1
|
Mulholland MM, Meguerditchian A, Hopkins WD. Age- and sex-related differences in baboon (Papio anubis) gray matter covariation. Neurobiol Aging 2023; 125:41-48. [PMID: 36827943 PMCID: PMC10308318 DOI: 10.1016/j.neurobiolaging.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/30/2023]
Abstract
Age-related changes in cognition, brain morphology, and behavior are exhibited in several primate species. Baboons, like humans, naturally develop Alzheimer's disease-like pathology and cognitive declines with age and are an underutilized model for studies of aging. To determine age-related differences in gray matter covariation of 89 olive baboons (Papio anubis), we used source-based morphometry (SBM) to analyze data from magnetic resonance images. We hypothesized that we would find significant age effects in one or more SBM components, particularly those which include regions influenced by age in humans and other nonhuman primates (NHPs). A multivariate analysis of variance revealed that individual weighted gray matter covariation scores differed across the age classes. Elderly baboons contributed significantly less to gray matter covariation components including the brainstem, superior parietal cortex, thalamus, and pallidum compared to juveniles, and middle and superior frontal cortex compared to juveniles and young adults (p < 0.05). Future studies should examine the relationship between the changes in gray matter covariation reported here and age-related cognitive decline.
Collapse
Affiliation(s)
- M M Mulholland
- The University of Texas MD Anderson Cancer Center, Bastrop, TX.
| | - A Meguerditchian
- Laboratoire de Psychologie Cognitive UMR7290, LPC, CNRS, Aix-Marseille University, Institute of Language, Communication and the Brain, Marseille, France; Station de Primatologie-Celphedia, UAR846, Rousset, France
| | - W D Hopkins
- The University of Texas MD Anderson Cancer Center, Bastrop, TX
| |
Collapse
|
2
|
Davidson GL, Reichert MS, Coomes JR, Kulahci IG, de la Hera I, Quinn JL. Inhibitory control performance is repeatable over time and across contexts in a wild bird population. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Garnham LC, Boddington R, Løvlie H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim Cogn 2022; 25:867-879. [PMID: 35122185 PMCID: PMC9334373 DOI: 10.1007/s10071-022-01598-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/17/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022]
Abstract
Individual variation in cognition, seen in many taxa, is not well understood, despite its potential evolutionary consequences. Inhibitory control is an aspect of cognition which differs between individuals. However, how selection could act on this variation remains unclear. First, individual consistency over time of behaviours affected by inhibitory control, and how these behaviours relate to each other, is not well understood. Second, consequences in ecologically relevant contexts of variation in behaviours affected by inhibitory control, are scarcely investigated. Therefore, we explored the temporal consistency and inter-relatedness of two behaviours influenced by inhibitory control (impulsive action and persistence) and how these link to social rank, foraging efficiency, and risk taking in adult female red junglefowl (Gallus gallus). We measured impulsive action in a detour test, and persistence in both a detour test and a foraging test. Impulsive action and persistence, measured in a detour test, were moderately consistent over time, and positively correlated. This implies that selection could act on inhibitory control via these behaviours, and selection on one behaviour could affect the other. However, we found no evidence of links between inhibitory control and social rank, foraging efficiency, or risk taking. This implies that selection may not act on inhibitory control via these measures, and that, in general, there may be a lack of strong selection on inhibitory control. This, in turn, could help explain individual variation in this aspect of cognition. Future research should explore the specificity of when inhibitory control has implications for individuals, and continue to investigate how variation in cognitive traits influences how individuals behave in contexts with potential evolutionary implications.
Collapse
Affiliation(s)
- Laura Clare Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| | - Robert Boddington
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden.,School of Biological Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
4
|
Computerized assessment of dominance hierarchy in baboons (Papio papio). Behav Res Methods 2021; 53:1923-1934. [PMID: 33687699 DOI: 10.3758/s13428-021-01539-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
Dominance hierarchies are an important aspect of Primate social life, and there is an increasing need to develop new systems to collect social information automatically. The main goal of this research was to explore the possibility to infer the dominance hierarchy of a group of Guinea baboons (Papio papio) from the analysis of their spontaneous interactions with freely accessible automated learning devices for monkeys (ALDM, Fagot & Bonté Behavior Research Methods, 42, 507-516, 2010). Experiment 1 compared the dominance hierarchy obtained from conventional observations of agonistic behaviours to the one inferred from the analysis of automatically recorded supplanting behaviours within the ALDM workstations. The comparison, applied to three different datasets, shows that the dominance hierarchies obtained with the two methods are highly congruent (all rs ≥ 0.75). Experiment 2 investigated the experimental potential of inferring dominance hierarchy from ALDM testing. ALDM data previously published in Goujon and Fagot (Behavioural Brain Research, 247, 101-109, 2013) were re-analysed for that purpose. Results indicate that supplanting events within the workstations lead to a transient improvement of cognitive performance for the baboon supplanting its partners and that this improvement depends on the difference in rank between the two baboons. This study therefore opens new perspectives for cognitive studies conducted in a social context.
Collapse
|
5
|
Dimensional bias and adaptive adjustments in inhibitory control of monkeys. Anim Cogn 2021; 24:815-828. [PMID: 33554317 DOI: 10.1007/s10071-021-01483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022]
Abstract
Humans and macaque monkeys, performing a Wisconsin Card Sorting Test (WCST), show a significant behavioral bias to a particular sensory dimension (e.g. color or shape); however, lesions in prefrontal cortical regions do not abolish the dimensional biases in monkeys and, therefore, it has been proposed that these biases emerge in earlier stages of visual information processing. It remains unclear whether such dimensional biases are unique to the WCST, in which attention-shifting between dimensions are required, or affect other aspects of executive functions such as 'response inhibition' and 'error-induced behavioral adjustments'. To address this question, we trained six monkeys (Macaca mulatta) to perform a stop-signal task in which they had to inhibit their response when an instruction for inhibition was given by changing the color or shape of a visual stimulus. Stop Signal Reaction Time (SSRT) is an index of inhibitory processes. In all monkeys, SSRT was significantly shorter, and the probability of a successful inhibition was significantly higher, when a change in the shape dimension acted as the stop-cue. Humans show a response slowing following a failure in response inhibition and also adapt a proactive slowing after facing demands for response inhibition. We found such adaptive behavioral adjustments, with the same pattern, in monkeys' behavior; however, the dimensional bias did not modulate them. Our findings, showing dimensional bias in monkey, with the same pattern, in two different executive control tasks support the hypothesis that the bias to shape dimension emerges in early stages of visual information processing.
Collapse
|
6
|
Griffin KR, Beardsworth CE, Laker PR, van Horik JO, Whiteside MA, Madden JR. The inhibitory control of pheasants (Phasianus colchicus) weakens when previously learned environmental information becomes unpredictable. Anim Cogn 2019; 23:189-202. [PMID: 31845017 PMCID: PMC6981107 DOI: 10.1007/s10071-019-01328-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Inhibitory control (IC) is the ability to intentionally restrain initial, ineffective responses to a stimulus and instead exhibit an alternative behaviour that is not pre-potent but which effectively attains a reward. Individuals (both humans and non-human animals) differ in their IC, perhaps as a result of the different environmental conditions they have experienced. We experimentally manipulated environmental predictability, specifically how reliable information linking a cue to a reward was, over a very short time period and tested how this affected an individual’s IC. We gave 119 pheasants (Phasianus colchicus) the opportunity to learn to associate a visual cue with a food reward in a binary choice task. We then perturbed this association for half the birds, whereas control birds continued to be rewarded when making the correct choice. We immediately measured all birds’ on a detour IC task and again 3 days later. Perturbed birds immediately performed worse than control birds, making more unrewarded pecks at the apparatus than control birds, although this effect was less for individuals that had more accurately learned the initial association. The effect of the perturbation was not seen 3 days later, suggesting that individual IC performance is highly plastic and susceptible to recent changes in environmental predictability. Specifically, individuals may perform poorly in activities requiring IC immediately after information in their environment is perturbed, with the perturbation inducing emotional arousal. Our finding that recent environmental changes can affect IC performance, depending on how well an animal has learned about that environment, means that interpreting individual differences in IC must account for both prior experience and relevant individual learning abilities.
Collapse
Affiliation(s)
- Kandace R Griffin
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Philippa R Laker
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG, UK
| | - Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter, EX4 4QG, UK.
| |
Collapse
|
7
|
Brandão ML, Fernandes AMTDA, Gonçalves-de-Freitas E. Male and female cichlid fish show cognitive inhibitory control ability. Sci Rep 2019; 9:15795. [PMID: 31673023 PMCID: PMC6823373 DOI: 10.1038/s41598-019-52384-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibitory control is a way to infer cognitive flexibility in animals by inhibiting a behavioral propensity to obtain a reward. Here we tested whether there are differences in inhibitory control between females and males of the fish Nile tilapia owing to their distinct reproductive roles. Individuals were tested under a detour-reaching paradigm, consisting of training fish to feed behind an opaque barrier and, thereafter, testing them with a transparent one. Fish is expected to avoid trying to cross through the transparent barrier to achieve food (reward), thus showing inhibitory control by recovering the learned detour with the opaque apparatus. Both males and females learned to detour the transparent barrier with similar scores of correct responses, whereas females reached the food faster. This result is probably associated to their different sex roles in reproduction: females care for the eggs and fry inside their mouth (thus requiring a high inhibitory control not to swallow them), whereas males have to stay inside the territory defending it against intruder males, which also demands some inhibitory ability not to leave the spawning site and take the risk of losing it. Furthermore, this evidence of cognitive flexibility can enable social fish to deal with unpredictable interactions.
Collapse
Affiliation(s)
- Manuela Lombardi Brandão
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Ana Marina Tabah de Almeida Fernandes
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Eliane Gonçalves-de-Freitas
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil.
- Centro de Aquicultura da UNESP, São José do Rio Preto, SP, Brasil.
| |
Collapse
|
8
|
Gervais NJ, Mong JA, Lacreuse A. Ovarian hormones, sleep and cognition across the adult female lifespan: An integrated perspective. Front Neuroendocrinol 2017; 47:134-153. [PMID: 28803147 PMCID: PMC7597864 DOI: 10.1016/j.yfrne.2017.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022]
Abstract
Loss of ovarian function in women is associated with sleep disturbances and cognitive decline, which suggest a key role for estrogens and/or progestins in modulating these symptoms. The effects of ovarian hormones on sleep and cognitive processes have been studied in separate research fields that seldom intersect. However, sleep has a considerable impact on cognitive function. Given the tight connections between sleep and cognition, ovarian hormones may influence selective aspects of cognition indirectly, via the modulation of sleep. In support of this hypothesis, a growing body of evidence indicates that the development of sleep disorders following menopause contributes to accelerated cognitive decline and dementia in older women. This paper draws from both the animal and human literature to present an integrated view of the effects of ovarian hormones on sleep and cognition across the adult female lifespan.
Collapse
Affiliation(s)
- Nicole J Gervais
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, United States
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, 135 Hicks Way, Amherst, MA 01003, United States
| |
Collapse
|
9
|
A novel continuous inhibitory-control task: variation in individual performance by young pheasants (Phasianus colchicus). Anim Cogn 2017; 20:1035-1047. [PMID: 28795236 PMCID: PMC5640750 DOI: 10.1007/s10071-017-1120-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
Abstract
Inhibitory control enables subjects to quickly react to unexpectedly changing external demands. We assessed the ability of young (8 weeks old) pheasants Phasianus colchicus to exert inhibitory control in a novel response-inhibition task that required subjects to adjust their movement in space in pursuit of a reward across changing target locations. The difference in latencies between trials in which the target location did and did not change, the distance travelled towards the initially indicated location after a change occurred, and the change-signal reaction time provided a consistent measure that could be indicative of a pheasant’s inhibitory control. Between individuals, there was a great variability in these measures; these differences were not correlated with motivation either to access the reward or participate in the test. However, individuals that were slower to reach rewards in trials when the target did not change exhibited evidence of stronger inhibitory control, as did males and small individuals. This novel test paradigm offers a potential assay of inhibitory control that utilises a natural feature of an animal’s behavioural repertoire, likely common to a wide range of species, specifically their ability to rapidly alter their trajectory when reward locations switch.
Collapse
|