1
|
Ronquillo J, Nguyen MT, Rothi LY, Bui‐Tu T, Yang J, Halladay LR. Nature and nurture: Comparing mouse behavior in classic versus revised anxiety-like and social behavioral assays in genetically or environmentally defined groups. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12869. [PMID: 37872655 PMCID: PMC10733577 DOI: 10.1111/gbb.12869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
Widely used rodent anxiety assays like the elevated plus maze (EPM) and the open field test (OFT) are conflated with rodents' natural preference for dark over light environments or protected over open spaces. The EPM and OFT have been used for decades but are often criticized by behavioral scientists. Years ago, two revised anxiety assays were designed to improve upon the "classic" tests by excluding the possibility to avoid or escape aversion. The 3-D radial arm maze (3DR) and the 3-D open field test (3Doft) utilize continual motivational conflict to better model anxiety; each consist of an open space connected to ambiguous paths toward uncertain escape. Despite their utility, the revised assays have not caught on. This could be because no study yet has directly compared classic and revised assays in the same animals. To remedy this, we contrasted behavior from a battery of assays (EPM, OFT, 3DR, 3Doft and a sociability test) in mice defined genetically by isogenic strain, or environmentally by postnatal experience. One major motivation for this work is to inform future studies by offering a transparent look at individual outcomes on these assays, as there is no one-size-fits-all test to assess rodent anxiety-like behavior. Findings suggest that classic assays may sufficiently characterize differences across genetically defined groups, but the revised 3DR may be advantageous for investigating more nuanced behavioral differences such as those stemming from environmental factors. Finally, exposure to multiple assays significantly affected sociability, highlighting concerns for designing and interpreting batteries of rodent behavioral tests.
Collapse
Affiliation(s)
- Janet Ronquillo
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Michael T. Nguyen
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Linnea Y. Rothi
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Trung‐Dan Bui‐Tu
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | - Jocelyn Yang
- Department of PsychologySanta Clara UniversitySanta ClaraCaliforniaUSA
| | | |
Collapse
|
2
|
Ronquillo J, Nguyen MT, Rothi L, Bui-Tu TD, Yang J, Halladay LR. Nature and nurture: comparing mouse behavior in classic versus revised anxiety-like and social behavioral assays in genetically or environmentally defined groups. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545212. [PMID: 37398211 PMCID: PMC10312802 DOI: 10.1101/2023.06.16.545212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Widely used rodent anxiety assays like the elevated plus maze (EPM) and the open field test (OFT) are often conflated with rodents' natural preference for dark over light environments or protected over open spaces. The EPM and OFT have been used for many decades, yet have also been criticized by generations of behavioral scientists. Several years ago, two revised anxiety assays were designed to improve upon the "classic" tests by excluding the possibility to avoid or escape aversive areas of each maze. The 3-D radial arm maze (3DR) and the 3-D open field test (3Doft) each consist of an open space connected to ambiguous paths toward uncertain escape. This introduces continual motivational conflict, thereby increasing external validity as an anxiety model. But despite this improvement, the revised assays have not caught on. One issue may be that studies to date have not directly compared classic and revised assays in the same animals. To remedy this, we contrasted behavior in a battery of assays (EPM, OFT, 3DR, 3Doft, and a sociability test) in mice defined either genetically by isogenic strain, or environmentally by postnatal experience. Findings indicate that the optimal assay to assess anxiety-like behavior may depend upon grouping variable (e.g. genetic versus environment). We argue that the 3DR may be the most ecologically valid of the anxiety assays tested, while the OFT and 3Doft provided the least useful information. Finally, exposure to multiple assays significantly affected sociability measures, raising concerns for designing and interpreting batteries of behavioral tests in mice.
Collapse
Affiliation(s)
- Janet Ronquillo
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Michael T. Nguyen
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Linnea Rothi
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Trung-Dan Bui-Tu
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Jocelyn Yang
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| |
Collapse
|
3
|
Xiong LL, Chen J, Du RL, Liu J, Chen YJ, Hawwas MA, Zhou XF, Wang TH, Yang SJ, Bai X. Brain-derived neurotrophic factor and its related enzymes and receptors play important roles after hypoxic-ischemic brain damage. Neural Regen Res 2021; 16:1453-1459. [PMID: 33433458 PMCID: PMC8323702 DOI: 10.4103/1673-5374.303033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates many neurological functions and plays a vital role during the recovery from central nervous system injuries. However, the changes in BDNF expression and associated factors following hypoxia-ischemia induced neonatal brain damage, and the significance of these changes are not fully understood. In the present study, a rat model of hypoxic-ischemic brain damage was established through the occlusion of the right common carotid artery, followed by 2 hours in a hypoxic-ischemic environment. Rats with hypoxic-ischemic brain damage presented deficits in both sensory and motor functions, and obvious pathological changes could be detected in brain tissues. The mRNA expression levels of BDNF and its processing enzymes and receptors (Furin, matrix metallopeptidase 9, tissue-type plasminogen activator, tyrosine Kinase receptor B, plasminogen activator inhibitor-1, and Sortilin) were upregulated in the ipsilateral hippocampus and cerebral cortex 6 hours after injury; however, the expression levels of these mRNAs were found to be downregulated in the contralateral hippocampus and cerebral cortex. These findings suggest that BDNF and its processing enzymes and receptors may play important roles in the pathogenesis and recovery from neonatal hypoxic-ischemic brain damage. This study was approved by the Animal Ethics Committee of the University of South Australia (approval No. U12-18) on July 30, 2018.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Jie Chen
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ruo-Lan Du
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jia Liu
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yan-Jun Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mohammed Al Hawwas
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- Cinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Ting-Hua Wang
- Animal Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Department of Cardiovascular Disease, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|