1
|
Bonauto SM, Patel KA, Honeycutt JA. 22 and 50 kHz rat ultrasonic vocalization playback reveals sex differences in behavior and cFos in brain regions associated with affective processing. Behav Brain Res 2025; 478:115326. [PMID: 39521142 DOI: 10.1016/j.bbr.2024.115326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Adult rats communicate using ultrasonic vocalization (USV) frequencies indicating negative (22 kHz) or positive (50 kHz) affective states. Playback of USVs can serve as an ethologically translational method to study affective processing in response to socially communicated states. However, few studies have examined behavioral and neural effects of USV playback in both male and female rats. Here, adult male and female Sprague-Dawley rats experienced a 20-min open field test (OFT) with either silence, 22 kHz, or 50 kHz recorded USV playback. Center exploration and locomotor activity were analyzed to characterize sex differences in playback effects. Results suggest that females display greater sensitivity to frequency-specific effects of USV playback in this paradigm compared to males. 50 kHz USV playback evoked an immediate increase in center exploration and locomotor activity in females, indicating the appetitive nature of 50 kHz USVs. Initially, 22 kHz playback inhibited center exploration in the OFT compared to 50 kHz. However, females exhibited a switch in behavioral strategy in response to 22 kHz following prolonged playback. Following OFT, neural activity was quantified via the immediate early gene cFos. Results from cFos quantification showed sex- and region-specific differences in neural recruitment in areas of the brain associated with affective processing, including the prefrontal cortex, amygdala, bed nucleus of the stria terminalis, and nucleus accumbens. Taken together, this work provides a normative baseline for understanding how sex influences behavioral and neural responses to USV playback, which can be leveraged to study anxiety, communication, and affect in an ethologically relevant assay.
Collapse
Affiliation(s)
- Sydney M Bonauto
- Research in Affective and Translational Neuroscience Laboratory, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME 04011 USA, USA
| | - Kaya A Patel
- Research in Affective and Translational Neuroscience Laboratory, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME 04011 USA, USA
| | - Jennifer A Honeycutt
- Research in Affective and Translational Neuroscience Laboratory, Department of Psychology and Program in Neuroscience, Bowdoin College, Brunswick, ME 04011 USA, USA.
| |
Collapse
|
2
|
Jia G, Bai S, Lin Y, Wang X, Zhu L, Lyu C, Sun G, An K, Roe AW, Li X, Gao L. Representation of conspecific vocalizations in amygdala of awake marmosets. Natl Sci Rev 2023; 10:nwad194. [PMID: 37818111 PMCID: PMC10561708 DOI: 10.1093/nsr/nwad194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
Human speech and animal vocalizations are important for social communication and animal survival. Neurons in the auditory pathway are responsive to a range of sounds, from elementary sound features to complex acoustic sounds. For social communication, responses to distinct patterns of vocalization are usually highly specific to an individual conspecific call, in some species. This includes the specificity of sound patterns and embedded biological information. We conducted single-unit recordings in the amygdala of awake marmosets and presented calls used in marmoset communication, calls of other species and calls from specific marmoset individuals. We found that some neurons (47/262) in the amygdala distinguished 'Phee' calls from vocalizations of other animals and other types of marmoset vocalizations. Interestingly, a subset of Phee-responsive neurons (22/47) also exhibited selectivity to one out of the three Phees from two different 'caller' marmosets. Our findings suggest that, while it has traditionally been considered the key structure in the limbic system, the amygdala also represents a critical stage of socially relevant auditory perceptual processing.
Collapse
Affiliation(s)
- Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yingxu Lin
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Chenfei Lyu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Guanglong Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Kang An
- College of Information, Mechanical and Electrical Engineering, Shanghai Normal University, Shanghai 201418, China
| | - Anna Wang Roe
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
- MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Bonauto SM, Greuel OM, Honeycutt JA. Playback of rat 22-kHz ultrasonic vocalizations as a translational assay of negative affective states: An analysis of evoked behavior and brain activity. Neurosci Biobehav Rev 2023; 153:105396. [PMID: 37739328 PMCID: PMC10591797 DOI: 10.1016/j.neubiorev.2023.105396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
The subjective nature of human emotions makes them uniquely challenging to investigate in preclinical models. While behavioral assays in rodents aim to evaluate affect (i.e., anxiety, hypervigilance), they often lack ethological validity. Playback of negatively valenced 22-kHz ultrasonic vocalizations (USVs) in rats shows promise as a translational tool to investigate affective processing. Much like how human facial expressions can communicate internal states, rats emit 22-kHz USVs that similarly convey negative affective states to conspecifics indicating possible threat. 22-kHz USV playback elicits avoidance and hypervigilant behaviors, and recruit brain regions comparable to those seen in human brains evoked by viewing fearful faces. Indeed, 22-kHz playback alters neural activity in brain regions associated with negative valence systems (i.e., amygdala, bed nucleus of the stria terminalis, periaqueductal gray) alongside increases in behaviors typically associated with anxiety. Here, we present evidence from the literature that supports leveraging 22-kHz USV playback in rat preclinical models to obtain clinically relevant and translational findings to identify the neural underpinnings of affective processing and neuropathological dysfunction.
Collapse
Affiliation(s)
- Sydney M Bonauto
- Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States
| | - Olivia M Greuel
- Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States
| | - Jennifer A Honeycutt
- Program in Neuroscience, Bowdoin College, Brunswick, ME 04011, United States; Department of Psychology, Bowdoin College, Brunswick, ME 04011, United States.
| |
Collapse
|
4
|
Obray JD, Small CA, Baldwin EK, Jang EY, Lee JG, Yang CH, Yorgason JT, Steffensen SC. Dopamine D2-Subtype Receptors Outside the Blood-Brain Barrier Mediate Enhancement of Mesolimbic Dopamine Release and Conditioned Place Preference by Intravenous Dopamine. Front Cell Neurosci 2022; 16:944243. [PMID: 35903367 PMCID: PMC9314669 DOI: 10.3389/fncel.2022.944243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Dopamine (DA) is a cell-signaling molecule that does not readily cross the blood-brain barrier. Despite this, peripherally administered DA enhances DA levels in the nucleus accumbens and alters DA-related behaviors. This study was designed to investigate whether DA subtype-2 receptors are involved in the enhancement of nucleus accumbens (NAc) DA levels elicited by intravenous DA administration. This was accomplished by using microdialysis in the NAc and extracellular single unit recordings of putative DA neurons in the ventral tegmental area (VTA). Additionally, the reinforcing properties of intravenous DA were investigated using a place conditioning paradigm and the effects of intravenous DA on ultrasonic vocalizations were assessed. Following administration of intravenous dopamine, the firing rate of putative DA neurons in the VTA displayed a biphasic response and DA levels in the nucleus accumbens were enhanced. Pretreatment with domperidone, a peripheral-only DA D2 receptor (D2R) antagonist, reduced intravenous DA mediated increases in VTA DA neuron activity and NAc DA levels. Pretreatment with phentolamine, a peripheral α-adrenergic receptor antagonist, did not alter the effects of IV DA on mesolimbic DA neurotransmission. These results provide evidence for peripheral D2R mediation of the effects of intravenous DA on mesolimbic DA signaling.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Christina A. Small
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Emily K. Baldwin
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Eun Young Jang
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon, South Korea
| | - Jin Gyeom Lee
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Chae Ha Yang
- College of Korean Medicine, Daegu Haany University, Daegu, South Korea
| | - Jordan T. Yorgason
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| | - Scott C. Steffensen
- Department of Psychology and Neuroscience, Brigham Young University, Provo, UT, United States
| |
Collapse
|
5
|
Stressed rats fail to exhibit avoidance reactions to innately aversive social calls. Neuropsychopharmacology 2022; 47:1145-1155. [PMID: 34848856 PMCID: PMC9018727 DOI: 10.1038/s41386-021-01230-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 02/02/2023]
Abstract
Disruptions in amygdalar function, a brain area involved in encoding emotionally salient information, has been implicated in stress-related affective disorders. Earlier animal studies on the behavioral consequences of stress-induced abnormalities in the amygdala focused on learned behaviors using fear conditioning paradigms. If and how stress affects unconditioned, innate fear responses to ethologically natural aversive stimuli remains unexplored. Hence, we subjected rats to aversive ultrasonic vocalization calls emitted on one end of a linear track. Unstressed control rats exhibited a robust avoidance response by spending more time away from the source of the playback calls. Unexpectedly, prior exposure to chronic immobilization stress prevented this avoidance reaction, rather than enhancing it. Further, this stress-induced impairment extended to other innately aversive stimuli, such as white noise and electric shock in an inhibitory avoidance task. However, conditioned fear responses were enhanced by the same stress. Inactivation of the basolateral amygdala (BLA) in control rats prevented this avoidance reaction evoked by the playback. Consistent with this, analysis of the immediate early gene cFos revealed higher activity in the BLA of control, but not stressed rats, after exposure to the playback. Further, in vivo recordings in freely behaving control rats exposed to playback showed enhanced theta activity in the BLA, which also was absent in stressed rats. These findings offer a new framework for studying stress-induced alterations in amygdala-dependent maladaptive responses to more naturally threatening and emotionally relevant social stimuli. The divergent impact of stress on defensive responses--impaired avoidance responses together with increased conditioned fear--also has important implications for models of learned helplessness and depression.
Collapse
|
6
|
Hamed A, Kursa MB. Social deprivation substantially changes multi-structural neurotransmitter signature of social interaction: Glutamate concentration in amygdala and VTA as a key factor in social encounter-induced 50-kHz ultrasonic vocalization. Eur Neuropsychopharmacol 2020; 37:82-99. [PMID: 32651127 DOI: 10.1016/j.euroneuro.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023]
Abstract
Ultrasonic vocalizations are important for coordinating social behavior in rats. Examination of the neurochemical mechanisms that govern social behavior and ultrasonic vocalization emission is crucial for understanding the social impairments that occur in many neuropsychiatric disorders. To elucidate neurochemical changes in the brain structures related to social behavior and their mutual relationships, we conducted three-phase experiment. Neurochemicals were measured in the following behavioral situations: without social encounter, with short social encounter, with long social encounter in isolated and non-isolated rats. The aims of this study were to: (1) extract the most important neurotransmitters and their metabolites that are involved in social encounter-induced emission of 50 kHz calls; (2) to elucidate mutual relationships among the neurochemical changes in the selected, six brain structures, and analyze compound relationships by step analysis; (3) create a model of all-to-all neurotransmitter correlations; (4) find the neurochemical basis of 50-kHz USVs emission during social encounter. Our behavioral and neurochemical analysis indicated that social encounter was a triggering factor of the glutamatergic neurotransmission in the ventral tegmental area (VTA), hippocampus, and amygdala; serotonergic neurotransmission in the NAcc, CPu, and amygdala; the dopaminergic neurotransmission in the caudate putamen (CPu) and hippocampus; GABAergic neurotransmission in the hippocampus and VTA. Social encounter-induced 50-kHz USVs were bound up with changes in glutamate in amygdala and VTA, glycine in the amygdala, VTA, hippocampus, nucleus accumbens and CPu, and dopamine metabolites in VTA and CPu.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Schönfeld LM, Zech MP, Schäble S, Wöhr M, Kalenscher T. Lesions of the rat basolateral amygdala reduce the behavioral response to ultrasonic vocalizations. Behav Brain Res 2019; 378:112274. [PMID: 31589896 DOI: 10.1016/j.bbr.2019.112274] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 01/28/2023]
Abstract
Rats emit vocalizations in the ultrasonic range (ultrasonic vocalizations; USVs), of which 50-kHz USVs could communicate positive affective states and induce approach behavior in conspecifics, whereas 22-kHz USVs might signal negative affective states and potential threats. Listening to 50-kHz USVs can be rewarding, but it is unknown which brain mechanisms are responsible for the assignment of reinforcing value to 50-kHz USVs . The behavioral responses induced by listening to 22-kHz USVs are heterogeneous and need further characterization. The amygdala is a region relevant for social perception, behavior and reward. Here, we tested the hypothesis that the basolateral amygdala (BLA) plays a causal role in motivating behavioral responses to 50-kHz and 22-kHz USVs. Rats with lesions of the BLA or sham lesions were repeatedly exposed to playback of either 50-kHz or 22-kHz USVs in a radial maze. Compared to sham rats, BLA-lesioned rats spent less time in the arms close to the USV speaker during playback of both 50-kHz or 22-kHz USVs. This difference in behavior was not due to impaired motor or general auditory abilities, indicating that BLA lesions selectively reduced the responsiveness to stimuli with social significance. This finding provides further support for the hypothesis that the BLA plays an important role in motivating approach behavior to social reinforcers.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Maurice-Philipp Zech
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sandra Schäble
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Nomoto K, Ikumi M, Otsuka M, Asaba A, Kato M, Koshida N, Mogi K, Kikusui T. Female mice exhibit both sexual and social partner preferences for vocalizing males. Integr Zool 2019; 13:735-744. [PMID: 30019858 DOI: 10.1111/1749-4877.12357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acoustic signals are widely used as courtship signals in the animal kingdom. It has long been known that male mice emit ultrasonic vocalizations (USVs) in the presence of female mice or in response to female secretions. This observation led to the hypothesis that male USVs play a role in courtship behavior. Although previous studies showed that female mice have a social partner preference for vocalizing males, it is not known if they exhibit a sexual partner preference when given a choice. To address this issue, we examined the copulatory behaviors of female mice with either devocalized males (with or without the playback of the USVs) or sham-operated males in 2 different behavioral paradigms: the no-choice paradigm in the home cage of a male mouse (without choice of mating partners) or the mate-choice paradigm in a 3-chambered apparatus (with choice of mating partners). In the no-choice paradigm, female mice exhibited comparable sexual receptivity with sham-operated and devocalized males. In addition, we found that female mice showed more approach behavior towards devocalized males when male USVs were played back. In the mate-choice paradigm, female mice visited more frequently and stayed longer with sham-operated than devocalized males. Furthermore, we showed that female mice received more intromissions from sham-operated males than devocalized males. In summary, our results suggested that, although female mice can copulate equally with both devocalized and vocalizing males when given no choice of mating partner, female mice exhibit both sexual and social partner preferences for vocalizing males in the mate-choice paradigm.
Collapse
Affiliation(s)
- Kensaku Nomoto
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Mayu Ikumi
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Monami Otsuka
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Akari Asaba
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | | | - Nobuyoshi Koshida
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazutaka Mogi
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Takefumi Kikusui
- Companion Animal Research Laboratory, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
9
|
Ultrasonic communication in rats: appetitive 50-kHz ultrasonic vocalizations as social contact calls. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2427-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|