1
|
Patel H. The role of the lateral septum in neuropsychiatric disease. J Neurosci Res 2022; 100:1422-1437. [PMID: 35443088 DOI: 10.1002/jnr.25052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
The lateral septum (LS) is a structure in the midline of the brain that is interconnected with areas associated with stress and feeding. This review highlights the role of the LS in anxiety, depression, and eating disorders and their comorbidity. There is a prevailing view that the LS is anxiolytic. This review finds that the LS is both anxiolytic and anxiogenic. Furthermore, the LS can promote and inhibit feeding. Given these shared roles, the LS represents a common site for the comorbidity of neuropsychiatric disorders, and therefore a potential pharmacological target. This is crucial since currently available treatments are not always effective. Corticotrophin-releasing factor 2 antagonists are potential drugs for the treatment of anxiety and anorexia and require further research. Furthermore, other drugs currently in trials for binge eating, such as alpha-adrenergic agonists, may in fact promote food intake. It is hoped that the advancements in chemo- and optogenetic techniques will allow future studies to profile the specific neural connections of the LS and their function. This information could facilitate our understanding of the underlying mechanisms, and therefore pharmacological targets, of these psychiatric conditions.
Collapse
|
2
|
Yang B, Sanches-Padilla J, Kondapalli J, Morison SL, Delpire E, Awatramani R, Surmeier DJ. Locus coeruleus anchors a trisynaptic circuit controlling fear-induced suppression of feeding. Neuron 2021; 109:823-838.e6. [PMID: 33476548 PMCID: PMC9272546 DOI: 10.1016/j.neuron.2020.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
The circuit mechanisms underlying fear-induced suppression of feeding are poorly understood. To help fill this gap, mice were fear conditioned, and the resulting changes in synaptic connectivity among the locus coeruleus (LC), the parabrachial nucleus (PBN), and the central nucleus of amygdala (CeA)-all of which are implicated in fear and feeding-were studied. LC neurons co-released noradrenaline and glutamate to excite PBN neurons and suppress feeding. LC neurons also suppressed inhibitory input to PBN neurons by inducing heterosynaptic, endocannabinoid-dependent, long-term depression of CeA synapses. Blocking or knocking down endocannabinoid receptors in CeA neurons prevented fear-induced depression of CeA synaptic transmission and fear-induced suppression of feeding. Altogether, these studies demonstrate that LC neurons play a pivotal role in modulating the circuitry that underlies fear-induced suppression of feeding, pointing to new ways of alleviating stress-induced eating disorders.
Collapse
Affiliation(s)
- Ben Yang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Javier Sanches-Padilla
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sage L Morison
- Department of Neurology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
3
|
Burman B, Pesci G, Zamarin D. Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12123552. [PMID: 33260685 PMCID: PMC7761210 DOI: 10.3390/cancers12123552] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Preclinical and clinical studies dating back to the 1950s have demonstrated that Newcastle disease virus (NDV) has oncolytic properties and can potently stimulate antitumor immune responses. NDV selectively infects, replicates within, and lyses cancer cells by exploiting defective antiviral defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and induction of immune checkpoints. In animal models, intratumoral injection of NDV results in T cell infiltration of both local and distant non-injected tumors, demonstrating the potential of NDV to activate systemic adaptive antitumor immunity. The combination of intratumoral NDV with systemic immune checkpoint blockade leads to regression of both injected and distant tumors, an effect further potentiated by introduction of immunomodulatory transgenes into the viral genome. Clinical trials with naturally occurring NDV administered intravenously demonstrated durable responses across numerous cancer types. Based on these studies, further exploration of NDV is warranted, and clinical studies using recombinant NDV in combination with immune checkpoint blockade have been initiated.
Collapse
Affiliation(s)
- Bharat Burman
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Giulio Pesci
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (B.B.); (G.P.)
- Ludwig Collaborative Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Weill-Cornell Medical College, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
4
|
Flores RA, Steinbach R, Pedroso JAB, Metzger M, Donato J, Paschoalini MA. Injections of the α-2 adrenoceptor agonist clonidine into the dorsal raphe nucleus increases food intake in satiated rats. Neuropharmacology 2020; 182:108397. [PMID: 33188843 DOI: 10.1016/j.neuropharm.2020.108397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/04/2020] [Accepted: 11/07/2020] [Indexed: 10/23/2022]
Abstract
The present study aimed to evaluate the effects of pharmacological manipulation of α-adrenergic agonists in the dorsal raphe nucleus (DR) on food intake in satiated rats. Adult male Wistar rats with chronically implanted cannula in the DR were injected with adrenaline (AD) or noradrenaline (NA) (both at doses of 6, 20 and 60 nmol), or α-1 adrenergic agonist phenylephrine (PHE) or α-2 adrenergic agonist clonidine (CLO) (both at doses of 6 and 20 nmol). The injections were followed by the evaluation of ingestive behaviors. Food and water intake were evaluated for 60 min. Administration of AD and NA at 60 nmol and CLO at 20 nmol increased food intake and decreased latency to start consumption in satiated rats. The ingestive behavior was not significantly affected by PHE treatment in the DR. CLO treatment increased Fos expression in the arcuate nucleus (ARC) and paraventricular nucleus of the hypothalamus (PVN) in rats that were allowed to eat during the experimental recording (AF group). However, when food was not offered during the experiment (WAF group), PVN neurons were not activated, whereas, neuronal activity remained high in the ARC when compared to control group. Noteworthy, ARC POMC neurons expressed Fos in the AF group. However, double-labeled POMC/Fos cells were absent in the ARC of the WAF group, although an increase in Fos expression was observed in non-POMC cells after CLO injections in the WAF group. In conclusion, the data from the present study highlight that the pharmacological activation of DR α-adrenoceptors affects food intake in satiated rats. The feeding response evoked by CLO injections into DR was similar to that induced by NA or AD injections, suggesting that the hyperphagia after NA or AD treatment depends on α-2 adrenoceptors activation. Finally, we have demonstrated that CLO injections into DR impact neuronal activity in the ARC, possibly evoking a homeostatic response toward food intake.
Collapse
Affiliation(s)
- Rafael Appel Flores
- Department of Physiological Sciences, Center of Biological Sciences - CCB, Federal University of Santa Catarina (UFSC), 88040-970, Florianópolis, SC, Brazil.
| | - Renata Steinbach
- Department of Physiological Sciences, Center of Biological Sciences - CCB, Federal University of Santa Catarina (UFSC), 88040-970, Florianópolis, SC, Brazil.
| | - João A B Pedroso
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| | - Martin Metzger
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| | - José Donato
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, SP, Brazil.
| | - Marta Aparecida Paschoalini
- Department of Physiological Sciences, Center of Biological Sciences - CCB, Federal University of Santa Catarina (UFSC), 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
5
|
Nayebzadeh N, Vazir B, Zendehdel M, Asghari A. Central Opioidergic and Adrenergic systems Mediates Food Intake via α1, α2 and β2 Receptors in Neonatal Layer-Type Chicken. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09810-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Reppucci CJ, Gergely CK, Bredewold R, Veenema AH. Involvement of orexin/hypocretin in the expression of social play behaviour in juvenile rats. INTERNATIONAL JOURNAL OF PLAY 2020; 9:108-127. [PMID: 33042634 PMCID: PMC7540609 DOI: 10.1080/21594937.2020.1720132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
Social play is a highly rewarding and motivated behaviour displayed by juveniles of many mammalian species. We hypothesized that the orexin/hypocretin (ORX) system is involved in the expression of juvenile social play behaviour because this system is interconnected with brain regions that comprise the social behaviour and mesocorticolimbic reward networks. We found that exposure to social play increased recruitment of ORX-A neurons in juvenile rats. Furthermore, central administration of ORX-A decreased social play duration, while central blockade of ORX-1 receptors differentially altered social play duration in juvenile rats with low versus high baseline levels of social play (increasing social play in low baseline social play individuals and decreasing social play in high baseline social play individuals). Together, our results provided the first evidence of a role for the ORX system in the modulation of juvenile social play behaviour.
Collapse
Affiliation(s)
- Christina J. Reppucci
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| | | | - Remco Bredewold
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| | - Alexa H. Veenema
- Department of Psychology; Neuroscience Program, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Boston College, Chestnut Hill, MA, USA University
| |
Collapse
|
7
|
Evaluation of food intake and Fos expression in serotonergic neurons of raphe nuclei after intracerebroventricular injection of adrenaline in free-feeding rats. Brain Res 2018; 1678:153-163. [DOI: 10.1016/j.brainres.2017.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 02/05/2023]
|