1
|
Huang G, Wang X, Li T, Xu Y, Sheng Y, Wang H, Bian L, Zheng K, Xu X, Zhang G, Su B, Ren C. Differential Effects of Continuous Theta Burst Stimulation over the Bilateral and Unilateral Cerebellum on Working Memory. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2360-2371. [PMID: 39215909 DOI: 10.1007/s12311-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Recent functional MRI studies have implicated the cerebellum in working memory (WM) alongside the prefrontal cortex. Some findings indicate that the right cerebellum is activated during verbal tasks, while the left is engaged during visuospatial tasks, suggesting cerebellar lateralization in WM function. The cerebellum could be a potential target for non-invasive brain stimulation (NIBS) to enhance WM function in cognitive disorders. However, the comprehensive influence of cerebellar lateralization on different types of WM and the effect of stimulation over the unilateral or bilateral cerebellum remain uncertain. This study was to investigate the cerebellum's functional lateralization and its specific impact on various aspects of WM in a causal manner using unilateral or bilateral cerebellar continuous theta burst stimulation (cTBS), a form of inhibitroy NIBS. Twenty-four healthy participants underwent four sessions of cTBS targeting the left, right, or bilateral Crus I of the cerebellum, or a sham condition, in a controlled cross-over design. WM performance was assessed pre- and post-stimulation using neuropsychological tests, including the 3-back task, spatial WM task, and digit span task. Results indicated that cTBS over the bilateral and right cerebellum both led to a greater improvement in 3-back task performance compared to sham stimulation. Additionally, active cTBS over the bilateral cerebellum yielded better performance in the spatial WM task than sham stimulation. However, no significant differences were observed between stimulation conditions for the auditory digit span task. This study may provide novel causal evidence highlighting the specific involvement of the right and bilateral cerebellum in various types of WM. Specifically, the right cerebellum appears crucial for updating and tracking 3-back WM content, while spatial WM processes require the coordinated engagement of both cerebellar hemispheres.
Collapse
Affiliation(s)
- Guilan Huang
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xin Wang
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Tingni Li
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Yi Xu
- Wuxi MaxRex Robotic Exoskeleton Limited, Wuxi, Jiangsu, 214151, China
| | - Yiyang Sheng
- Department of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hewei Wang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li Bian
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Kai Zheng
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Xinlei Xu
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Guofu Zhang
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214515, China.
| | - Bin Su
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Caili Ren
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
2
|
Wang W, Yan X, He X, Qian J. Evidence for the Beneficial Effect of Reward on Working Memory: A Meta-Analytic Study. J Intell 2024; 12:88. [PMID: 39330467 PMCID: PMC11433210 DOI: 10.3390/jintelligence12090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Rewards act as external motivators and can improve performance in various cognitive tasks. However, previous research demonstrated mixed findings regarding the effect of reward on working memory (WM) performance, and the question of whether reward enhances WM performance is arguable. It remains unclear how the effect of reward on WM can be influenced by various factors, such as types of reward and experimental paradigms. In this meta-analytic study, we systematically investigated the effect of reward on WM by analyzing data from 51 eligible studies involving a total of 1767 participants. Our results showed that reward robustly enhanced WM performance, with non-monetary rewards inducing more benefits than monetary rewards. This may be because, while both types of reward could induce extrinsic motivation, non-monetary rewards enhanced intrinsic motivation while monetary rewards reduced it. Notably, all three reward methods-reward binding, reward expectation, and subliminal reward-effectively improved WM performance, with the reward binding paradigm exhibiting the greatest effects. This finding suggests that the reward effect can be attributed to both increasing the total amount of WM resources and improving the flexibility of resource reallocation. Moreover, the type of WM, the experimental paradigms, and the outcome measures are three moderators that should be jointly considered when assessing the reward effects on WM. Overall, this meta-analytic study provides solid evidence that reward improves WM performance and reveals possible mechanisms underlying these improvements.
Collapse
Affiliation(s)
- Weiyu Wang
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| | - Xin Yan
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| | - Xinyu He
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| | - Jiehui Qian
- Department of Psychology, Sun Yat-sen University, #132 Waihuan Dong Road, Panyu District, Guangzhou 510006, China
| |
Collapse
|
3
|
Parker Jones O, Geva S, Prejawa S, Hope TMH, Oberhuber M, Seghier ML, Green DW, Price CJ. Dissociating Cerebellar Regions Involved in Formulating and Articulating Words and Sentences. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:795-817. [PMID: 39175783 PMCID: PMC11338308 DOI: 10.1162/nol_a_00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/03/2024] [Indexed: 08/24/2024]
Abstract
We investigated which parts of the cerebellum are involved in formulating and articulating sentences using (i) a sentence production task that involved describing simple events in pictures; (ii) an auditory sentence repetition task involving the same sentence articulation but not sentence formulation; and (iii) an auditory sentence-to-picture matching task that involved the same pictorial events and no overt articulation. Activation for each of these tasks was compared to the equivalent word processing tasks: noun production, verb production, auditory noun repetition, and auditory noun-to-picture matching. We associate activation in bilateral cerebellum lobule VIIb with sequencing words into sentences because it increased for sentence production compared to all other conditions and was also activated by word production compared to word matching. We associate a paravermal part of right cerebellar lobule VIIIb with overt motor execution of speech, because activation was higher during (i) production and repetition of sentences compared to the corresponding noun conditions and (ii) noun and verb production compared to all matching tasks, with no activation relative to fixation during any silent (nonspeaking) matching task. We associate activation within right cerebellar Crus II with covert articulatory activity because it activated for (i) all speech production more than matching tasks and (ii) sentences compared to nouns during silent (nonspeaking) matching as well as sentence production and sentence repetition. Our study serendipitously segregated, for the first time, three distinct functional roles for the cerebellum in generic speech production, and it demonstrated how sentence production enhanced the demands on these cerebellar regions.
Collapse
Affiliation(s)
- Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
- Jesus College, University of Oxford, Oxford, UK
| | - Sharon Geva
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Centre for Mind and Behaviour, Anglia Ruskin University, Cambridge, UK
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Thomas M. H. Hope
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Mohamed L. Seghier
- Healthcare Engineering Innovation Center (HEIC), Biomedical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - David W. Green
- Experimental Psychology, University College London, London, UK
| | - Cathy J. Price
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| |
Collapse
|
4
|
Viñas-Guasch N, Ng THB, Heng JG, Chan YC, Chew E, Desmond JE, Chen SHA. Cerebellar Transcranial Magnetic Stimulation (TMS) Impairs Visual Working Memory. CEREBELLUM (LONDON, ENGLAND) 2023; 22:332-347. [PMID: 35355219 PMCID: PMC9522915 DOI: 10.1007/s12311-022-01396-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
An increasing body of evidence points to the involvement of the cerebellum in cognition. Specifically, previous studies have shown that the superior and inferior portions of the cerebellum are involved in different verbal working memory (WM) mechanisms as part of two separate cerebro-cerebellar loops for articulatory rehearsal and phonological storage mechanisms. In comparison, our understanding of the involvement of the cerebellum in visual WM remains limited. We have previously shown that performance in verbal WM is disrupted by single-pulse transcranial magnetic stimulation (TMS) of the right superior cerebellum. The present study aimed to expand on this notion by exploring whether the inferior cerebellum is similarly involved in visual WM. Here, we used fMRI-guided, double-pulse TMS to probe the necessity of left superior and left inferior cerebellum in visual WM. We first conducted an fMRI localizer using the Sternberg visual WM task, which yielded targets in left superior and inferior cerebellum. Subsequently, TMS stimulation of these regions at the end of the encoding phase resulted in decreased accuracy in the visual WM task. Differences in the visual WM deficits caused by stimulation of superior and inferior left cerebellum raise the possibility that these regions are involved in different stages of visual WM.
Collapse
Affiliation(s)
- Nestor Viñas-Guasch
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tommy Hock Beng Ng
- National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jiamin Gladys Heng
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yee Cheun Chan
- Division of Neurology, University Medicine Cluster, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Effie Chew
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Rehabilitation Medicine, Department of Medicine, National University Health System, Singapore, Singapore
| | - John E Desmond
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.
- National Institute of Education, Nanyang Technological University, Singapore, Singapore.
- Centre for Research and Development in Learning (CRADLE), Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
5
|
Shunkai L, Su T, Zhong S, Chen G, Zhang Y, Zhao H, Chen P, Tang G, Qi Z, He J, Zhu Y, Lv S, Song Z, Miao H, Hu Y, Jia Y, Wang Y. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression. Psychol Med 2023; 53:2923-2935. [PMID: 34870570 DOI: 10.1017/s0033291721004906] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions - including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD. METHODS Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships. RESULTS Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD. CONCLUSIONS These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.
Collapse
Affiliation(s)
- Lai Shunkai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yunxia Zhu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Haofei Miao
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yilei Hu
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| |
Collapse
|
6
|
Dominguez J, de Guzman MF, Chen SHA, Sano M, Waldemar G, Phung TKT. Filipino Multicomponent Intervention to Maintain Cognitive Performance in High-Risk Population (FINOMAIN): Study Protocol for a Cluster Randomized Controlled Trial. Front Neurol 2021; 12:685721. [PMID: 34557142 PMCID: PMC8453078 DOI: 10.3389/fneur.2021.685721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Background: More than half of the people with dementia live in lower-middle income countries (LMIC), yet we lack research and evidence-based knowledge to guide health promotion and prevention strategies for cognitive decline. In the Philippines, the prevalence of mild cognitive impairment (MCI) and cardiovascular risk factors among older persons are high, making this population at high risk for developing dementia. This protocol describes a cluster randomized controlled trial that aims to investigate the efficacy of a multicomponent intervention to maintain cognitive performance among high-risk population. Methods: This is a cluster-randomized, two-arm, single-blind trial of a multicomponent intervention that combines dance called INDAK (Improving Neurocognition through Dance and Kinesthetics), nutrition counseling, and vascular risk management. The intervention arm will receive 12 months (1-h, twice per week) of INDAK and every 3 months of nutrition counseling and intensive vascular risk management and monitoring. The control group will receive the usual vascular care advice and referral. A total of 605 (20-25 clusters per arm) community-dwelling Filipino older adults aged ≥ 60 years old with MCI will participate in the study and will be assessed at baseline, 6th- and 12th-month follow-up. The primary outcome is cognitive performance assessed by the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog), Mnemonic Similarity Tasks (MST), and executive function composite (EFC). Secondary outcomes are functional connectivity assessed through brain imaging, and measures of behavioral, functional level, and quality of life. Discussion: The study aims to provide scientific evidence on a public health intervention that is contextualized in a community setting to reduce dementia risk among older adults with MCI. This model can be an ecological, low-cost, and effective program, thereby conducive to widespread implementation in the Philippines as well as in other low-resource settings with similar public health challenges. The pilot phase was underway with eight villages (clusters), but temporarily interrupted by the pandemic. The full study is anticipated to start after community restrictions are eased.
Collapse
Affiliation(s)
- Jacqueline Dominguez
- St. Luke's Medical Center, Institute for Neurosciences, Quezon City, Philippines
- Institute for Dementia Care Asia, Quezon City, Philippines
| | | | - S. H. Annabel Chen
- Center of Research and Development in Learning, Psychology, School of Social Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Mary Sano
- Department of Psychiatry, Mt. Sinai Alzheimer's Disease Research Center, Icahn School of Medicine, New York, NY, United States
| | - Gunhild Waldemar
- Danish Dementia Research Center, Rigohospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thien Kieu Thi Phung
- Danish Dementia Research Center, Rigohospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Clark SV, Semmel ES, Aleksonis HA, Steinberg SN, King TZ. Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions. Neuropsychol Rev 2021; 31:422-446. [PMID: 33515170 DOI: 10.1007/s11065-020-09465-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Over the past few decades, research has established that the cerebellum is involved in executive functions; however, its specific role remains unclear. There are numerous theories of cerebellar function and numerous cognitive processes falling under the umbrella of executive function, making investigations of the cerebellum's role in executive functioning challenging. In this review, we explored the role of the cerebellum in executive functioning through clinical and cognitive neuroscience frameworks. We reviewed the neuroanatomical systems and theoretical models of cerebellar functions and the multifaceted nature of executive functions. Using attention deficit hyperactivity disorder and cerebellar tumor as clinical developmental models of cerebellar dysfunction, and the functional magnetic resonance imaging literature, we reviewed evidence for cerebellar involvement in specific components of executive function in childhood, adolescence, and adulthood. There is evidence for posterior cerebellar contributions to working memory, planning, inhibition, and flexibility, but the heterogeneous literature that largely was not designed to study the cerebellum makes it difficult to determine specific functions of the cerebellum or cerebellar regions. In addition, while it is clear that cerebellar insult in childhood affects executive function performance later in life, more work is needed to elucidate the mechanisms by which executive dysfunction occurs and its developmental course. The limitations of the current literature are discussed and potential directions for future research are provided.
Collapse
Affiliation(s)
- Sarah V Clark
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Eric S Semmel
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Holly A Aleksonis
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | | | - Tricia Z King
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA. .,Neuroscience Institute, Georgia State University, GA, 30303, Atlanta, USA.
| |
Collapse
|
8
|
Seese RR. Working Memory Impairments in Cerebellar Disorders of Childhood. Pediatr Neurol 2020; 107:16-23. [PMID: 32276741 DOI: 10.1016/j.pediatrneurol.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/17/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum is a crucial center for motor control and integration. Increasing evidence supports the notion that the cerebellum is also involved in nonmotor functions. Along these lines, multiple cerebellar disorders of childhood and adulthood are associated with behavioral and cognitive symptoms, including impairments in memory. One form of memory commonly affected in cerebellar disorders is working memory, which uses attention to manipulate information that is immediately available to execute cognitive tasks. This article reviews the literature illustrating that working memory impairments are frequently observed in acquired, congenital, and genetic/developmental cerebellar disorders of childhood. Functional neuroimaging studies demonstrate that working memory tasks engage many posterior regions of the cerebellar hemispheres and vermis. Thus, the cerebellum acts as one important node in the working memory circuit, and when the cerebellum is involved in childhood disorders, deficits in working memory commonly occur.
Collapse
Affiliation(s)
- Ronald R Seese
- Division of Child Neurology, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
9
|
Cui D, Zhang L, Zheng F, Wang H, Meng Q, Lu W, Liu Z, Yin T, Qiu J. Volumetric reduction of cerebellar lobules associated with memory decline across the adult lifespan. Quant Imaging Med Surg 2020; 10:148-159. [PMID: 31956538 DOI: 10.21037/qims.2019.10.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The human cerebellum plays an essential role in motor control, is involved in cognitive function and helps to regulate emotional responses. However, little is known about the relationship between cerebellar lobules and age-related memory decline. We aimed to investigate volume alterations in cerebellar lobules at different ages and assess their correlations with reduced memory recall abilities. Methods A sample of 275 individuals were divided into the following four groups: 20-35 years (young), 36-50 years (early-middle age), 51-65 years (late-middle age), and 66-89 years (old). Volumes of the cerebellar lobules were obtained using volBrain software. Analysis of covariance and post hoc analysis were used to analyze group differences in cerebellar lobular volumes, and multiple comparisons were performed using the Bonferroni method. Spearman correlation was used to investigate the relationship between lobular volumes and memory recall scores. Results In this study, we found that older adults had smaller cerebellar volumes than the other subjects. Volumetric decreases in size were noted in bilateral lobule VI and lobule crus I. Moreover, the volumes of bilateral lobule crus I, lobule VI, and right lobule IV were significantly associated with memory recall scores. Conclusions In the present study, we found that some lobules of the cerebellum appear more predisposed to age-related changes than other lobules. These findings provide further evidence that specific regions of the cerebellum could be used to assess the risk of memory decline across the adult lifespan.
Collapse
Affiliation(s)
- Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.,College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Li Zhang
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Fenglian Zheng
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Huiqin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Qingjian Meng
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Wen Lu
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Qiu
- College of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Medical Engineering and Technology Research Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Imaging-X Joint Laboratory, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
10
|
Emch M, von Bastian CC, Koch K. Neural Correlates of Verbal Working Memory: An fMRI Meta-Analysis. Front Hum Neurosci 2019; 13:180. [PMID: 31244625 PMCID: PMC6581736 DOI: 10.3389/fnhum.2019.00180] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023] Open
Abstract
Verbal Working memory (vWM) capacity measures the ability to maintain and manipulate verbal information for a short period of time. The specific neural correlates of this construct are still a matter of debate. The aim of this study was to conduct a coordinate-based meta-analysis of 42 fMRI studies on visual vWM in healthy subjects (n = 795, males = 459, females = 325, unknown = 11; age range: 18-75). The studies were obtained after an exhaustive literature search on PubMed, Scopus, Web of Science, and Brainmap database. We analyzed regional activation differences during fMRI tasks with the anisotropic effect-size version of seed-based d mapping software (ES-SDM). The results were further validated by performing jackknife sensitivity analyses and heterogeneity analyses. We investigated the effect of numerous relevant influencing factors by fitting corresponding linear regression models. We isolated consistent activation in a network containing fronto-parietal areas, right cerebellum, and basal ganglia structures. Regarding lateralization, the results pointed toward a bilateral frontal activation, a left-lateralization of parietal regions and a right-lateralization of the cerebellum, indicating that the left-hemisphere concept of vWM should be reconsidered. We also isolated activation in regions important for response inhibition, emphasizing the role of attentional control in vWM. Moreover, we found a significant influence of mean reaction time, load, and age on activation associated with vWM. Activation in left medial frontal gyrus, left precentral gyrus, and left precentral gyrus turned out to be positively associated with mean reaction time whereas load was associated with activation across the PFC, fusiform gyrus, parietal cortex, and parts of the cerebellum. In the latter case activation was mainly detectable in both hemispheres whereas the influence of age became manifest predominantly in the left hemisphere. This led us to conclude that future vWM studies should take these factors into consideration.
Collapse
Affiliation(s)
- Mónica Emch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| | | | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Martinsried, Germany
| |
Collapse
|
11
|
Fu Z, Caprihan A, Chen J, Du Y, Adair JC, Sui J, Rosenberg GA, Calhoun VD. Altered static and dynamic functional network connectivity in Alzheimer's disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum Brain Mapp 2019; 40:3203-3221. [PMID: 30950567 DOI: 10.1002/hbm.24591] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
Subcortical ischemic vascular disease (SIVD) is a major subtype of vascular dementia with features that overlap clinically with Alzheimer's disease (AD), confounding diagnosis. Neuroimaging is a more specific and biologically based approach for detecting brain changes and thus may help to distinguish these diseases. There is still a lack of knowledge regarding the shared and specific functional brain abnormalities, especially functional connectivity changes in relation to AD and SIVD. In this study, we investigated both static functional network connectivity (sFNC) and dynamic FNC (dFNC) between 54 intrinsic connectivity networks in 19 AD patients, 19 SIVD patients, and 38 age-matched healthy controls. The results show that both patient groups have increased sFNC between the visual and cerebellar (CB) domains but decreased sFNC between the cognitive-control and CB domains. SIVD has specifically decreased sFNC within the sensorimotor domain while AD has specifically altered sFNC between the default-mode and CB domains. In addition, SIVD has more occurrences and a longer dwell time in the weakly connected dFNC states, but with fewer occurrences and a shorter dwell time in the strongly connected dFNC states. AD has both similar and opposite changes in certain dynamic features. More importantly, the dynamic features are found to be associated with cognitive performance. Our findings highlight similar and distinct functional connectivity alterations in AD and SIVD from both static and dynamic perspectives and indicate dFNC to be a more important biomarker for dementia since its progressively altered patterns can better track cognitive impairment in AD and SIVD.
Collapse
Affiliation(s)
- Zening Fu
- The Mind Research Network, Albuquerque, New Mexico
| | | | - Jiayu Chen
- The Mind Research Network, Albuquerque, New Mexico
| | - Yuhui Du
- The Mind Research Network, Albuquerque, New Mexico.,School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - John C Adair
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jing Sui
- The Mind Research Network, Albuquerque, New Mexico.,Chinese Academy of Sciences (CAS), Centre for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Gary A Rosenberg
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, New Mexico.,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
12
|
Sobczak-Edmans M, Lo YC, Hsu YC, Chen YJ, Kwok FY, Chuang KH, Tseng WYI, Chen SHA. Cerebro-Cerebellar Pathways for Verbal Working Memory. Front Hum Neurosci 2019; 12:530. [PMID: 30670957 PMCID: PMC6333010 DOI: 10.3389/fnhum.2018.00530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/13/2018] [Indexed: 11/26/2022] Open
Abstract
The current study examined the structural and functional connectivity of the cerebro-cerebellar network of verbal working memory as proposed by Chen and Desmond (2005a). Diffusion spectrum imaging was employed to establish structural connectivity between cerebro-cerebellar regions co-activated during a verbal working memory task. The inferior frontal gyrus, inferior parietal lobule, pons, thalamus, superior cerebellum and inferior cerebellum were used as regions of interest to reconstruct and segment the contralateral white matter cerebro-cerebellar circuitry. The segmented pathways were examined further to establish the relationship between structural and effective connectivity as well as the relationship between structural connectivity and verbal working memory performance. No direct relationship between structural and effective connectivity was found but the results demonstrated that structural connectivity is indirectly related to effective connectivity as DCM models that resembled more closely with underlying white matter pathways had a higher degree of model inference confidence. Additionally, it was demonstrated that the structural connectivity of the ponto-cerebellar tract was associated with individual differences in response time for verbal working memory. The findings of the study contribute to further our understanding of the relationship between structural and functional connectivity and the impact of variability in verbal working memory performance.
Collapse
Affiliation(s)
| | - Yu-Chun Lo
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Chin Hsu
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Fu Yu Kwok
- Centre for Research in Child Development, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Kai-Hsiang Chuang
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,The Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Wen-Yih Isaac Tseng
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - S H Annabel Chen
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Centre for Research and Development in Learning, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Embury CM, Wiesman AI, Proskovec AL, Mills MS, Heinrichs-Graham E, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Neural dynamics of verbal working memory processing in children and adolescents. Neuroimage 2018; 185:191-197. [PMID: 30336254 DOI: 10.1016/j.neuroimage.2018.10.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/09/2018] [Accepted: 10/13/2018] [Indexed: 01/01/2023] Open
Abstract
Development of cognitive functions and the underlying neurophysiology is evident throughout childhood and adolescence, with higher order processes such as working memory (WM) being some of the last cognitive faculties to fully mature. Previous functional neuroimaging studies of the neurodevelopment of WM have largely focused on overall regional activity levels rather than the temporal dynamics of neural component recruitment. In this study, we used magnetoencephalography (MEG) to examine the neural dynamics of WM in a large cohort of children and adolescents who were performing a high-load, modified verbal Sternberg WM task. Consistent with previous studies in adults, our findings indicated left-lateralized activity throughout the task period, beginning in the occipital cortices and spreading anterior to include temporal and prefrontal cortices during later encoding and into maintenance. During maintenance, the occipital alpha increase that has been widely reported in adults was found to be relatively weak in this developmental sample, suggesting continuing development of this component of neural processing, which was supported by correlational analyses. Intriguingly, we also found sex-specific developmental effects in alpha responses in the right inferior frontal region during encoding and in parietal and occipital cortices during maintenance. These findings suggested a developmental divergence between males and females in the maturation of neural circuitry serving WM during the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Christine M Embury
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amy L Proskovec
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Mackenzie S Mills
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Proskovec AL, Heinrichs-Graham E, Wilson TW. Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. Neuroimage 2018; 184:256-265. [PMID: 30213775 DOI: 10.1016/j.neuroimage.2018.09.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 11/17/2022] Open
Abstract
A network of predominantly left-lateralized brain regions has been linked to verbal working memory (VWM) performance. However, the impact of memory load on the oscillatory dynamics serving VWM is far less understood. To further investigate this, we had 26 healthy adults perform a high-load (6 letter) and low-load (4 letter) variant of a VWM task while undergoing magnetoencephalography (MEG). MEG data were evaluated in the time-frequency domain and significant oscillatory responses spanning the encoding and maintenance phases were reconstructed using a beamformer. To determine the impact of load on the neural dynamics, the resulting images were examined using paired-samples t-tests and virtual sensor analyses. Our results indicated stronger increases in frontal theta activity in the high- relative to low-load condition during early encoding. Stronger decreases in alpha/beta activity were also observed during encoding in bilateral posterior cortices during the high-load condition, and the strength of these load effects increased as encoding progressed. During maintenance, stronger decreases in alpha activity in the left inferior frontal gyrus, middle temporal gyrus, supramarginal gyrus, and inferior parietal cortices were detected during high- relative to low-load performance, with the strength of these load effects remaining largely static throughout maintenance. Finally, stronger increases in occipital alpha activity were observed during maintenance in the high-load condition, and the strength of these effects grew stronger with time during the first half of maintenance, before dissipating during the latter half of maintenance. Notably, this was the first study to utilize a whole-brain approach to statistically evaluate the temporal dynamics of load-related oscillatory differences during encoding and maintenance processes, and our results highlight the importance of spatial, temporal, and spectral specificity in this regard.
Collapse
Affiliation(s)
- Amy L Proskovec
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA
| | - Tony W Wilson
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA; Center for Magnetoencephalography, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Neurological Sciences, UNMC, Omaha, NE, USA.
| |
Collapse
|
15
|
Executive dysfunction in patients with spinocerebellar ataxia type 3. J Neurol 2018; 265:1563-1572. [DOI: 10.1007/s00415-018-8883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
|
16
|
Makovac E, Smallwood J, Watson DR, Meeten F, Critchley HD, Ottaviani C. The verbal nature of worry in generalized anxiety: Insights from the brain. NEUROIMAGE-CLINICAL 2017. [PMID: 29527493 PMCID: PMC5842731 DOI: 10.1016/j.nicl.2017.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The Cognitive Avoidance Theory of Worry argues that worry is a cognitive strategy adopted to control the physiological arousal associated with anxiety. According to this theory, pathological worry, as in Generalized Anxiety Disorder (GAD), is verbal in nature, negative and abstract, rather than concrete. Neuroimaging studies link the expression of worry to characteristic modes of brain functional connectivity, especially in relation to the amygdala. However, the distinctive features of worry (verbal, abstract, negative), and their relationship to physiological arousal, have not so far been mapped to brain function. Methods We addressed this omission by undertaking a resting-state functional magnetic resonance neuroimaging study of 19 patients with GAD and 21 controls, before and after induction of perseverative cognitions, while measuring emotional bodily arousal from heart rate (HR). Seed-based analyses quantified brain changes in whole brain functional connectivity from the amygdala. Results In GAD, the induction increased negative thoughts and their verbal content. In line with predictions, the verbal expression of worry in GAD was associated with higher HR at baseline and attenuated HR increases after induction of perseverative cognitions. Within brain, the increased use of words during worry, and the associated dampening of HR after induction were mediated by the strength of functional connectivity between the amygdala and default mode network ‘hubs’ and the opercular cortex. The negative content of worry was further related to functional communication between amygdala and cingulo-opercular and temporal cortices. Conclusions Findings provide a neurobiological basis for the impact of verbal worry on HR in GAD. More negative worrisome thoughts have more words in GAD and more images in controls. Thinking in words is associated with reduced cardiac reactivity during worry. Verbal, abstract, and negative features of worry have unique neural correlates. Amygdala functional connectivity mediates use of words and HR decrease during worry. A neurobiological basis for the impact of verbal worry on HR in GAD is provided.
Collapse
Key Words
- Amygdala
- BDI, Beck Depression Inventory
- BOLD, blood oxygenation level dependent
- DMN, default mode network
- EPI, echoplanar imaging
- Functional connectivity
- GAD, Generalized Anxiety Disorder
- Generalized anxiety disorder
- HC, Healthy Controls
- HR, heart rate
- Heart rate
- NYC-Q, New York Cognition Questionnaire
- New York Cognition Questionnaire
- PCC, posterior cingulate cortex
- PSWQ, Penn State Worry Questionnaire
- RRS, Ruminative Response Scale
- SCID, Structured Clinical Interview for DSM
- STAI, Spielberger State Trait Anxiety Inventory
- Worry
- rsfMRI, resting-state functional magnetic resonance neuroimaging
Collapse
Affiliation(s)
- Elena Makovac
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Psychiatry, BSMS, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK; Centre for Neuroimaging Science, King's College London, London, UK
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, York, UK
| | - David R Watson
- Psychiatry, BSMS, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK
| | - Frances Meeten
- Psychiatry, BSMS, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK; Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Hugo D Critchley
- Psychiatry, BSMS, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, UK; Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK; Sussex Partnership NHS Foundation Trust Sussex, Sussex, UK
| | - Cristina Ottaviani
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Cheng R, Qi H, Liu Y, Zhao S, Li C, Liu C, Zheng J. Abnormal amplitude of low-frequency fluctuations and functional connectivity of resting-state functional magnetic resonance imaging in patients with leukoaraiosis. Brain Behav 2017; 7:e00714. [PMID: 28638719 PMCID: PMC5474717 DOI: 10.1002/brb3.714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION This study aimed to investigate the cerebral function deficits in patients with leukoaraiosis (LA) and the correlation with white matter hyperintensity (WMH) using functional MRI (fMRI) technology. MATERIALS AND METHODS Twenty-eight patients with LA and 30 volunteers were enrolled in this study. All patients underwent structural MRI and resting-state functional MRI (rs-fMRI) scanning. The amplitude of low-frequency fluctuations (ALFF) of rs-fMRI signals for the two groups was compared using two-sample t tests. A one-sample t test was performed on the individual z-value maps to identify the functional connectivity of each group. The z values were compared between the two groups using a two-sample t test. Partial correlations between ALFF values and functional connectivity of the brain regions that showed group differences and Fazekas scores of the WMH were analyzed. RESULTS Compared with the control group, the LA group showed a significant decrease in the ALFF in the left parahippocampal gyrus (PHG) and an increased ALFF in the left inferior semi-lunar lobule and right superior orbital frontal gyrus (SOFG). The patients with LA showed an increased functional connectivity between the right insular region and the right SOFG and between the right calcarine cortex and the left PHG. After the effects of age, gender, and years of education were corrected as covariates, the functional connectivity strength of the right insular and the right SOFG showed close correlations with the Fazekas scores. CONCLUSION Our results enhance the understanding of the pathomechanism of LA. Leukoaraiosis is associated with widespread cerebral function deficits, which show a close correlation with WMH and can be measured by rs-fMRI.
Collapse
Affiliation(s)
- Rongchuan Cheng
- Department of Neurology The Second Affiliated Hospital of the Third Military Medical University Chongqing China
| | - Honglin Qi
- Department of Radiology The First People's Hospital of Dadukou District Chongqing China
| | - Yong Liu
- Department of Neurology The Second Affiliated Hospital of the Third Military Medical University Chongqing China
| | - Shifu Zhao
- Department of Neurology The Second Affiliated Hospital of the Third Military Medical University Chongqing China
| | - Chuanming Li
- Department of Radiology The First Affiliated Hospital of the Third Military Medical University Chongqing China
| | - Chen Liu
- Department of Radiology The First Affiliated Hospital of the Third Military Medical University Chongqing China
| | - Jian Zheng
- Department of Neurology The Second Affiliated Hospital of the Third Military Medical University Chongqing China
| |
Collapse
|
18
|
Liu Y, Zhong M, Xi C, Jin X, Zhu X, Yao S, Yi J. Event-Related Potentials Altered in Patients with Borderline Personality Disorder during Working Memory Tasks. Front Behav Neurosci 2017; 11:67. [PMID: 28458633 PMCID: PMC5394125 DOI: 10.3389/fnbeh.2017.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/03/2017] [Indexed: 11/13/2022] Open
Abstract
Whereas some studies have demonstrated impaired working memory (WM) among patients with borderline personality disorder (BPD), these findings have not been consistent. Furthermore, there is a lack of neurophysiological evidence about WM function in patients with BPD. The goal of this study was to examine WM function in patients with BPD by using event-related potentials (ERPs). An additional goal was to explore whether characteristics of BPD (i.e., impulsiveness and emotional instability) are associated with WM impairment. A modified version of the N-back task (0- and 2-back) was used to measure WM. ERPs were recorded in 22 BPD patients and 21 age-, handedness-, and sex-matched healthy controls (HCs) while they performed the WM task. The results revealed that there were no significant group differences for behavioral variables (reaction time and accuracy rate) or for latencies and amplitudes of P1 and N1 (all p > 0.05). BPD patients had lower P3 amplitudes and longer N2 latencies than HC, independent of WM load (low load: 0-back; high load: 2-back). Impulsiveness was not correlated with N2 latency or P3 amplitude, and no correlations were found between N2 latency or P3 amplitude and affect intensity scores in any WM load (all p > 0.05). In conclusion, the lower P3 amplitudes and longer N2 latencies in BPD patients suggested that they might have some dysfunction of neural activities in sub-processing in WM, while impulsiveness and negative affect might not have a close relationship with these deficits.
Collapse
Affiliation(s)
- Ying Liu
- Medical Psychological Center, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Mingtian Zhong
- Center for Studies of Psychological Application, School of Psychology, South China Normal UniversityGuangzhou, China
| | - Chang Xi
- Medical Psychological Center, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Xinhu Jin
- Medical Psychological Center, Second Xiangya Hospital, Central South UniversityChangsha, China
| | - Xiongzhao Zhu
- Medical Psychological Center, Second Xiangya Hospital, Central South UniversityChangsha, China.,Medical Psychological Institute, Central South UniversityChangsha, China
| | - Shuqiao Yao
- Medical Psychological Center, Second Xiangya Hospital, Central South UniversityChangsha, China.,Medical Psychological Institute, Central South UniversityChangsha, China
| | - Jinyao Yi
- Medical Psychological Center, Second Xiangya Hospital, Central South UniversityChangsha, China.,Medical Psychological Institute, Central South UniversityChangsha, China
| |
Collapse
|
19
|
Göbel A, Heldmann M, Sartorius A, Göttlich M, Dirk AL, Brabant G, Münte TF. Mild Thyrotoxicosis Leads to Brain Perfusion Changes: An Arterial Spin Labelling Study. J Neuroendocrinol 2017; 29. [PMID: 27859916 DOI: 10.1111/jne.12446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 10/12/2016] [Accepted: 11/05/2016] [Indexed: 11/29/2022]
Abstract
Hypo- and hyperthyroidism have effects on brain structure and function, as well as cognitive processes, including memory. However, little is known about the influence of thyroid hormones on brain perfusion and the relationship of such perfusion changes with cognition. The present study aimed to demonstrate the effect of short-term experimental hyperthyroidism on brain perfusion in healthy volunteers and to assess whether perfusion changes, if present, are related to cognitive performance. It is known that an interaction exists between brain perfusion and cerebral oxygen consumption rate and it is considered that neural activation increases cerebral regional perfusion rate in brain areas associated with memory. Measuring cerebral blood flow may therefore represent a proxy for neural activity. Therefore, arterial spin labelling (ASL) measurements were conducted and later analysed to evaluate brain perfusion in 29 healthy men before and after ingesting thyroid hormones for 8 weeks. Psychological tests concerning memory were performed at the same time-points and the results were correlated with the imaging results. In the hyperthyroid condition, perfusion was increased in the posterior cerebellum in regions connected with cerebral networks associated with cognitive control and the visual cortex compared to the euthyroid condition. In addition, these perfusion changes were positively correlated with changes of performance in the German version of the Auditory Verbal Learning Task [AVLT, Verbaler Lern-und-Merkfähigkeits-Test (VLMT)]. Cerebellar perfusion and function therefore appears to be modulated by thyroid hormones, likely because the cerebellum hosts a high number of thyroid hormone receptors.
Collapse
Affiliation(s)
- A Göbel
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - M Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - A Sartorius
- Central Institute of Mental Health, Mannheim, Germany
| | - M Göttlich
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - A-L Dirk
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - G Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - T F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| |
Collapse
|