1
|
Flôr AFL, Duarte-Maia S, Fernandes-Costa F, Pessoa de Souza RM, Braga VDA, Amaral SL, Mascarenhas SR, Brito-Alves JL, Colombari DSA, Cruz JC. Chronic cannabidiol treatment induces cardiovascular improvement in renovascular hypertensive rats. J Hypertens 2025; 43:98-108. [PMID: 39351852 DOI: 10.1097/hjh.0000000000003865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Cannabidiol (CBD) is increasingly studied for its therapeutic potential in neurodegenerative diseases. Previous research on acute CBD administration has demonstrated cardiovascular benefits in hypertensive rats, including reduced mean blood pressure and oxidative stress. AIM To investigate the long-term cardiovascular effects of chronic CBD treatment in renovascular hypertension induced by the 2-kidney-1-clip (2K1C) model. METHODS Male Wistar rats (180-200 g, 8 weeks old) underwent 2K1C or SHAM surgery. Six weeks later, rats received chronic CBD treatment (20 mg/kg, twice daily for 14 days). A combination of ex vivo, in vitro, and in vivo methods was used to assess CBD's cardiovascular effects in 2K1C hypertensive rats. RESULTS Chronic CBD treatment significantly reduced blood pressure and the depressor response to hexamethonium (a ganglionic blocker). It also normalized variability in low-frequency (LF) power and LF/high-frequency (HF) ratio. CBD enhanced vasodilation and reduced vasoconstriction in the mesenteric artery of 2K1C rats, accompanied by decreased expression of aortic reactive oxygen species (ROS). CONCLUSION Our findings suggest that chronic CBD treatment exerts antihypertensive effects by improving baroreflex sensitivity and vascular function while decreasing arterial ROS levels and sympathetic nerve activity. These results underscore CBD's potential therapeutic role in managing cardiovascular complications associated with renovascular hypertension.
Collapse
Affiliation(s)
| | - Samuel Duarte-Maia
- Biotechnology Center, Federal University of Paraiba, João Pessoa, Brazil
| | - Francineide Fernandes-Costa
- Graduate Program in Bioactive Synthetic and Natural Products, Center for Health Sciences, Federal University of Paraiba, João Pessoa
| | | | | | - Sandra Lia Amaral
- Department of Physical Education, School of Science, São Paulo State University, UNESP, Bauru, SP
| | | | - José Luiz Brito-Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, João Pessoa
| | | | | |
Collapse
|
2
|
Batista LA, Cabral LM, Moreira TS, Takakura AC. Inhibition of anandamide hydrolysis does not rescue respiratory abnormalities observed in an animal model of Parkinson's disease. Exp Physiol 2021; 107:161-174. [PMID: 34907627 DOI: 10.1113/ep089249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The respiratory frequency to hypercapnia is attenuated in an animal model of Parkinson's disease (PD): what is the therapeutic potential of inhibition of anandamide hydrolysis for this respiratory deficit? What is the main finding and its importance? In an animal model of PD there is an increased variability in resting respiratory frequency and an impaired tachypnoeic response to hypercapnia, which is accompanied by diminished expression of Phox2b immunoreactivity in the retrotrapezoid nucleus (RTN). Inhibition of anandamide hydrolysis also impaired the response to hypercapnia and decreased the number of Phox2b immunoreactive cells in the RTN. This strategy does not reverse the respiratory deficits observed in an animal model of PD. ABSTRACT Parkinson's disease (PD) is characterized by severe classic motor symptoms along with various non-classic symptoms. Among the non-classic symptoms, respiratory dysfunctions are increasingly recognized as contributory factors to complications in PD. The endocannabinoid system has been proposed as a target to treat PD and other neurodegenerative disorders. Since symptom management of PD is mainly focused on the classic motor symptoms, in this work we aimed to test the hypothesis that increasing the actions of the endocannabinoid anandamide by inhibiting its hydrolysis with URB597 reverses the respiratory deficits observed in an animal model of PD. Results show that bilateral injection of 6-hydroxydopamine hydrochloride (6-OHDA) in the dorsal striatum leads to neurodegeneration of the substantia nigra, accompanied by reduced expression of Phox2b in the retrotrapezoid nucleus (RTN), an increase in resting respiratory frequency variability and an impaired tachypnoeic response to hypercapnia. URB597 treatment in control animals was associated with an impaired tachypnoeic response to hypercapnia and a reduced expression of Phox2b in the RTN, whereas treatment of 6-OHDA-lesioned animals with URB597 was not able to reverse the deficits observed. These results suggest that targeting anandamide may not be a suitable strategy to treat PD since this treatment mimics the respiratory deficits observed in the 6-OHDA model of PD.
Collapse
Affiliation(s)
- Luara A Batista
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, Brazil
| |
Collapse
|
3
|
Batista LA, Lopes JB, Brianis RC, Haibara AS, Moreira FA. Intravenous doxapram administration as a potential model of panic attacks in rats. Behav Pharmacol 2021; 32:182-193. [PMID: 33136614 DOI: 10.1097/fbp.0000000000000594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Panic disorder can be categorized into the nonrespiratory or the respiratory subtypes, the latter comprising dyspnea, shortness of breath, chest pain, feelings of suffocation, and paresthesias. Doxapram is an analeptic capable of inducing panic attacks with respiratory symptoms in individuals diagnosed with the disorder; however, its neuroanatomical targets and its effects on experimental animals remain uncharacterized. One of the brain regions proposed to trigger panic attacks is the midbrain periaqueductal gray (PAG). Therefore, in this study, we evaluated the effects of doxapram in Fos (c-Fos) protein expression in the PAG and characterized its cardiorespiratory and behavioral effects on the elevated T maze and in the conditioned place aversion (CPA) paradigms. Doxapram increased Fos expression in different columns of the PAG, increased respiratory frequency, decreased heart rate, and increased arterial pressure when injected via intravenous route. Alprazolam, a panicolytic benzodiazepine, injected via intraperitoneal route, decreased respiratory frequency, whereas URB597, an anandamide hydrolysis inhibitor injected via intraperitoneal route, was ineffective. Doxapram injected via intraperitoneal route induced an anxiogenic-like effect in the elevated T-maze model; however, it failed to induce CPA. This study suggests that the cardiorespiratory and behavioral effects of doxapram in rodents serve as an experimental model that can provide insights into the neurobiology of panic attacks.
Collapse
Affiliation(s)
| | | | | | - Andrea S Haibara
- Departament of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
4
|
Peiró AM, García-Gutiérrez MS, Planelles B, Femenía T, Mingote C, Jiménez-Treviño L, Martínez-Barrondo S, García-Portilla MP, Saiz PA, Bobes J, Manzanares J. Association of cannabinoid receptor genes ( CNR1 and CNR2) polymorphisms and panic disorder. ANXIETY STRESS AND COPING 2020; 33:256-265. [PMID: 32114795 DOI: 10.1080/10615806.2020.1732358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and objectives: Panic disorder (PD) is an anxiety disorder characterized by recurrent and unexpected panic attacks along with sudden onset of apprehension, fear or terror. The endocannabinoid system (ECS) has a role in stress recovery, regulating anxiety. The aim of this study was to analyze potential genetic alterations in key ECS targets in patients suffering from panic disorders.Design and methods: We analyzed single nucleotide polymorphisms (SNPs) of the cannabinoid receptors (CNR1; CNR2) and the endocannabinoid hydrolytic enzyme fatty acid amide hydrolase (FAAH) genes in 164 Spanish PD patients and 320 matched controls.Results: No significant differences were observed in the SNPs of the CNR2 and FAAH genes tested. However, when analyzing genotype-by-sex interaction at A592G (rs2501431) and C315T (rs2501432) in the CNR2 gene, the presence of the G-allele in males was associated with a protective haplotype. Genotyping analysis revealed that variants in CNR1 confer vulnerability to PD, with a significantly increased risk associated with the G-allele (rs12720071) and C-allele (rs806368). This finding was consistent when analyzing genotype-by-sex interaction, where females presented a greater PD risk.Conclusions: Polymorphisms at the CNR1 gene may be a risk factor for PD contributing to sex-specific dysfunction in females.
Collapse
Affiliation(s)
- Ana M Peiró
- Clinical Pharmacology Unit and Neuropharmacology on Pain and Functional Diversity (NED), Department of Health of Alicante - General Hospital, ISABIAL, Alicante, Spain
| | - María S García-Gutiérrez
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain.,Cooperative Networking in Health Research (RETICS-addictive disorders), Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Teresa Femenía
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain
| | | | - Luis Jiménez-Treviño
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Sara Martínez-Barrondo
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - M Paz García-Portilla
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Pilar A Saiz
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Julio Bobes
- Psychiatry Department, Medicine Faculty, University of Oviedo; Biomedical Research Centre in Mental Health Network (CIBERSAM); University Institute of Neuroscience of Asturias, INEUROPA; Health Service of Asturias, SESPA, Asturias, Spain
| | - Jorge Manzanares
- Neuroscience Institute, Alicante, Miguel Hernández University, San Juan de Alicante, Spain.,Cooperative Networking in Health Research (RETICS-addictive disorders), Health Institute Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
5
|
Ferreira‐Junior NC, Lagatta DC, Kuntze LB, Fujiwara EA, Firmino EMS, Borges‐Assis AB, Resstel LBM, Sampaio KN. Dorsal hippocampus cholinergic and nitrergic neurotransmission modulates the cardiac baroreflex function in rats. Eur J Neurosci 2020; 51:991-1010. [DOI: 10.1111/ejn.14599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/01/2022]
Affiliation(s)
| | - Davi Campos Lagatta
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Luciana Bärg Kuntze
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Eduardo Akira Fujiwara
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| | - Egidi Mayara Silva Firmino
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | - Anna Bárbara Borges‐Assis
- Department of Pharmacology School of Medicine of Ribeirao Preto University of Sao Paulo Ribeirao Preto Brazil
| | | | - Karla Nívea Sampaio
- Department of Pharmaceutical Sciences Federal University of Espírito Santo Vitória Brazil
| |
Collapse
|
6
|
The role of acid-sensitive ion channels in panic disorder: a systematic review of animal studies and meta-analysis of human studies. Transl Psychiatry 2018; 8:185. [PMID: 30194289 PMCID: PMC6128878 DOI: 10.1038/s41398-018-0238-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 11/08/2022] Open
Abstract
Acid-sensitive ion channels, such as amiloride-sensitive cation channel (ACCN), transient receptor potential vanilloid-1 (TRPV1), and T-cell death-associated gene 8 (TDAG8) are highly related to the expression of fear and are expressed in several regions of the brain. These molecules can detect acidosis and maintain brain homeostasis. An important role of pH homeostasis has been suggested in the physiology of panic disorder (PD), with acidosis as an interoceptive trigger for panic attacks. To examine the effect of acid-sensitive channels on PD symptoms, we conducted a systematic review and meta-analysis of these chemosensors in rodents and humans. Following PRISMA guidelines, we systematically searched the Web of Science, Medline/Pubmed, Scopus, Science Direct, and SciELO databases. The review included original research in PD patients and animal models of PD that investigated acid-sensitive channels and PD symptoms. Studies without a control group, studies involving patients with a comorbid psychiatric diagnosis, and in vitro studies were excluded. Eleven articles met the inclusion criteria for the systematic review. The majority of the studies showed an association between panic symptoms and acid-sensitive channels. PD patients appear to display polymorphisms in the ACCN gene and elevated levels of TDAG8 mRNA. The results showed a decrease in panic-like symptoms after acid channel blockade in animal models. Despite the relatively limited data on this topic in the literature, our review identified evidence linking acid-sensitive channels to PD in humans and preclinical models. Future research should explore possible underlying mechanisms of this association, attempt to replicate the existing findings in larger populations, and develop new therapeutic strategies based on these biological features.
Collapse
|
7
|
|