1
|
Neuwirth LS, Verrengia MT, Harikinish-Murrary ZI, Orens JE, Lopez OE. Under or Absent Reporting of Light Stimuli in Testing of Anxiety-Like Behaviors in Rodents: The Need for Standardization. Front Mol Neurosci 2022; 15:912146. [PMID: 36061362 PMCID: PMC9428565 DOI: 10.3389/fnmol.2022.912146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20–22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
- *Correspondence: Lorenz S. Neuwirth
| | - Michael T. Verrengia
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Zachary I. Harikinish-Murrary
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Jessica E. Orens
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| | - Oscar E. Lopez
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, United States
- SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury, NY, United States
| |
Collapse
|
2
|
Stressed rats fail to exhibit avoidance reactions to innately aversive social calls. Neuropsychopharmacology 2022; 47:1145-1155. [PMID: 34848856 PMCID: PMC9018727 DOI: 10.1038/s41386-021-01230-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/01/2021] [Accepted: 10/30/2021] [Indexed: 02/02/2023]
Abstract
Disruptions in amygdalar function, a brain area involved in encoding emotionally salient information, has been implicated in stress-related affective disorders. Earlier animal studies on the behavioral consequences of stress-induced abnormalities in the amygdala focused on learned behaviors using fear conditioning paradigms. If and how stress affects unconditioned, innate fear responses to ethologically natural aversive stimuli remains unexplored. Hence, we subjected rats to aversive ultrasonic vocalization calls emitted on one end of a linear track. Unstressed control rats exhibited a robust avoidance response by spending more time away from the source of the playback calls. Unexpectedly, prior exposure to chronic immobilization stress prevented this avoidance reaction, rather than enhancing it. Further, this stress-induced impairment extended to other innately aversive stimuli, such as white noise and electric shock in an inhibitory avoidance task. However, conditioned fear responses were enhanced by the same stress. Inactivation of the basolateral amygdala (BLA) in control rats prevented this avoidance reaction evoked by the playback. Consistent with this, analysis of the immediate early gene cFos revealed higher activity in the BLA of control, but not stressed rats, after exposure to the playback. Further, in vivo recordings in freely behaving control rats exposed to playback showed enhanced theta activity in the BLA, which also was absent in stressed rats. These findings offer a new framework for studying stress-induced alterations in amygdala-dependent maladaptive responses to more naturally threatening and emotionally relevant social stimuli. The divergent impact of stress on defensive responses--impaired avoidance responses together with increased conditioned fear--also has important implications for models of learned helplessness and depression.
Collapse
|
3
|
Xu S, Jiang M, Liu X, Sun Y, Yang L, Yang Q, Bai Z. Neural Circuits for Social Interactions: From Microcircuits to Input-Output Circuits. Front Neural Circuits 2021; 15:768294. [PMID: 34776877 PMCID: PMC8585935 DOI: 10.3389/fncir.2021.768294] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Social behaviors entail responses to social information and requires the perception and integration of social cues through a complex cognition process that involves attention, memory, motivation, and emotion. Neurobiological and molecular mechanisms underlying social behavior are highly conserved across species, and inter- and intra-specific variability observed in social behavior can be explained to large extent by differential activity of a conserved neural network. However, neural microcircuits and precise networks involved in social behavior remain mysterious. In this review, we summarize the microcircuits and input-output circuits on the molecular, cellular, and network levels of different social interactions, such as social exploration, social hierarchy, social memory, and social preference. This review provides a broad view of how multiple microcircuits and input-output circuits converge on the medial prefrontal cortex, hippocampus, and amygdala to regulate complex social behaviors, as well as a potential novel view for better control over pathological development.
Collapse
Affiliation(s)
- Sen Xu
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Ming Jiang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Xia Liu
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Yahan Sun
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Liang Yang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Qinghu Yang
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| | - Zhantao Bai
- Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, College of Life Sciences and Research Center for Resource Peptide Drugs, Yanan University, Yanan, China
| |
Collapse
|
4
|
Tang AM, Chen KH, Gogia AS, Del Campo-Vera RM, Sebastian R, Gilbert ZD, Lee Y, Nune G, Liu CY, Kellis S, Lee B. Amygdaloid theta-band power increases during conflict processing in humans. J Clin Neurosci 2021; 91:183-192. [PMID: 34373025 DOI: 10.1016/j.jocn.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/20/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
The amygdala is a medial temporal lobe structure known to be involved in processing emotional conflict. However, its role in processing non-emotional conflict is not well understood. Previous studies have utilized the Stroop Task to examine brain modulation of humans under the color-word conflict scenario, which is non-emotional conflict processing, and found hippocampal theta-band (4-7 Hz) modulation. This study aims to survey amygdaloid theta power changes during non-emotional conflict processing using intracranial depth electrodes in nine epileptic patients (3 female; age 20-62). All patients were asked to perform a modified Stroop task. During task performance, local field potential (LFP) data was recorded from macro contacts sampled at 2 K Hz and used for analysis. Mean theta power change from baseline was compared between the incongruent and congruent task condition groups using a paired sample t-test. Seven patients were available for analysis after artifact exclusion. In five out of seven patients, statistically significant increases in theta-band power from baseline were noted during the incongruent task condition (paired sample t-test p < 0.001), including one patient exhibiting theta power increases in both task conditions. Average response time was 1.07 s (failure trials) and 1.04 s (success trials). No speed-accuracy tradeoff was noted in this analysis. These findings indicate that human amygdaloid theta-band modulation may play a role in processing non-emotional conflict. It builds directly upon work suggesting that the amygdala processes emotional conflict and provides a neurophysiological mechanism for non-emotional conflict processing as well.
Collapse
Affiliation(s)
- Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States.
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States
| | - Zachary D Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States
| | - Yelim Lee
- University of Southern California, Los Angeles, CA, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; Tianqiao and Chrissy Chen Brain-Machine Interface Center, Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States; University of Southern California, Los Angeles, CA, United States; Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
5
|
Alcohol use disorder causes global changes in splicing in the human brain. Transl Psychiatry 2021; 11:2. [PMID: 33414398 PMCID: PMC7790816 DOI: 10.1038/s41398-020-01163-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023] Open
Abstract
Alcohol use disorder (AUD) is a widespread disease leading to the deterioration of cognitive and other functions. Mechanisms by which alcohol affects the brain are not fully elucidated. Splicing constitutes a nuclear process of RNA maturation, which results in the formation of the transcriptome. We tested the hypothesis as to whether AUD impairs splicing in the superior frontal cortex (SFC), nucleus accumbens (NA), basolateral amygdala (BLA), and central nucleus of the amygdala (CNA). To evaluate splicing, bam files from STAR alignments were indexed with samtools for use by rMATS software. Computational analysis of affected pathways was performed using Gene Ontology Consortium, Gene Set Enrichment Analysis, and LncRNA Ontology databases. Surprisingly, AUD was associated with limited changes in the transcriptome: expression of 23 genes was altered in SFC, 14 in NA, 102 in BLA, and 57 in CNA. However, strikingly, mis-splicing in AUD was profound: 1421 mis-splicing events were detected in SFC, 394 in NA, 1317 in BLA, and 469 in CNA. To determine the mechanism of mis-splicing, we analyzed the elements of the spliceosome: small nuclear RNAs (snRNAs) and splicing factors. While snRNAs were not affected by alcohol, expression of splicing factor heat shock protein family A (Hsp70) member 6 (HSPA6) was drastically increased in SFC, BLA, and CNA. Also, AUD was accompanied by aberrant expression of long noncoding RNAs (lncRNAs) related to splicing. In summary, alcohol is associated with genome-wide changes in splicing in multiple human brain regions, likely due to dysregulation of splicing factor(s) and/or altered expression of splicing-related lncRNAs.
Collapse
|
6
|
Ang MJ, Lee S, Kim JC, Kim SH, Moon C. Behavioral Tasks Evaluating Schizophrenia-like Symptoms in Animal Models: A Recent Update. Curr Neuropharmacol 2021; 19:641-664. [PMID: 32798374 PMCID: PMC8573744 DOI: 10.2174/1570159x18666200814175114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Schizophrenia is a serious mental illness that affects more than 21 million people worldwide. Both genetics and the environment play a role in its etiology and pathogenesis. Symptoms of schizophrenia are mainly categorized into positive, negative, and cognitive. One major approach to identify and understand these diverse symptoms in humans has been to study behavioral phenotypes in a range of animal models of schizophrenia. OBJECTIVE We aimed to provide a comprehensive review of the behavioral tasks commonly used for measuring schizophrenia-like behaviors in rodents together with an update of the recent study findings. METHODS Articles describing phenotypes of schizophrenia-like behaviors in various animal models were collected through a literature search in Google Scholar, PubMed, Web of Science, and Scopus, with a focus on advances over the last 10 years. RESULTS Numerous studies have used a range of animal models and behavioral paradigms of schizophrenia to develop antipsychotic drugs for improved therapeutics. In establishing animal models of schizophrenia, the candidate models were evaluated for schizophrenia-like behaviors using several behavioral tasks for positive, negative, and cognitive symptoms designed to verify human symptoms of schizophrenia. Such validated animal models were provided as rapid preclinical avenues for drug testing and mechanistic studies. CONCLUSION Based on the most recent advances in the field, it is apparent that a myriad of behavior tests are needed to confirm and evaluate the congruency of animal models with the numerous behaviors and clinical signs exhibited by patients with schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | - Changjong Moon
- Address correspondence to this author at the Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea, Tel: +82-62-530-2838; E-mail:
| |
Collapse
|
7
|
Ueda D, Yonemochi N, Kamata T, Shibasaki M, Kamei J, Waddington JL, Ikeda H. Increase in neuropeptide Y activity impairs social behaviour in association with glutamatergic dysregulation in diabetic mice. Br J Pharmacol 2020; 178:726-740. [PMID: 33197050 DOI: 10.1111/bph.15326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with diabetes mellitus are reported to show a raised prevalence of mental disorders, which may be reflected in impaired social interaction. However, the mechanisms underlying such impairment in diabetes are unknown. EXPERIMENTAL APPROACH The present study investigated whether social interaction is impaired in diabetic mice and whether central neuropeptide Y (NPY) and glutamatergic function are involved in such impairment. KEY RESULTS In the three-chamber test, social novelty preference, but not sociability, was impaired in streptozotocin (STZ)-induced diabetic mice. The mRNA level of NPY in the hypothalamus was increased in STZ-induced diabetic mice. Injection of the NPY Y2 receptor agonist NPY 13-36 into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the Y2 receptor antagonist BIIE 0246. BIIE 0246 also reversed the impairment of social novelty preference in STZ-induced diabetic mice. Similarly, injection of the AMPA receptor agonist AMPA into naïve mice impaired social novelty preference, but not sociability, and this effect was inhibited by the AMPA receptor antagonist NBQX. Impairment of social novelty preference induced by NPY 13-36 was inhibited by NBQX, whereas impairment of social novelty preference induced by AMPA was not inhibited by BIIE 0246. Finally, impairment of social novelty preference in STZ-induced diabetic mice was reversed by NBQX. CONCLUSION AND IMPLICATIONS These findings suggest that NPY neurons are activated in diabetic mice and that this may impair social novelty preference by promoting glutamatergic function through Y2 receptors.
Collapse
Affiliation(s)
- Daiki Ueda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Naomi Yonemochi
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Tomohiro Kamata
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Masahiro Shibasaki
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - Junzo Kamei
- Department of Biomolecular Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hiroko Ikeda
- Department of Pathophysiology and Therapeutics, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Schönfeld LM, Wojtecki L. Beyond Emotions: Oscillations of the Amygdala and Their Implications for Electrical Neuromodulation. Front Neurosci 2019; 13:366. [PMID: 31057358 PMCID: PMC6482269 DOI: 10.3389/fnins.2019.00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
The amygdala is a structure involved in emotions, fear, learning and memory and is highly interconnected with other brain regions, for example the motor cortex and the basal ganglia that are often targets of treatments involving electrical stimulation. Deep brain stimulation of the basal ganglia is successfully used to treat movement disorders, but can carry along non-motor side effects. The origin of these non-motor side effects is not fully understood yet, but might be altered oscillatory communication between specific motor areas and the amygdala. Oscillations in various frequency bands have been detected in the amygdala during cognitive and emotional tasks, which can couple with oscillations in cortical regions or the hippocampus. However, data on oscillatory coupling between the amygdala and motor areas are still lacking. This review provides a summary of oscillation frequencies measured in the amygdala and their possible functional relevance in different species, followed by evidence for connectivity between the amygdala and motor areas, such as the basal ganglia and the motor cortex. We hypothesize that the amygdala could communicate with motor areas through coherence of low frequency bands in the theta-alpha range. Furthermore, we discuss a potential role of the amygdala in therapeutic approaches based on electrical stimulation.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Comparative Psychology, Institute of Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Department of Neurology and Neurorehabilitation, Hospital zum Heiligen Geist, Kempen, Germany
| |
Collapse
|
9
|
Dissociated features of social cognition altered in mouse models of schizophrenia: Focus on social dominance and acoustic communication. Neuropharmacology 2018; 159:107334. [PMID: 30236964 DOI: 10.1016/j.neuropharm.2018.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/05/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023]
Abstract
Social and communication impairments are common features of psychiatric disorders. Animal models of schizophrenia display various social deficits due to difference in tests, mouse strains and drugs. Moreover, communication deficits have not been studied. Our objectives were to assess and compare three major features of social cognition in different mouse models of schizophrenia: interest for a social stimulus, organization and acceptance of social contact, and acoustic communication to question whether mouse models for schizophrenia with social dysfunction also exhibit vocal communication defects. To achieve these aims we treated acutely C57BL/6J mice either with MK-801 or ketamine and tested WT and microtubule-associated protein 6 -MAP6- KO mice in two complementary social tasks: the 3-chamber test which measures social motivation and the social interaction task -SIT- which relies on prefrontal cortex activity and measures the ability to organize and respond to a real interaction, and which promotes ultrasonic vocalizations. Our results reveal that schizophrenia models have intact interest for a social stimulus in the 3-chamber test. However, thanks to principal component analyses of social interaction data, we demonstrate that social motivation and the ability to act socially rely on distinct mechanisms in revealing a decrease in dominance and communication in pharmacological schizophrenia models along with social withdraw, classically observed in schizophrenia, in MK-801 model. In this latter model, some social parameters can be significantly improved by aripiprazole, an atypical antipsychotic. Our social protocol, combined with fine-tuned analysis, is expected to provide an innovative framework for testing future treatments in preclinical models. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|