1
|
Blanchard DC, Canteras NS. Uncertainty and anxiety: Evolution and neurobiology. Neurosci Biobehav Rev 2024; 162:105732. [PMID: 38797459 DOI: 10.1016/j.neubiorev.2024.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Anxiety is a complex phenomenon: Its eliciting stimuli and circumstances, component behaviors, and functional consequences are only slowly coming to be understood. Here, we examine defense systems from field studies; laboratory studies focusing on experimental analyses of behavior; and, the fear conditioning literature, with a focus on the role of uncertainty in promoting an anxiety pattern that involves high rates of stimulus generalization and resistance to extinction. Respectively, these different areas provide information on evolved elicitors of defense (field studies); outline a defense system focused on obtaining information about uncertain threat (ethoexperimental analyses); and, provide a simple, well-researched, easily measured paradigm for analysis of nonassociative stress-enhanced fear conditioning (the SEFL). Results suggest that all of these-each of which is responsive to uncertainty-play multiple and interactive roles in anxiety. Brain system findings for some relevant models are reviewed, with suggestions that further analyses of current models may be capable of providing a great deal of additional information about these complex interactions and their underlying biology.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Bioscience Research Institute, University of Hawaii, Manoa, USA; Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
2
|
Viellard JMA, Melleu FF, Tamais AM, de Almeida AP, Zerbini C, Ikebara JM, Domingues K, de Lima MAX, Oliveira FA, Motta SC, Canteras NS. A subiculum-hypothalamic pathway functions in dynamic threat detection and memory updating. Curr Biol 2024; 34:2657-2671.e7. [PMID: 38810639 DOI: 10.1016/j.cub.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Animals need to detect threats, initiate defensive responses, and, in parallel, remember where the threat occurred to avoid the possibility of re-encountering it. By probing animals capable of detecting and avoiding a shock-related threatening location, we were able to reveal a septo-hippocampal-hypothalamic circuit that is also engaged in ethological threats, including predatory and social threats. Photometry analysis focusing on the dorsal premammillary nucleus (PMd), a critical interface of this circuit, showed that in freely tested animals, the nucleus appears ideal to work as a threat detector to sense dynamic changes under threatening conditions as the animal approaches and avoids the threatening source. We also found that PMd chemogenetic silencing impaired defensive responses by causing a failure of threat detection rather than a direct influence on any behavioral responses and, at the same time, updated fear memory to a low-threat condition. Optogenetic silencing of the main PMd targets, namely the periaqueductal gray and anterior medial thalamus, showed that the projection to the periaqueductal gray influences both defensive responses and, to a lesser degree, contextual memory, whereas the projection to the anterior medial thalamus has a stronger influence on memory processes. Our results are important for understanding how animals deal with the threat imminence continuum, revealing a circuit that is engaged in threat detection and that, at the same time, serves to update the memory process to accommodate changes under threatening conditions.
Collapse
Affiliation(s)
- Juliette M A Viellard
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Bordeaux, France
| | - Fernando F Melleu
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia M Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alisson P de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliane M Ikebara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Karolina Domingues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Miguel A X de Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC)-Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Simone C Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
3
|
Reis FMCV, Mobbs D, Canteras NS, Adhikari A. Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology 2023; 228:109458. [PMID: 36773777 DOI: 10.1016/j.neuropharm.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The midbrain periaqueductal gray (PAG) has been recognized for decades as having a central role in the control of a wide variety of defensive responses. Initial discoveries relied primarily on lesions, electrical stimulation and pharmacology. Recent developments in neural activity imaging and in methods to control activity with anatomical and genetic specificity have revealed additional streams of data informing our understanding of PAG function. Here, we discuss both classic and modern studies reporting on how PAG-centered circuits influence innate as well as learned defensive actions in rodents and humans. Though early discoveries emphasized the PAG's role in rapid induction of innate defensive actions, emerging new data indicate a prominent role for the PAG in more complex processes, including representing behavioral states and influencing fear learning and memory. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, CA, United States.
| | - Dean Mobbs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, CA, United States.
| |
Collapse
|
4
|
de Almeida AP, Baldo MVC, Motta SC. Dynamics in brain activation and behaviour in acute and repeated social defensive behaviour. Proc Biol Sci 2022; 289:20220799. [PMID: 35703050 PMCID: PMC9198769 DOI: 10.1098/rspb.2022.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In nature, confrontations between conspecifics are recurrent and related, in general, due to the lack of resources such as food and territory. Adequate defence against a conspecific aggressor is essential for the individual's survival and the group integrity. However, repeated social defeat is a significant stressor promoting several behavioural changes, including social defence per se. What would be the neural basis of these behavioural changes? To build new hypotheses about this, we here investigate the effects of repeated social stress on the neural circuitry underlying motivated social defence behaviour in male mice. We observed that animals re-exposed to the aggressor three times spent more time in passive defence during the last exposure than in the first one. These animals also show less activation of the amygdalar and hypothalamic nuclei related to the processing of conspecific cues. In turn, we found no changes in the activation of the hypothalamic dorsal pre-mammillary nucleus (PMD) that is essential for passive defence. Therefore, our data suggest that the balance between the activity of circuits related to conspecific processing and the PMD determines the pattern of social defence behaviour. Changes in this balance may be the basis of the adaptations in social defence after repeated social defeat.
Collapse
Affiliation(s)
- Alisson P. de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Marcus V. C. Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Simone C. Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| |
Collapse
|
5
|
Wang W, Schuette PJ, La-Vu MQ, Torossian A, Tobias BC, Ceko M, Kragel PA, Reis FMCV, Ji S, Sehgal M, Maesta-Pereira S, Chakerian M, Silva AJ, Canteras NS, Wager T, Kao JC, Adhikari A. Dorsal premammillary projection to periaqueductal gray controls escape vigor from innate and conditioned threats. eLife 2021; 10:e69178. [PMID: 34468312 PMCID: PMC8457830 DOI: 10.7554/elife.69178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/28/2021] [Indexed: 02/04/2023] Open
Abstract
Escape from threats has paramount importance for survival. However, it is unknown if a single circuit controls escape vigor from innate and conditioned threats. Cholecystokinin (cck)-expressing cells in the hypothalamic dorsal premammillary nucleus (PMd) are necessary for initiating escape from innate threats via a projection to the dorsolateral periaqueductal gray (dlPAG). We now show that in mice PMd-cck cells are activated during escape, but not other defensive behaviors. PMd-cck ensemble activity can also predict future escape. Furthermore, PMd inhibition decreases escape speed from both innate and conditioned threats. Inhibition of the PMd-cck projection to the dlPAG also decreased escape speed. Intriguingly, PMd-cck and dlPAG activity in mice showed higher mutual information during exposure to innate and conditioned threats. In parallel, human functional magnetic resonance imaging data show that a posterior hypothalamic-to-dlPAG pathway increased activity during exposure to aversive images, indicating that a similar pathway may possibly have a related role in humans. Our data identify the PMd-dlPAG circuit as a central node, controlling escape vigor elicited by both innate and conditioned threats.
Collapse
Affiliation(s)
- Weisheng Wang
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Peter J Schuette
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Mimi Q La-Vu
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Anita Torossian
- University of California, Los AngelesLos AngelesUnited States
| | - Brooke C Tobias
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Marta Ceko
- Institute of Cognitive Science, University of ColoradoBoulderUnited States
| | | | - Fernando MCV Reis
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Shiyu Ji
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Megha Sehgal
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
| | | | - Meghmik Chakerian
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Alcino J Silva
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurobiology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los AngelesLos AngelesUnited States
| | | | - Tor Wager
- University of ColoradoBoulderUnited States
| | - Jonathan C Kao
- Electrical and Computer Engineering, University of California, Los AngelesLos AngelesUnited States
| | - Avishek Adhikari
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
6
|
Mendes-Gomes J, Motta SC, Passoni Bindi R, de Oliveira AR, Ullah F, Baldo MVC, Coimbra NC, Canteras NS, Blanchard DC. Defensive behaviors and brain regional activation changes in rats confronting a snake. Behav Brain Res 2020; 381:112469. [PMID: 31917239 DOI: 10.1016/j.bbr.2020.112469] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 11/19/2022]
Abstract
In the present study, we examined behavioral and brain regional activation changes of rats). To a nonmammalian predator, a wild rattler snake (Crotalus durissus terrificus). Accordingly, during snake threat, rat subjects showed a striking and highly significant behavioral response of freezing, stretch attend, and, especially, spatial avoidance of this threat. The brain regional activation patterns for these rats were in broad outline similar to those of rats encountering other predator threats, showing Fos activation of sites in the amygdala, hypothalamus, and periaqueductal gray matter. In the amygdala, only the lateral nucleus showed significant activation, although the medial nucleus, highly responsive to olfaction, also showed higher activation. Importantly, the hypothalamus, in particular, was somewhat different, with significant Fos increases in the anterior and central parts of the ventromedial hypothalamic nucleus (VMH), in contrast to patterns of enhanced Fos expression in the dorsomedial VMH to cat predators, and in the ventrolateral VMH to an attacking conspecific. In addition, the juxtodorsalmedial region of the lateral hypothalamus showed enhanced Fos activation, where inputs from the septo-hippocampal system may suggest the potential involvement of hippocampal boundary cells in the very strong spatial avoidance of the snake and the area it occupied. Notably, these two hypothalamic paths appear to merge into the dorsomedial part of the dorsal premammillary nucleus and dorsomedial and lateral parts of the periaqueductal gray, all of which present significant increases in Fos expression and are likely to be critical for the expression of defensive behaviors in responses to the snake threat.
Collapse
Affiliation(s)
- Joyce Mendes-Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), 14049-900, Brazil
| | - Simone Cristina Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ricardo Passoni Bindi
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Farhad Ullah
- Department of Zoology, Islamia College University, Grand Trunk Rd, Rahat Abad, Peshawar 25120, Pakistan
| | - Marcus Vinicius C Baldo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil; Ophidiarium LNN-FMRP-USP/INeC, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Ribeirão Preto (SP), 14049-900, Brazil.
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - D Caroline Blanchard
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Pacific Biosciences Research Centre, University of Hawaii at Manoa, Honolulu, HI 96822, United States of America
| |
Collapse
|
7
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
8
|
|
9
|
|
10
|
Arakawa H, Iguchi Y. Ethological and multi-behavioral analysis of learning and memory performance in laboratory rodent models. Neurosci Res 2018; 135:1-12. [DOI: 10.1016/j.neures.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/30/2018] [Accepted: 02/08/2018] [Indexed: 12/16/2022]
|