit observed in two similar experiments (1 and 3), but the obtained effects were weak and not identical in the two experiments. Only Experiment 4, where the number of CS/UCS pairings and the Stimulus-Onset Asynchrony between CS and UCS were increased, showed clear CS+/CS- differences both in time and time-frequency domains. Surprisingly, differential responses to CS+ and CS- were also obtained in Experiment 2, although SON and DN in that experiment were masked and never consciously recognized as meaningful words (recognition rate 0/63 participants). The results are discussed in the context of other ERP conditioning experiments and, particularly, the studies of non-conscious effect on ERP. Several further experiments are suggested to replicate and extend the present findings and to remove the remaining methodological limitations.
Collapse
Affiliation(s)
- Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
| | - Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Department of Psychology, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
10
|
Christoffersen GRJ, Laugesen JL, Møller P, Bredie WLP, Schachtman TR, Liljendahl C, Viemose I. Long-Term Visuo-Gustatory Appetitive and Aversive Conditioning Potentiate Human Visual Evoked Potentials. Front Hum Neurosci 2017; 11:467. [PMID: 28983243 PMCID: PMC5613789 DOI: 10.3389/fnhum.2017.00467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject's evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions-from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US.
Collapse
Affiliation(s)
- Gert R. J. Christoffersen
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
- Department of Biology, University of Southern DenmarkOdense, Denmark
| | - Jakob L. Laugesen
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| | - Per Møller
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| | | | - Todd R. Schachtman
- Department of Psychological Sciences, University of MissouriColumbia, MO, United States
| | | | - Ida Viemose
- Department of Food Science, University of CopenhagenFrederiksberg, Denmark
| |
Collapse
|
11
|
Neurofeedback in Substance Use and Overeating: Current Applications and Future Directions. CURRENT ADDICTION REPORTS 2017. [DOI: 10.1007/s40429-017-0137-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Skrandies W, Shinoda H. Topographical Subcomponents of Electrical Brain Activity Allow to Identify Semantic Learning. Brain Topogr 2017; 30:303-311. [DOI: 10.1007/s10548-017-0556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
13
|
Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, Birbaumer N, Sulzer J. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 2016; 18:86-100. [PMID: 28003656 DOI: 10.1038/nrn.2016.164] [Citation(s) in RCA: 561] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|