1
|
Zhu M, Yang Y, Niu X, Peng Y, Liu R, Zhang M, Han Y, Wang Z. Different responses of MVL neurons when pigeons attend to local versus global information during object classification. Behav Brain Res 2025; 480:115363. [PMID: 39622415 DOI: 10.1016/j.bbr.2024.115363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Most prior studies have indicated that pigeons have a tendency to rely on local information for target categorization, yet there is a lack of electrophysiological evidence to support this claim. The mesopallium ventrolaterale (MVL) is believed to play a role in processing both local and global information during visual cognition. The difference between responses of MVL neurons when pigeons are focusing on local versus global information during visual object categorization remain unknown. In this study, pigeons were trained to categorize hierarchical stimuli that maintained consistency in local and global information. Subsequently, stimuli with different local and global components were presented to examine the pigeons' behavioral preferences. Not surprisingly, the behavioral findings revealed that pigeons predominantly attended to the local elements when performing categorization tasks. Moreover, MVL neurons exhibited significantly distinct responses when pigeons prioritized local versus global information. Specifically, most recording sites showed heightened gamma band power and increased nonlinear entropy values, indicating strong neural responses and rich information when pigeons concentrated on the local components of an object. Furthermore, neural population functional connectivity was weaker when the pigeons focused on local elements, suggesting that individual neurons operated more independently and effectively when focusing on local features. These findings offer electrophysiological evidence supporting the notion of pigeons displaying a behavioral preference for local information. The study provides valuable insight into the understanding of cognitive processes of pigeons when presented with complex objects, and further sheds light on the neural mechanisms underlying pigeons' behavioral preference for attending to local information.
Collapse
Affiliation(s)
- Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Yedong Yang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China.
| | - Yanyan Peng
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Ruibin Liu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Mengbo Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Yonghao Han
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| | - Zhizhong Wang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Yamamoto K, Estienne P, Bloch S. Does a Vertebrate Morphotype of Pallial Subdivisions Really Exist? BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:230-247. [PMID: 38952102 PMCID: PMC11614313 DOI: 10.1159/000537746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/04/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Comparative neuroanatomists have long sought to determine which part of the pallium in nonmammals is homologous to the mammalian neocortex. A number of similar connectivity patterns across species have led to the idea that the basic organization of the vertebrate brain is relatively conserved; thus, efforts of the last decades have been focused on determining a vertebrate "morphotype" - a model comprising the characteristics believed to have been present in the last common ancestor of all vertebrates. SUMMARY The endeavor to determine the vertebrate morphotype has been riddled with controversies due to the extensive morphological diversity of the pallium among vertebrate taxa. Nonetheless, most proposed scenarios of pallial homology are variants of a common theme where the vertebrate pallium is subdivided into subdivisions homologous to the hippocampus, neocortex, piriform cortex, and amygdala, in a one-to-one manner. We review the rationales of major propositions of pallial homology and identify the source of the discrepancies behind different hypotheses. We consider that a source of discrepancies is the prevailing assumption that there is a single "morphotype of the pallial subdivisions" throughout vertebrates. Instead, pallial subdivisions present in different taxa probably evolved independently in each lineage. KEY MESSAGES We encounter discrepancies when we search for a single morphotype of subdivisions across vertebrates. These discrepancies can be resolved by considering that several subdivisions within the pallium were established after the divergence of the different lineages. The differences of pallial organization are especially remarkable between actinopterygians (including teleost fishes) and other vertebrates. Thus, the prevailing notion of a simple one-to-one homology between the mammalian and teleost pallia needs to be reconsidered.
Collapse
Affiliation(s)
- Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Pierre Estienne
- Paris-Saclay Institute of Neuroscience (Neuro-PSI), Université Paris-Saclay, CNRS UMR 9197, Saclay, France
| | - Solal Bloch
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| |
Collapse
|
3
|
Straight PJ, Gignac PM, Kuenzel WJ. A histological and diceCT-derived 3D reconstruction of the avian visual thalamofugal pathway. Sci Rep 2024; 14:8447. [PMID: 38600121 PMCID: PMC11006926 DOI: 10.1038/s41598-024-58788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
Amniotes feature two principal visual processing systems: the tectofugal and thalamofugal pathways. In most mammals, the thalamofugal pathway predominates, routing retinal afferents through the dorsolateral geniculate complex to the visual cortex. In most birds, the thalamofugal pathway often plays the lesser role with retinal afferents projecting to the principal optic thalami, a complex of several nuclei that resides in the dorsal thalamus. This thalamic complex sends projections to a forebrain structure called the Wulst, the terminus of the thalamofugal visual system. The thalamofugal pathway in birds serves many functions such as pattern discrimination, spatial memory, and navigation/migration. A comprehensive analysis of avian species has unveiled diverse subdivisions within the thalamic and forebrain structures, contingent on species, age, and techniques utilized. In this study, we documented the thalamofugal system in three dimensions by integrating histological and contrast-enhanced computed tomography imaging of the avian brain. Sections of two-week-old chick brains were cut in either coronal, sagittal, or horizontal planes and stained with Nissl and either Gallyas silver or Luxol Fast Blue. The thalamic principal optic complex and pallial Wulst were subdivided on the basis of cell and fiber density. Additionally, we utilized the technique of diffusible iodine-based contrast-enhanced computed tomography (diceCT) on a 5-week-old chick brain, and right eyeball. By merging diceCT data, stained histological sections, and information from the existing literature, a comprehensive three-dimensional model of the avian thalamofugal pathway was constructed. The use of a 3D model provides a clearer understanding of the structural and spatial organization of the thalamofugal system. The ability to integrate histochemical sections with diceCT 3D modeling is critical to better understanding the anatomical and physiologic organization of complex pathways such as the thalamofugal visual system.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA.
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, AZ, USA
- MicroCT Imaging Consortium for Research and Outreach, University of Arkansas, Fayetteville, AR, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
4
|
Niu X, Peng Y, Jiang Z, Huang S, Liu R, Zhu M, Shi L. Gamma-band-based dynamic functional connectivity in pigeon entopallium during sample presentation in a delayed color matching task. Cogn Neurodyn 2024; 18:37-47. [PMID: 38406198 PMCID: PMC10881935 DOI: 10.1007/s11571-022-09916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
Birds have developed visual cognitions, especially in discriminating colors due to their four types of cones in the retina. The entopallium of birds is thought to be involved in the processing of color information during visual cognition. However, there is a lack of understanding about how functional connectivity in the entopallium region of birds changes during color cognition, which is related to various input colors. We therefore trained pigeons to perform a delayed color matching task, in which two colors were randomly presented in sample stimuli phrases, and the neural activity at individual recording site and the gamma band functional connectivity among local population in entopallium during sample presentation were analyzed. Both gamma band energy and gamma band functional connectivity presented dynamics as the stimulus was presented and persisted. The response features in the early-stimulus phase were significantly different from those of baseline and the late-stimulus phase. Furthermore, gamma band energy showed significant differences between different colors during the early-stimulus phase, but the global feature of the gamma band functional network did not. Further decoding results showed that decoding accuracy was significantly enhanced by adding functional connectivity features, suggesting the global feature of the gamma band functional network did not directly contain color information, but was related to it. These results provided insight into information processing rules among local neuronal populations in the entopallium of birds during color cognition, which is important for their daily life.
Collapse
Affiliation(s)
- Xiaoke Niu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Yanyan Peng
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Zhenyang Jiang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Shuman Huang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Ruibin Liu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Minjie Zhu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
| | - Li Shi
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, ZhengZhou University, Zhengzhou, 450001 China
- Department of Automation, Tsinghua University, Beijing, 100000 China
| |
Collapse
|
5
|
Straight PJ, Gignac PM, Kuenzel WJ. Mapping the avian visual tectofugal pathway using 3D reconstruction. J Comp Neurol 2024; 532:e25558. [PMID: 38047431 DOI: 10.1002/cne.25558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023]
Abstract
Image processing in amniotes is usually accomplished by the thalamofugal and/or tectofugal visual systems. In laterally eyed birds, the tectofugal system dominates with functions such as color and motion processing, spatial orientation, stimulus identification, and localization. This makes it a critical system for complex avian behavior. Here, the brains of chicks, Gallus gallus, were used to produce serial brain sections in either coronal, sagittal, or horizontal planes and stained with either Nissl and Gallyas silver myelin or Luxol fast blue stain and cresyl echt violet (CEV). The emerging techniques of diffusible iodine-based contrast-enhanced computed tomography (diceCT) coupled with serial histochemistry in three planes were used to generate a comprehensive three-dimensional (3D) model of the avian tectofugal visual system. This enabled the 3D reconstruction of tectofugal circuits, including the three primary neuronal projections. Specifically, major components of the system included four regions of the retina, layers of the optic tectum, subdivisions of the nucleus rotundus in the thalamus, the entopallium in the forebrain, and supplementary components connecting into or out of this major avian visual sensory system. The resulting 3D model enabled a better understanding of the structural components and connectivity of this complex system by providing a complete spatial organization that occupied several distinct brain regions. We demonstrate how pairing diceCT with traditional histochemistry is an effective means to improve the understanding of, and thereby should generate insights into, anatomical and functional properties of complicated neural pathways, and we recommend this approach to clarify enigmatic properties of these pathways.
Collapse
Affiliation(s)
- Parker J Straight
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| | - Paul M Gignac
- Cellular and Molecular Medicine Department, University of Arizona Health Sciences, Tucson, Arizona, USA
- Anatomy and Cell Biology Department, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Wayne J Kuenzel
- Poultry Science Department, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
6
|
Estienne P, Simion M, Hagio H, Yamamoto N, Jenett A, Yamamoto K. Different ways of evolving tool-using brains in teleosts and amniotes. Commun Biol 2024; 7:88. [PMID: 38216631 PMCID: PMC10786859 DOI: 10.1038/s42003-023-05663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024] Open
Abstract
In mammals and birds, tool-using species are characterized by their relatively large telencephalon containing a higher proportion of total brain neurons compared to other species. Some teleost species in the wrasse family have evolved tool-using abilities. In this study, we compared the brains of tool-using wrasses with various teleost species. We show that in the tool-using wrasses, the telencephalon and the ventral part of the forebrain and midbrain are significantly enlarged compared to other teleost species but do not contain a larger proportion of cells. Instead, this size difference is due to large fiber tracts connecting the dorsal part of the telencephalon (pallium) to the inferior lobe, a ventral mesencephalic structure absent in amniotes. The high degree of connectivity between these structures in tool-using wrasses suggests that the inferior lobe could contribute to higher-order cognitive functions. We conclude that the evolution of non-telencephalic structures might have been key in the emergence of these cognitive functions in teleosts.
Collapse
Affiliation(s)
- Pierre Estienne
- Paris-Saclay Institute of Neuroscience (NeuroPSI), Université Paris-Saclay, CNRS UMR9197, Saclay, 91400, France
| | - Matthieu Simion
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay, 91400, France
- Université Paris-Saclay, UVSQ, EnvA, INRAE, BREED, Jouy-en-Josas, 78350, France
| | - Hanako Hagio
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Naoyuki Yamamoto
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Arnim Jenett
- TEFOR Paris-Saclay, CNRS UAR2010, Université Paris-Saclay, Saclay, 91400, France
| | - Kei Yamamoto
- Paris-Saclay Institute of Neuroscience (NeuroPSI), Université Paris-Saclay, CNRS UMR9197, Saclay, 91400, France.
| |
Collapse
|
7
|
Hadden PW, Zhang J. An Overview of the Penguin Visual System. Vision (Basel) 2023; 7:vision7010006. [PMID: 36810310 PMCID: PMC9944954 DOI: 10.3390/vision7010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Penguins require vision that is adequate for both subaerial and submarine environments under a wide range of illumination. Here we provide a structured overview of what is known about their visual system with an emphasis on how and how well they achieve these goals. Amphibious vision is facilitated by a relatively flat cornea, the power in air varying from 10.2 dioptres (D) to 41.3 D depending on the species, and there is good evidence for emmetropia both above and below water. All penguins are trichromats with loss of rhodopsin 2, a nocturnal feature, but only deeper diving penguins have been noted to have pale oil droplets and a preponderance of rods. Conversely, the diurnal, shallow-diving little penguin has a higher ganglion cell density (28,867 cells/mm2) and f-number (3.5) than those that operate in dimmer light. In most species studied, there is some binocular overlap, but this reduces upon submergence. However, gaps in our knowledge remain, particularly with regard to the mechanism of accommodation, spectral transmission, behavioural measurements of visual function in low light, and neural adaptations to low light. The rarer species also deserve more attention.
Collapse
|
8
|
The effect of progressive image scrambling on neuronal responses at three stations of the pigeon tectofugal pathway. Sci Rep 2022; 12:14190. [PMID: 35986036 PMCID: PMC9391454 DOI: 10.1038/s41598-022-18006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
The progressive image scrambling procedure is an effective way of determining sensitivity to image features at different stages of the visual system, but it hasn’t yet been used to evaluate neuronal responses in birds. We determined the effect of progressively scrambling images of objects on the population responses of anterior entopallium (ENTO), mesopallium ventrolaterale (MVL), and posterior nidopallium intermediate pars lateralis (NIL) in pigeons. We found that MVL responses were more sensitive to both the intact objects and the highly scrambled images, whereas ENTO showed no clear preference for the different stimuli. In contrast, the NIL population response strongly preferred the original images over the scrambled images. These findings suggest that the anterior tectofugal pathway may process local shape in a hierarchical manner, and the posterior tectofugal pathway may process global shape of greater complexity. Another possibility is that the differential responses between ENTO/MVL and NIL may reflect an anterior–posterior map of varying sensitivity to spatial frequency.
Collapse
|
9
|
Neurons in the pigeon visual network discriminate between faces, scrambled faces, and sine grating images. Sci Rep 2022; 12:589. [PMID: 35022466 PMCID: PMC8755821 DOI: 10.1038/s41598-021-04559-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Discriminating between object categories (e.g., conspecifics, food, potential predators) is a critical function of the primate and bird visual systems. We examined whether a similar hierarchical organization in the ventral stream that operates for processing faces in monkeys also exists in the avian visual system. We performed electrophysiological recordings from the pigeon Wulst of the thalamofugal pathway, in addition to the entopallium (ENTO) and mesopallium ventrolaterale (MVL) of the tectofugal pathway, while pigeons viewed images of faces, scrambled controls, and sine gratings. A greater proportion of MVL neurons fired to the stimuli, and linear discriminant analysis revealed that the population response of MVL neurons distinguished between the stimuli with greater capacity than ENTO and Wulst neurons. While MVL neurons displayed the greatest response selectivity, in contrast to the primate system no neurons were strongly face-selective and some responded best to the scrambled images. These findings suggest that MVL is primarily involved in processing the local features of images, much like the early visual cortex.
Collapse
|
10
|
Xiao Q, Güntürkün O. The commissura anterior compensates asymmetries of visual representation in pigeons. Laterality 2021; 26:213-237. [PMID: 33622187 DOI: 10.1080/1357650x.2021.1889577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This study was undertaken to understand what is transferred between hemispheres through the commissura anterior during a colour discrimination task in pigeons. We transiently blocked neuronal activity of the arcopallium of one hemisphere to interrupt interhemispheric communication. Before and during this intervention, we recorded from arcopallial neurons of the non-anaesthetized side while the animals discriminated stimuli ipsilateral to the recorded neurons. Due to the complete crossover of optic nerves in birds, we assumed that these neurons were at least in part requiring information from the other hemisphere to properly run the task. While lidocaine injections in both hemispheres caused some performance reductions, deficits of right arcopallial neurons were much larger when blocking interhemispheric transfer. Our results make it likely that visual information is exchanged through the commissura anterior in an asymmetrical manner with the left hemisphere providing the other side more information about the right visual half-field than vice versa.
Collapse
Affiliation(s)
- Qian Xiao
- Faculty of Psychology, Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.,Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Onur Güntürkün
- Faculty of Psychology, Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Clark WJ, Colombo M. The functional architecture, receptive field characteristics, and representation of objects in the visual network of the pigeon brain. Prog Neurobiol 2020; 195:101781. [DOI: 10.1016/j.pneurobio.2020.101781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
|
12
|
Pigeon nidopallium caudolaterale, entopallium, and mesopallium ventrolaterale neural responses during categorisation of Monet and Picasso paintings. Sci Rep 2020; 10:15971. [PMID: 32994413 PMCID: PMC7524755 DOI: 10.1038/s41598-020-72650-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/27/2020] [Indexed: 11/14/2022] Open
Abstract
Pigeons can successfully discriminate between sets of Picasso and Monet paintings. We recorded from three pallial brain areas: the nidopallium caudolaterale (NCL), an analogue of mammalian prefrontal cortex; the entopallium (ENTO), an intermediary visual area similar to primate extrastriate cortex; and the mesopallium ventrolaterale (MVL), a higher-order visual area similar to primate higher-order extrastriate cortex, while pigeons performed an S+/S− Picasso versus Monet discrimination task. In NCL, we found that activity reflected reward-driven categorisation, with a strong left-hemisphere dominance. In ENTO, we found that activity reflected stimulus-driven categorisation, also with a strong left-hemisphere dominance. Finally, in MVL, we found that activity reflected stimulus-driven categorisation, but no hemispheric differences were apparent. We argue that while NCL and ENTO primarily use reward and stimulus information, respectively, to discriminate Picasso and Monet paintings, both areas are also capable of integrating the other type of information during categorisation. We also argue that MVL functions similarly to ENTO in that it uses stimulus information to discriminate paintings, although not in an identical way. The current study adds some preliminary evidence to previous literature which emphasises visual lateralisation during discrimination learning in pigeons.
Collapse
|
13
|
Behroozi M, Helluy X, Ströckens F, Gao M, Pusch R, Tabrik S, Tegenthoff M, Otto T, Axmacher N, Kumsta R, Moser D, Genc E, Güntürkün O. Event-related functional MRI of awake behaving pigeons at 7T. Nat Commun 2020; 11:4715. [PMID: 32948772 PMCID: PMC7501281 DOI: 10.1038/s41467-020-18437-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/20/2020] [Indexed: 11/08/2022] Open
Abstract
Animal-fMRI is a powerful method to understand neural mechanisms of cognition, but it remains a major challenge to scan actively participating small animals under low-stress conditions. Here, we present an event-related functional MRI platform in awake pigeons using single-shot RARE fMRI to investigate the neural fundaments for visually-guided decision making. We established a head-fixated Go/NoGo paradigm, which the animals quickly learned under low-stress conditions. The animals were motivated by water reward and behavior was assessed by logging mandibulations during the fMRI experiment with close to zero motion artifacts over hundreds of repeats. To achieve optimal results, we characterized the species-specific hemodynamic response function. As a proof-of-principle, we run a color discrimination task and discovered differential neural networks for Go-, NoGo-, and response execution-phases. Our findings open the door to visualize the neural fundaments of perceptual and cognitive functions in birds-a vertebrate class of which some clades are cognitively on par with primates.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Xavier Helluy
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
- Department of Neurophysiology, Faculty of Medicine, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Meng Gao
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Sepideh Tabrik
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Tobias Otto
- Department of Cognitive Psychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Dirk Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Erhan Genc
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Abstract
Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Felix Ströckens
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Anderson C, Johnston M, Marrs EJ, Porter B, Colombo M. Delay activity in the Wulst of pigeons (Columba livia) represents correlates of both sample and reward information. Neurobiol Learn Mem 2020; 171:107214. [PMID: 32205205 DOI: 10.1016/j.nlm.2020.107214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 11/25/2022]
Abstract
The avian Wulst is the pallial (analogous to mammalian cortex) termination point of the thalamofugal pathway, one of two main visual pathways in birds, and is considered to be equivalent to primate striate cortex. We recorded neuronal activity from the Wulst in pigeons during two versions of a delayed matching-to-sample procedure. Two birds were trained on a common outcomes (CO) procedure, in which correct responses following both the skateboarder and the flower stimuli were associated with reward. Two other birds were trained on a differential outcomes (DO) procedure in which correct responses following only the skateboarder stimulus were associated with reward, while correct responses following the flower stimulus were not rewarded. In line with previous studies, under CO conditions, and for both excitatory and inhibitory neurons, delay activity in the Wulst was significantly different from baseline activity following both sample stimuli, which may indicate that Wulst delay activity is a neural correlate of working memory for the sample stimulus. On the other hand, under DO conditions, Wulst delay activity appeared to be a neural correlate of the upcoming reward. We argue that Wulst neurons display flexibility in their encoding in that they can encode both sample and reward information, but may default to one type of coding over the other based on the demands of the task. The current study provides the first evidence that delay activity in the Wulst represents both a neural correlate for sample information as well as reward information.
Collapse
Affiliation(s)
- Catrona Anderson
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Melissa Johnston
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ethan J Marrs
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Blake Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Michael Colombo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Hataji Y, Kuroshima H, Fujita K. Dynamic Corridor Illusion in Pigeons: Humanlike Pictorial Cue Precedence Over Motion Parallax Cue in Size Perception. Iperception 2020; 11:2041669520911408. [PMID: 32269745 PMCID: PMC7093692 DOI: 10.1177/2041669520911408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022] Open
Abstract
Depth information is necessary for perceiving the real size of objects at varying visual distances. To investigate to what extent this size constancy present in another vertebrate class, we addressed the two questions using pigeons: (a) whether pigeons see a corridor illusion based on size constancy and (b) whether pigeons prioritize pictorial cues over motion parallax cues for size constancy, like humans. We trained pigeons to classify target sizes on a corridor. In addition, we presented a dynamic version of corridor illusion in which the target and corridor moved side by side. Target speed was changed to manipulate motion parallax. With the static corridor, pigeons overestimated the target size when it was located higher, indicating that pigeons see a corridor illusion like humans. With the dynamic corridor, the pigeons overestimated the target size depending on target position, as in the static condition, but target speed did not affect their responses, indicating that the pictorial precedence also applies to pigeons. In a follow-up experiment using the same stimulus, we confirmed that humans perceive object size based on pictorial cues. These results suggest that size constancy characteristics are highly similar between pigeons and humans, despite the differences in their phylogeny and neural systems.
Collapse
Affiliation(s)
- Yuya Hataji
- Department of Psychology, Graduate School of
Letters,
Kyoto
University
| | - Hika Kuroshima
- Department of Psychology, Graduate School of
Letters,
Kyoto
University
| | - Kazuo Fujita
- Department of Psychology, Graduate School of
Letters,
Kyoto
University
| |
Collapse
|
17
|
Rook N, Letzner S, Packheiser J, Güntürkün O, Beste C. Immediate early gene fingerprints of multi-component behaviour. Sci Rep 2020; 10:384. [PMID: 31941919 PMCID: PMC6962395 DOI: 10.1038/s41598-019-56998-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to execute different responses in an expedient temporal order is central for efficient goal-directed actions and often referred to as multi-component behaviour. However, the underlying neural mechanisms on a cellular level remain unclear. Here we establish a link between neural activity at the cellular level within functional neuroanatomical structures to this form of goal-directed behaviour by analyzing immediate early gene (IEG) expression in an animal model, the pigeon (Columba livia). We focus on the group of zif268 IEGs and ZENK in particular. We show that when birds have to cascade separate task goals, ZENK expression is increased in the avian equivalent of the mammalian prefrontal cortex, i.e. the nidopallium caudolaterale (NCL) as well as in the homologous striatum. Moreover, in the NCL as well as in the medial striatum (MSt), the degree of ZENK expression was highly correlated with the efficiency of multi-component behaviour. The results provide the first link between cellular IEG expression and behavioural outcome in multitasking situations. Moreover, the data suggest that the function of the fronto-striatal circuitry is comparable across species indicating that there is limited flexibility in the implementation of complex cognition such as multi-component behaviour within functional neuroanatomical structures.
Collapse
Affiliation(s)
- Noemi Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Sara Letzner
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Fernández M, Ahumada‐Galleguillos P, Sentis E, Marín G, Mpodozis J. Intratelencephalic projections of the avian visual dorsal ventricular ridge: Laminarly segregated, reciprocally and topographically organized. J Comp Neurol 2019; 528:321-359. [DOI: 10.1002/cne.24757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Máximo Fernández
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - Patricio Ahumada‐Galleguillos
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
- Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile Santiago Chile
| | - Elisa Sentis
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
| | - Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
- Facultad de Medicina Universidad Finis Terrae Santiago Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias Universidad de Chile Santiago Chile
| |
Collapse
|
19
|
Clark WJ, Porter B, Colombo M. Searching for Face-Category Representation in the Avian Visual Forebrain. Front Physiol 2019; 10:140. [PMID: 30873042 PMCID: PMC6400864 DOI: 10.3389/fphys.2019.00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/07/2019] [Indexed: 11/13/2022] Open
Abstract
Visual information is processed hierarchically along a ventral ('what') pathway that terminates with categorical representation of biologically relevant visual percepts (such as faces) in the mammalian extrastriate visual cortex. How birds solve face and object representation without a neocortex is a long-standing problem in evolutionary neuroscience, though multiple lines of evidence suggest that these abilities arise from circuitry fundamentally similar to the extrastriate visual cortex. The aim of the present experiment was to determine whether birds also exhibit a categorical representation of the avian face-region in four visual forebrain structures of the tectofugal visual pathway: entopallium (ENTO), mesopallium ventrolaterale (MVL), nidopallium frontolaterale (NFL), and area temporo-parieto-occipitalis (TPO). We performed electrophysiological recordings from the right and left hemispheres of 13 pigeons while they performed a Go/No-Go task that required them to discriminate between two sets of stimuli that included images of pigeon faces. No neurons fired selectively to only faces in either ENTO, NFL, MVL, or TPO. Birds' predisposition to attend to the local-features of stimuli may influence the perception of faces as a global combination of features, and explain our observed absence of face-selective neurons. The implementation of naturalistic viewing paradigms in conjunction with electrophysiological and fMRI techniques has the potential to promote and uncover the global processing of visual objects to determine whether birds exhibit category-selective patches in the tectofugal visual forebrain.
Collapse
Affiliation(s)
| | - Blake Porter
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Michael Colombo
- Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
20
|
Transient inactivation of the visual-associative nidopallium frontolaterale (NFL) impairs extinction learning and context encoding in pigeons. Neurobiol Learn Mem 2019; 158:50-59. [DOI: 10.1016/j.nlm.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 01/01/2023]
|
21
|
Azizi AH, Pusch R, Koenen C, Klatt S, Bröker F, Thiele S, Kellermann J, Güntürkün O, Cheng S. Emerging category representation in the visual forebrain hierarchy of pigeons (Columba livia). Behav Brain Res 2019; 356:423-434. [DOI: 10.1016/j.bbr.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 10/14/2022]
|
22
|
Belekhova MG, Vasilyev DS, Kenigfest NB, Chudinova TV. Calcium-Binding Proteins and Cytochrome Oxidase Activity in the Pigeon Entopallium: A Comparative Analysis of Interspecies Variability as Related to the Discussion on Avian Entopallium Homology. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
|
24
|
Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Struct Funct 2017; 223:941-953. [DOI: 10.1007/s00429-017-1537-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
25
|
Abstract
Learning to read involves the acquisition of letter-sound relationships (i.e., decoding skills) and the ability to visually recognize words (i.e., orthographic knowledge). Although decoding skills are clearly human-unique, given they are seated in language, recent research and theory suggest that orthographic processing may derive from the exaptation or recycling of visual circuits that evolved to recognize everyday objects and shapes in our natural environment. An open question is whether orthographic processing is limited to visual circuits that are similar to our own or a product of plasticity common to many vertebrate visual systems. Here we show that pigeons, organisms that separated from humans more than 300 million y ago, process words orthographically. Specifically, we demonstrate that pigeons trained to discriminate words from nonwords picked up on the orthographic properties that define words and used this knowledge to identify words they had never seen before. In addition, the pigeons were sensitive to the bigram frequencies of words (i.e., the common co-occurrence of certain letter pairs), the edit distance between nonwords and words, and the internal structure of words. Our findings demonstrate that visual systems organizationally distinct from the primate visual system can also be exapted or recycled to process the visual word form.
Collapse
|