1
|
Lista S, Munafò A, Caraci F, Imbimbo C, Emanuele E, Minoretti P, Pinto-Fraga J, Merino-País M, Crespo-Escobar P, López-Ortiz S, Monteleone G, Imbimbo BP, Santos-Lozano A. Gut microbiota in Alzheimer's disease: Understanding molecular pathways and potential therapeutic perspectives. Ageing Res Rev 2025; 104:102659. [PMID: 39800223 DOI: 10.1016/j.arr.2025.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Accumulating evidence suggests that gut microbiota (GM) plays a crucial role in Alzheimer's disease (AD) pathogenesis and progression. This narrative review explores the complex interplay between GM, the immune system, and the central nervous system in AD. We discuss mechanisms through which GM dysbiosis can compromise intestinal barrier integrity, enabling pro-inflammatory molecules and metabolites to enter systemic circulation and the brain, potentially contributing to AD hallmarks. Additionally, we examine other pathophysiological mechanisms by which GM may influence AD risk, including the production of short-chain fatty acids, secondary bile acids, and tryptophan metabolites. The role of the vagus nerve in gut-brain communication is also addressed. We highlight potential therapeutic implications of targeting GM in AD, focusing on antibiotics, probiotics, prebiotics, postbiotics, phytochemicals, and fecal microbiota transplantation. While preclinical studies showed promise, clinical evidence remains limited and inconsistent. We critically assess clinical trials, emphasizing challenges in translating GM-based therapies to AD patients. The reviewed evidence underscores the need for further research to elucidate precise molecular mechanisms linking GM to AD and determine whether GM dysbiosis is a contributing factor or consequence of AD pathology. Future studies should focus on large-scale clinical trials to validate GM-based interventions' efficacy and safety in AD.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Antonio Munafò
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence 50139, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | | | | | - José Pinto-Fraga
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - María Merino-País
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Paula Crespo-Escobar
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy; Unit of Gastroenterology, Policlinico Tor Vergata University Hospital, Rome 00133, Italy.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| |
Collapse
|
2
|
Wang J, Deng L, Ding Z, Zhang Y, Zhang Y, Li K, Zhao C, Zhang Q. Comparative Study on the Efficacy of Two Perioperative Chemotherapy Regimens for Lumbar Brucellosis. Drug Des Devel Ther 2023; 17:3523-3536. [PMID: 38046280 PMCID: PMC10691375 DOI: 10.2147/dddt.s427477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Objective The clinical efficacy of perioperative chemotherapy regimen (rifampicin, doxycycline, levofloxacin, ceftriaxone) was evaluated for lumbar brucellosis spondylitis patients with neurological injury. Methods In Beijing Ditan Hospital affiliated with Capital Medical University, 32 patients with lumbar brucellosis spondylitis underwent surgery and triple perioperative chemotherapy (rifampicin, doxycycline, levofloxacin) between 2011 and 2021 due to neurological injury, and 34 patients matched up with the triple group underwent rifampicin, doxycycline, levofloxacin, and ceftriaxone. Both groups were compared in terms of changes in inflammation index, low back/leg pain, lumbar function, neurological function, and adverse drug reactions. Results There was no significant difference in erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), low back pain visual analogue scale (VAS), leg pain VAS, lumbar Oswestry disability index (ODI) and nerve function injury rate between the two groups before chemotherapy (P>0.05). The ESR, CRP at 1 week and 2 weeks after chemotherapy and 1 week, 2 weeks, 1 month postoperatively in the quadruple group were significantly lower than those in the triple group, which is the same to ESR 3 months postoperatively (P<0.05). The low back pain VAS, leg pain VAS and lumbar ODI in the quadruple group were significantly lower than those in the triple group at 1 month and 3 months postoperatively (P<0.05). The recovery rate of neurological function in the quadruple group was significantly higher than that in the triple group at 3 and 6 months postoperatively (P<0.05). Both groups did not experience significantly different perioperative and postoperative adverse reactions (P>0.05). Conclusion For lumbar brucellosis spondylitis with neurological injury, quadruple perioperative chemotherapy of rifampicin, doxycycline, levofloxacin and ceftriaxone can significantly reduce perioperative inflammation, and improve low back/leg pain, as well as promoting neurological function recovery in the short term.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Lei Deng
- Department of First School of Clinical Medicine, Henan University of Chinese Medicine, Henan, 450003, People’s Republic of China
| | - Zihao Ding
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Yaosheng Zhang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People’s Republic of China
| | - Yao Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Kangpeng Li
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Changsong Zhao
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| | - Qiang Zhang
- Department of Orthopedics, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People’s Republic of China
| |
Collapse
|
3
|
Liu LZ, Fan SJ, Gao JX, Li WB, Xian XH. Ceftriaxone ameliorates hippocampal synapse loss by inhibiting microglial/macrophages activation in glial glutamate transporter-1 dependent manner in the APP/PS1 mouse model of Alzheimer's disease. Brain Res Bull 2023:110683. [PMID: 37301482 DOI: 10.1016/j.brainresbull.2023.110683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Synapse loss is a major contributor to cognitive dysfunction in Alzheimer's disease (AD). Impairments in the expression and/or glutamate uptake activity of glia glutamate transporter-1 (GLT-1) contribute to synapse loss in AD. Hence, targeting the restoration of GLT-1 activity may have potential for alleviating synapse loss in AD. Ceftriaxone (Cef) can upregulate the expression and glutamate uptake activity of GLT-1 in many disease models, including those for AD. The present study investigated the effects of Cef on synapse loss and the role of GLT-1 using APP/PS1 transgenic and GLT-1 knockdown APP/PS1 AD mice. Furthermore, the involvement of microglia in the process was investigated due to its important role in synapse loss in AD. We found that Cef treatment significantly ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice, evidenced by an increased dendritic spine density, decreased dendritic beading density, and upregulated levels of postsynaptic density protein 95 (PSD95) and synaptophysin. The effects of Cef were suppressed by GLT-1 knockdown in GLT-1+/-/APP/PS1 AD mice. Simultaneously, Cef treatment inhibited ionized calcium binding adapter molecule 1 (Iba1) expression, decreased the proportion of CD11b+CD45hi cells, declined interleukin-6 (IL-6) content, and reduced the co-expression of Iba1 with PSD95 or synaptophysin in APP/PS1 AD mice. In conclusion, Cef treatment ameliorated synapse loss and dendritic degeneration in APP/PS1 AD mice in a GLT-1-dependent manner, and the inhibitory effect of Cef on the activation of microglia/macrophages and their phagocytosis for synaptic elements contributed to the mechanism.
Collapse
Affiliation(s)
- Li-Zhe Liu
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Shu-Juan Fan
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Jun-Xia Gao
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Wen-Bin Li
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| | - Xiao-Hui Xian
- Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, P.R. China; Department of Pathophysiology, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, P. R. China.
| |
Collapse
|
4
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Aguilar-Hernández L, Alejandre R, César Morales-Medina J, Iannitti T, Flores G. Cellular mechanisms in brain aging: Focus on physiological and pathological aging. J Chem Neuroanat 2023; 128:102210. [PMID: 36496000 DOI: 10.1016/j.jchemneu.2022.102210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Aging is a natural phenomenon characterized by accumulation of cellular damage and debris. Oxidative stress, cellular senescence, sustained inflammation, and DNA damage are the main cellular processes characteristic of aging associated with morphological and functional decline. These effects tend to be more pronounced in tissues with high metabolic rates such as the brain, mainly in regions such as the prefrontal cortex, hippocampus, and amygdala. These regions are highly related to cognitive behavior, and therefore their atrophy usually leads to decline in processes such as memory and learning. These cognitive declines can occur in physiological aging and are exacerbated in pathological aging. In this article, we review the cellular processes that underlie the triggers of aging and how they relate to one another, causing the atrophy of nerve tissue that is typical of aging. The main topic of this review to determine the central factor that triggers all the cellular processes that lead to cellular aging and discriminate between normal and pathological aging. Finally, we review how the use of supplements with antioxidant and anti-inflammatory properties reduces the cognitive decline typical of aging, which reinforces the hypothesis of oxidative stress and cellular damage as contributors of physiological atrophy of aging. Moreover, cumulative evidence suggests their possible use as therapies, which improve the aging population's quality of life.
Collapse
Affiliation(s)
- Leonardo Aguilar-Hernández
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ricardo Alejandre
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Tommaso Iannitti
- University of Ferrara, Department of Medical Sciences, Section of Experimental Medicine, Via Fossato di Mortara 70, 44121 Ferrara, Italy
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel 72570, Puebla, Mexico.
| |
Collapse
|
6
|
Mantovani E, Zucchella C, Argyriou AA, Tamburin S. Treatment for cognitive and neuropsychiatric non-motor symptoms in Parkinson's disease: current evidence and future perspectives. Expert Rev Neurother 2023; 23:25-43. [PMID: 36701529 DOI: 10.1080/14737175.2023.2173576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Non-motor symptoms (NMS) affect patients with Parkinson's disease (PD) from the prodromal to the advanced stages. NMS phenotypes greatly vary and have a huge impact on patients' and caregivers' quality of life (QoL). The management of cognitive and neuropsychiatric NMS remains an unmet need. AREAS COVERED The authors, herein, review the dopaminergic and non-dopaminergic pathogenesis, clinical features, assessment, and pharmacological and non-pharmacological treatments of cognitive and neuropsychiatric NMS in PD. They discuss the current evidence and report the findings of an overview of ongoing trials on pharmacological and selected non-pharmacological strategies. EXPERT OPINION The treatment of cognitive and neuropsychiatric NMS in PD is poorly explored, and therapeutic options are unsatisfactory. Pharmacological treatment of cognitive NMS is based on symptomatic active principles used in Alzheimer's disease. Dopamine agonists, selective serotonin, and serotonin-norepinephrine reuptake inhibitors have some evidence on PD-related depression. Clozapine, quetiapine, and pimavanserin may be considered for psychosis in PD. Evidence on the treatment of other neuropsychiatric NMS is limited or lacking. Addressing pathophysiological and clinical issues, which hamper solid evidence on the treatment of cognitive and neuropsychiatric NMS, may reduce the impact on QoL for PD patients and their caregivers.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Andreas A Argyriou
- Department of Neurology, "Agios Andreas" State General Hospital of Patras, Patras, Greece
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Sattayakhom A, Kalarat K, Rakmak T, Tapechum S, Monteil A, Punsawad C, Palipoch S, Koomhin P. Effects of Ceftriaxone on Oxidative Stress and Inflammation in a Rat Model of Chronic Cerebral Hypoperfusion. Behav Sci (Basel) 2022; 12:bs12080287. [PMID: 36004858 PMCID: PMC9404883 DOI: 10.3390/bs12080287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Ceftriaxone (CTX) exerts a neuroprotective effect by decreasing glutamate excitotoxicity. We further studied the underlying mechanisms and effects of CTX early post-treatment on behavior in a cerebral hypoperfusion rats. The rats’ common carotid arteries (2VO) were permanently ligated. CTX was treated after ischemia. Biochemical studies were performed to assess antioxidative stress and inflammation. Behavioral and histological studies were then tested on the ninth week after vessel ligation. The 2VO rats showed learning and memory deficits as well as working memory impairments without any motor weakness. The treatment with CTX was found to attenuate white matter damage, MDA production, and interleukin 1 beta and tumor necrosis factor alpha production, mainly in the hippocampal area. Moreover, CTX treatment could increase the expression of glia and the glial glutamate transporters, and the neuronal glutamate transporter. Taken together, our data indicate the neuroprotective mechanisms of CTX involving the upregulation of glutamate transporters’ expression. This increased expression contributes to a reduction in glutamate excitotoxicity and oxidative stress as well as pro-inflammatory cytokine production, thus resulting in the protection of neurons and tissue from further damage. The present study highlights the mechanism of the effect of CTX treatment and of the underlying ischemia-induced neuronal damage.
Collapse
Affiliation(s)
- Apsorn Sattayakhom
- School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80160, Thailand
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Kosin Kalarat
- School of Informatics, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Thatdao Rakmak
- School of Liberal Arts, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Arnaud Monteil
- Institutde Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Sarawoot Palipoch
- School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand
| | - Phanit Koomhin
- Center of Excellence in Innovation on Essential Oil, Walailak University, Nakhonsithammarat 80160, Thailand
- School of Medicine, Walailak University, Nakhonsithammarat 80160, Thailand
- Correspondence: ; Tel.: +66-(0)-95-295-0550
| |
Collapse
|
8
|
Lin CL, Zheng TL, Tsou SH, Chang HM, Tseng LH, Yu CH, Hung CS, Ho YJ. Amitriptyline Improves Cognitive and Neuronal Function in a Rat Model that Mimics Dementia with Lewy Bodies. Behav Brain Res 2022; 435:114035. [PMID: 35926562 DOI: 10.1016/j.bbr.2022.114035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and β-amyloid (Aβ). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10μg/10μL) and Aβ (5μg/2.5μL) into the left ventricle and prefrontal cortex, respectively. AMI (10mg/kg/day, i.p.), RIVA (2mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Ting-Lin Zheng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Sing-Hua Tsou
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Hung-Ming Chang
- Department of Anantomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung 907, Taiwan, ROC
| | - Ching-Han Yu
- Department of Pysiology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10581, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| |
Collapse
|
9
|
Tikhonova MA, Chang HM, Singh SK, Vieau D. Editorial: Experimental and Innovative Approaches to Multi-Target Treatment of Parkinson's and Alzheimer's Diseases. Front Neurosci 2022; 16:910020. [PMID: 35651630 PMCID: PMC9150500 DOI: 10.3389/fnins.2022.910020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Maria A. Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
- *Correspondence: Maria A. Tikhonova
| | - Hung-Ming Chang
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Didier Vieau
- U1172 - LilNCog - Lille Neuroscience and Cognition, Alzheimer and Tauopathies, Université de Lille, Lille, France
| |
Collapse
|
10
|
Pupyshev AB, Belichenko VM, Tenditnik MV, Bashirzade AA, Dubrovina NI, Ovsyukova MV, Akopyan AA, Fedoseeva LA, Korolenko TA, Amstislavskaya TG, Tikhonova MA. Combined induction of mTOR-dependent and mTOR-independent pathways of autophagy activation as an experimental therapy for Alzheimer's disease-like pathology in a mouse model. Pharmacol Biochem Behav 2022; 217:173406. [DOI: 10.1016/j.pbb.2022.173406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022]
|
11
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
12
|
Tikhonova MA, Amstislavskaya TG, Ho YJ, Akopyan AA, Tenditnik MV, Ovsyukova MV, Bashirzade AA, Dubrovina NI, Aftanas LI. Neuroprotective Effects of Ceftriaxone Involve the Reduction of Aβ Burden and Neuroinflammatory Response in a Mouse Model of Alzheimer's Disease. Front Neurosci 2021; 15:736786. [PMID: 34658774 PMCID: PMC8511453 DOI: 10.3389/fnins.2021.736786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
Ceftriaxone (CEF) is a safe and multipotent antimicrobial agent that possesses neuroprotective properties. Earlier, we revealed the restoration of cognitive function in OXYS rats with signs of Alzheimer's disease (AD)-like pathology by CEF along with its modulating the expression of genes related to the system of amyloid beta (Aβ) metabolism in the brain. The aim of this study was to determine the effects of CEF on behavior, Aβ deposition, and associated neuroinflammation using another model of an early AD-like pathology induced by Aβ. Mice were injected bilaterally i.c.v. with Aβ fragment 25-35 to produce the AD model, while the CEF treatment (100 mg/kg/day, i.p., 36 days) started the next day after the surgery. The open field test, T-maze, Barnes test, IntelliCage, and passive avoidance test were used for behavioral phenotyping. Neuronal density, amyloid accumulation, and the expression of neuroinflammatory markers were measured in the frontal cortex and hippocampus. CEF exhibited beneficial effects on some cognitive features impaired by Aβ neurotoxicity including complete restoration of the fear-induced memory and learning in the passive avoidance test and improved place learning in the IntelliCage. CEF significantly attenuated amyloid deposition and neuroinflammatory response. Thus, CEF could be positioned as a potent multipurpose drug as it simultaneously targets proteostasis network and neuroinflammation, as well as glutamate excitotoxicity, oxidative pathways, and neurotrophic function as reported earlier. Together with previous reports on the positive effects of CEF in AD models, the results confirm the potential of CEF as a promising treatment against cognitive decline from the early stages of AD progression.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan
| | - Anna A Akopyan
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Michael V Tenditnik
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Marina V Ovsyukova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Alim A Bashirzade
- Laboratory of Translational Biopsychiatry, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia.,Faculty of Life Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Nina I Dubrovina
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Department of Neuroscience, Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia.,Department of Clinical Neuroscience, Behavior and Neurotechnologies, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russia
| |
Collapse
|
13
|
Li HH, Lin PJ, Wang WH, Tseng LH, Tung H, Liu WY, Lin CL, Liu CH, Liao WC, Hung CS, Ho YJ. Treatment effects of the combination of ceftriaxone and valproic acid on neuronal and behavioural functions in a rat model of epilepsy. Exp Physiol 2021; 106:1814-1828. [PMID: 34086374 DOI: 10.1113/ep089624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 01/29/2023]
Abstract
NEW FINDINGS What is the central question of this study? Imbalance of activities between GABAergic and glutamatergic systems is involved in epilepsy. It is not known whether simultaneously increasing GABAergic and decreasing glutamatergic activity using valproic acid and ceftriaxone, respectively, leads to better seizure control. What is the central question of this study? Ceftriaxone suppressed seizure and cognitive deficits and restored neuronal density and the number of newborn cells in the hippocampus in a rat model of epilepsy. Combined treatment with ceftriaxone and valproic acid showed additive effects in seizure suppression. ABSTRACT The pathophysiology of epilepsy is typically considered as an imbalance between inhibitory GABA and excitatory glutamate neurotransmission. Valproic acid (Val), a GABA agonist, is one of the first-line antiepileptic drugs in the treatment of epilepsy, but it exhibits adverse effects. Ceftriaxone (CEF) elevates expression of glutamate transporter-1, enhances the reuptake of synaptic glutamate, increases the number of newborn cells and exhibits neuroprotective effects in animal studies. In this study, we evaluated effects of the combination of CEF and Val on behavioural and neuronal measures in a rat epilepsy model. Male Wistar rats were injected i.p. with pentylenetetrazol (35 mg/kg, every other day for 13 days) to induce the epilepsy model. Ceftriaxone (10 or 50 mg/kg), Val (50 or 100 mg/kg) or the combination of CEF and Val were injected daily after the fourth pentylenetetrazol injection for seven consecutive days. Epileptic rats exhibited seizure and impairments in motor and cognitive functions. Treatment with CEF and Val reduced the seizure and enhanced motor and cognitive functions in a dose-dependent manner. The combination of CEF (10 mg/kg) and Val (50 mg/kg) improved behaviours considerably. Histologically, compared with control animals, epileptic rats exhibited lower neuronal density and a reduction in hippocampal newborn cells but higher apoptosis in the basolateral amygdala, all of which were restored by the treatment with CEF, Val or the combination of CEF and Val. The study findings demonstrated that the combination of low doses of CEF and Val has beneficial effects on seizure suppression, neuroprotection and improvement in motor and cognitive functions in epilepsy.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Pin-Jiun Lin
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wei-Han Wang
- Department of Psychology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung, Taiwan, Republic of China
| | - Hsin Tung
- Division of Epilepsy, Center of Faculty Development, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Wen-Yuan Liu
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chih-Li Lin
- Department of Medical Research, Institute of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung, Taiwan, Republic of China
| |
Collapse
|
14
|
Wang X, Ali N, Lin CLG. Emerging role of glutamate in the pathophysiology and therapeutics of Gulf War illness. Life Sci 2021; 280:119609. [PMID: 33991547 DOI: 10.1016/j.lfs.2021.119609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Gulf War illness (GWI) is a chronic and multi-symptomatic disorder affecting veterans who served in the Gulf War. The commonly reported symptoms in GWI veterans include mood problems, cognitive impairment, muscle and joint pain, migraine/headache, chronic fatigue, gastrointestinal complaints, skin rashes, and respiratory problems. Neuroimaging studies have revealed significant brain structure alterations in GWI veterans, including subcortical atrophy, decreased volume of the hippocampus, reduced total grey and white matter, and increased brain white matter axial diffusivity. These brain changes may contribute to or increase the severities of the GWI-related symptoms. Epidemiological studies have revealed that neurotoxic exposures and stress may be significant contributors to the development of GWI. However, the mechanism underlying how the exposure and stress could contribute to the multi-symptomatic disorder of GWI remains unclear. We and others have demonstrated that rodent models exposed to GW-related agents and stress exhibited higher extracellular glutamate levels, as well as impaired structure and function of glutamatergic synapses. Restoration of the glutamatergic synapses ameliorated the GWI-related pathological and behavioral deficits. Moreover, recent studies showed that a low-glutamate diet reduced multiple symptoms in GWI veterans, suggesting an important role of the glutamatergic system in GWI. Currently, growing evidence has indicated that abnormal glutamate neurotransmission may contribute to the GWI symptoms. This review summarizes the potential roles of glutamate dyshomeostasis and dysfunction of the glutamatergic system in linking the initial cause to the multi-symptomatic outcomes in GWI and suggests the glutamatergic system as a therapeutic target for GWI.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Noor Ali
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Dalhoff A. Selective toxicity of antibacterial agents-still a valid concept or do we miss chances and ignore risks? Infection 2021; 49:29-56. [PMID: 33367978 PMCID: PMC7851017 DOI: 10.1007/s15010-020-01536-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institue for Infection Medicine, Brunswiker Str. 4, D-24105, Kiel, Germany.
| |
Collapse
|
16
|
Kumari S, Deshmukh R. β-lactam antibiotics to tame down molecular pathways of Alzheimer's disease. Eur J Pharmacol 2021; 895:173877. [PMID: 33453224 DOI: 10.1016/j.ejphar.2021.173877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/29/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is a multifactorial disorder characterized by extracellular accumulation of amyloid-β (Aβ) and intracellular accumulations of neurofibrillary tangles. Numerous drug targets have been explored for therapeutic efficacy but failed to deliver successful treatments clinically. However, over the years our understanding of the disease pathophysiology increased significantly. Many of the novel targets which can cure or modify disease pathology are being explored preclinically as well as clinically. On contrarily, the drug discovery and development process is lengthy and the cost involved makes it difficult for faster translation of therapeutic outcomes. Therefore, repurposing existing drugs for a new therapeutic indication is considered a better approach and helps in the fast translation of therapeutic information. The existing drugs have well-proven records on their safety, pharmacokinetics, etc. In recent years, beta (β)-lactam antibiotics have been repurposed for the management of neurodegenerative pathologies. Here in the current review, we have explored β-lactam antibiotics, their target sites, molecular mechanisms, and their therapeutic potential in Alzheimer's disease.
Collapse
Affiliation(s)
- Shilpa Kumari
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India
| | - Rahul Deshmukh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, Punjab, India.
| |
Collapse
|
17
|
Evaluating the Effects of Grain of Isogenic Wheat Lines Differing in the Content of Anthocyanins in Mouse Models of Neurodegenerative Disorders. Nutrients 2020; 12:nu12123877. [PMID: 33353018 PMCID: PMC7766800 DOI: 10.3390/nu12123877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Functional foods enriched with plant polyphenols and anthocyanins in particular attract special attention due to multiple beneficial bioactive properties of the latter. We evaluated the effects of a grain diet rich in anthocyanins in a mouse model of Alzheimer’s disease induced by amyloid-beta (Aβ) and a transgenic mouse model of Parkinson’s disease (PD) with overexpression of human alpha-synuclein. The mice were kept at a diet that consisted of the wheat grain of near isogenic lines differing in anthocyanin content for five–six months. The anthocyanin-rich diet was safe and possessed positive effects on cognitive function. Anthocyanins prevented deficits in working memory induced by Aβ or a long-term grain mono-diet; they partially reversed episodic memory alterations. Both types of grain diets prolonged memory extinction and rescued its facilitation in the PD model. The dynamics of the extinction in the group fed with the anthocyanin-rich wheat was closer to that in a group of wild-type mice given standard chow. The anthocyanin-rich diet reduced alpha-synuclein accumulation and modulated microglial response in the brain of the transgenic mice including the elevated expression of arginase1 that marks M2 microglia. Thus, anthocyanin-rich wheat is suggested as a promising source of functional nutrition at the early stages of neurodegenerative disorders.
Collapse
|
18
|
Mirzaei F, Meshkini A, Habibi B, Salehpour F, Rafei E, Fathi W, Alavi SHN, Majdi A, Rahigh Aghasan S, Naseri Alavi SA. Ceftriaxone Plus Methylprednisolone Combination Therapy Versus Methylprednisolone Monotherapy in Patients With Acute Spinal Cord Injury: A Randomized, Triple-Blind Clinical Trial. Int J Spine Surg 2020; 14:706-712. [PMID: 33077437 PMCID: PMC7671452 DOI: 10.14444/7102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Guidelines do not suggest the routine use of methylprednisolone (MP) in patients with acute traumatic spinal cord injury (SCI). We tested the hypothesis regarding whether combination therapy with ceftriaxone and MP is superior to MP monotherapy in patients with acute traumatic SCI. METHODS In a randomized, triple-blind clinical trial, 60 patients with acute (first 8 hours of the injury) traumatic SCI were enrolled at the Tabriz University of Medical Sciences, Tabriz, Iran, between December 2016 and June 2017. Accordingly, the patients were randomly divided into 2 case and control groups (n = 30 each). Upon admission, all included patients received a bolus dose of MP at 33 mg/kg intravenously (IV) for 15 minutes. Then, after 45 minutes, MP infusion was continued for 24 to 48 hours at a 5.4 mg/kg IV dose. The case group received an additional dose of ceftriaxone at 1 g 2 times a day for 7 days through an IV route. Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were checked and compared between case and control groups upon admission and on the fourth and eighth days. Also, sensory and motor functions were evaluated according to the American Spinal Injury Association (ASIA) grading score upon admission, on the third and seventh days, upon discharge and 6 months after admission. RESULTS Analyses showed a significant statistical difference between groups in the changes in CRP levels during days 1 and 4 (P = .001) and also during days 4 and 8 (P = .001). However, no significant statistical difference was detected in ESR levels changes between groups during days 1 and 4 (P = .073), and during days 4 and 8 (P = .069). ASIA scale was found to be significantly different between the MP plus ceftriaxone group and MP monotherapy upon admission and 6 months after treatment (P = .001 for both comparisons). However, the number of variations in the ASIA score had no significant statistical difference between groups 6 months after intervention (P = .465). CONCLUSION The addition of ceftriaxone to the routine therapeutic protocol of acute SCI is accompanied by improved inflammation markers and functional outcomes 6 months after the intervention.
Collapse
Affiliation(s)
- Farhad Mirzaei
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Meshkini
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bohlool Habibi
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Firooz Salehpour
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Rafei
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Wouria Fathi
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Majdi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Rahigh Aghasan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ahmad Naseri Alavi
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Fachim HA, Guizzo R, Cunha AOS, Pereira AC, Anjos LC, Mortari MR, Santos WF. Ceftriaxone pretreatment confers neuroprotection in rats with acute glaucoma and reduces the score of seizures induced by pentylenotetrazole in mice. J Biochem Mol Toxicol 2020; 34:e22578. [DOI: 10.1002/jbt.22578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 05/01/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Helene A. Fachim
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Renato Guizzo
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Alexandra O. S. Cunha
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Adriana C. Pereira
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| | - Lilian C. Anjos
- Neuropharmacology Laboratory, Department of Physiological Sciences University of Brasília‐UnB Brasília Brazil
| | - Márcia R. Mortari
- Neuropharmacology Laboratory, Department of Physiological Sciences University of Brasília‐UnB Brasília Brazil
| | - Wagner F. Santos
- Neurobiology and Venoms Laboratory, Department of Biology, FFCLRP University of São Paulo São Paulo Brazil
- Instituto de Neurociências e Comportamento de Ribeirão Preto—INeC Ribeirão Preto São Paulo Brazil
| |
Collapse
|
20
|
Rozhkova IN, Brusentsev EY, Igonina TN, Ragaeva DS, Petrova OM, Naprimerov VA, Tikhonova MA, Amstislavskaya TG, Amstislavsky SY. Delayed Effects of Surgery during Early Pregnancy on Brain Development in OXYS Rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2020; 50:723-729. [DOI: 10.1007/s11055-020-00960-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 08/04/2023]
|
21
|
Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer's disease. Brain 2020; 142:2905-2929. [PMID: 31532495 DOI: 10.1093/brain/awz244] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease is associated with cerebral accumulation of amyloid-β peptide and hyperphosphorylated tau. In the past 28 years, huge efforts have been made in attempting to treat the disease by reducing brain accumulation of amyloid-β in patients with Alzheimer's disease, with no success. While anti-amyloid-β therapies continue to be tested in prodromal patients with Alzheimer's disease and in subjects at risk of developing Alzheimer's disease, there is an urgent need to provide therapeutic support to patients with established Alzheimer's disease for whom current symptomatic treatment (acetylcholinesterase inhibitors and N-methyl d-aspartate antagonist) provide limited help. The possibility of an infectious aetiology for Alzheimer's disease has been repeatedly postulated over the past three decades. Infiltration of the brain by pathogens may act as a trigger or co-factor for Alzheimer's disease, with Herpes simplex virus type 1, Chlamydia pneumoniae, and Porphyromonas gingivalis being most frequently implicated. These pathogens may directly cross a weakened blood-brain barrier, reach the CNS and cause neurological damage by eliciting neuroinflammation. Alternatively, pathogens may cross a weakened intestinal barrier, reach vascular circulation and then cross blood-brain barrier or cause low grade chronic inflammation and subsequent neuroinflammation from the periphery. The gut microbiota comprises a complex community of microorganisms. Increased permeability of the gut and blood-brain barrier induced by microbiota dysbiosis may impact Alzheimer's disease pathogenesis. Inflammatory microorganisms in gut microbiota are associated with peripheral inflammation and brain amyloid-β deposition in subjects with cognitive impairment. Oral microbiota may also influence Alzheimer's disease risk through circulatory or neural access to the brain. At least two possibilities can be envisaged to explain the association of suspected pathogens and Alzheimer's disease. One is that patients with Alzheimer's disease are particularly prone to microbial infections. The other is that microbial infection is a contributing cause of Alzheimer's disease. Therapeutic trials with antivirals and/or antibacterials could resolve this dilemma. Indeed, antiviral agents are being tested in patients with Alzheimer's disease in double-blind placebo-controlled studies. Although combined antibiotic therapy was found to be effective in animal models of Alzheimer's disease, antibacterial drugs are not being widely investigated in patients with Alzheimer's disease. This is because it is not clear which bacterial populations in the gut of patients with Alzheimer's disease are overexpressed and if safe, selective antibacterials are available for them. On the other hand, a bacterial protease inhibitor targeting P. gingivalis toxins is now being tested in patients with Alzheimer's disease. Clinical studies are needed to test if countering bacterial infection may be beneficial in patients with established Alzheimer's disease.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
| | - Madia Lozupone
- Unit of Epidemiological Research on Aging, National Institute of Gastroenterology 'Saverio de Bellis', Research Hospital, Castellana Grotte, Bari, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Vincenzo Solfrizzi
- 'C. Frugoni' Internal and Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Mark Watling
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| |
Collapse
|
22
|
Rozkova I, Brusentsev E, Igonina T, Ragaeva D, Petrova O, Tikhonova MA, Akopyan AA, Amstislavskaya TG, Antonov YV, Amstislavsky S. Sham surgical embryo transfer affects offspring neurodevelopment and manifestation of hypertensive phenotype in ISIAH rats. Hypertens Pregnancy 2020; 39:283-294. [PMID: 32400240 DOI: 10.1080/10641955.2020.1762894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The study investigates how surgery during pregnancy, i.e., sham operation associated with embryo transfer, affects hypertensive phenotype in ISIAH rats genetically predisposed to hypertension. ISIAH rats born after maternal surgery at fourth day of pregnancy were compared with naturally conceived controls. Surgery during pregnancy in ISIAH rats caused acceleration of neurodevelopment in young offspring, as well as aggravating hypertension, suppressing exploratory activity, reducing hippocampal BDNF expression, and compensatory increasing of hippocampal neuronal density in adult ISIAH offspring. Maternal surgery during early pregnancy caused alterations in offspring phenotype in hypertensive ISIAH rat model.
Collapse
Affiliation(s)
- Irina Rozkova
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Eugeny Brusentsev
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Tatyana Igonina
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Diana Ragaeva
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Olga Petrova
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Maria A Tikhonova
- Department of Experimental Neuroscience, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" , Novosibirsk, Russia
| | - Anna A Akopyan
- Department of Experimental Neuroscience, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" , Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Department of Experimental Neuroscience, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" , Novosibirsk, Russia
| | - Yegor V Antonov
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Sergey Amstislavsky
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| |
Collapse
|
23
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
24
|
Hameed MQ, Hsieh TH, Morales-Quezada L, Lee HHC, Damar U, MacMullin PC, Hensch TK, Rotenberg A. Ceftriaxone Treatment Preserves Cortical Inhibitory Interneuron Function via Transient Salvage of GLT-1 in a Rat Traumatic Brain Injury Model. Cereb Cortex 2019; 29:4506-4518. [PMID: 30590449 PMCID: PMC7150617 DOI: 10.1093/cercor/bhy328] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) results in a decrease in glutamate transporter-1 (GLT-1) expression, the major mechanism for glutamate removal from synapses. Coupled with an increase in glutamate release from dead and dying neurons, this causes an increase in extracellular glutamate. The ensuing glutamate excitotoxicity disproportionately damages vulnerable GABAergic parvalbumin-positive inhibitory interneurons, resulting in a progressively worsening cortical excitatory:inhibitory imbalance due to a loss of GABAergic inhibitory tone, as evidenced by chronic post-traumatic symptoms such as epilepsy, and supported by neuropathologic findings. This loss of intracortical inhibition can be measured and followed noninvasively using long-interval paired-pulse transcranial magnetic stimulation with mechanomyography (LI-ppTMS-MMG). Ceftriaxone, a β-lactam antibiotic, is a potent stimulator of the expression of rodent GLT-1 and would presumably decrease excitotoxic damage to GABAergic interneurons. It may thus be a viable antiepileptogenic intervention. Using a rat fluid percussion injury TBI model, we utilized LI-ppTMS-MMG, quantitative PCR, and immunohistochemistry to test whether ceftriaxone treatment preserves intracortical inhibition and cortical parvalbumin-positive inhibitory interneuron function after TBI in rat motor cortex. We show that neocortical GLT-1 gene and protein expression are significantly reduced 1 week after TBI, and this transient loss is mitigated by ceftriaxone. Importantly, whereas intracortical inhibition declines progressively after TBI, 1 week of post-TBI ceftriaxone treatment attenuates the loss of inhibition compared to saline-treated controls. This finding is accompanied by significantly higher parvalbumin gene and protein expression in ceftriaxone-treated injured rats. Our results highlight prospects for ceftriaxone as an intervention after TBI to prevent cortical inhibitory interneuron dysfunction, partly by preserving GLT-1 expression.
Collapse
Affiliation(s)
- Mustafa Q Hameed
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsung-Hsun Hsieh
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Physical Therapy & Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Leon Morales-Quezada
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Henry H C Lee
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ugur Damar
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul C MacMullin
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Takao K Hensch
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Neuromodulation Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Korolenko TA, Shintyapina AB, Pupyshev AB, Akopyan AA, Russkikh GS, Dikovskaya MA, Vavilin VA, Zavjalov EL, Tikhonova MA, Amstislavskaya TG. The regulatory role of cystatin C in autophagy and neurodegeneration. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy is a dynamic cellular process involved in the turnover of proteins, protein complexes, and organelles through lysosomal degradation. It is particularly important in neurons, which do not have a proliferative option for cellular repair. Autophagy has been shown to be suppressed in the striatum of a transgenic mouse model of Parkinson’s disease. Cystatin C is one of the potent regulators of autophagy. Changes in the expression and secretion of cystatin C in the brain have been shown in amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases, and in some animal models of neurodegeneration, thus proving a protective function of cystatin C. It has been suggested that cystatin C plays the primary role in amyloidogenesis and shows promise as a therapeutic agent for neurodegenerative diseases (Alzheimer’s and Parkinson’s diseases). Cystatin C colocalizes with the amyloid β-protein in the brain during Alzheimer’s disease. Controlled expression of a cystatin C peptide has been proposed as a new approach to therapy for Alzheimer’s disease. In Parkinson’s disease, serum cystatin C levels can predict disease severity and cognitive dysfunction, although the exact involvement of cystatin C remains unclear. The aim: to study the role of cystatin C in neurodegeneration and evaluate the results in relation to the mechanism of autophagy. In our study on humans, a higher concentration of cystatin C was noted in cerebrospinal fluid than in serum; much lower concentrations were observed in other biological fluids (intraocular fluid, bile, and sweat). In elderly persons (61–80 years old compared to practically healthy people at 40–60 years of age), we revealed increased cystatin C levels both in serum and intraocular fluid. In an experiment on C57Bl/6J mice, cystatin C concentration was significantly higher in brain tissue than in the liver and spleen: an indication of an important function of this cysteine protease inhibitor in the brain. Using a transgenic mouse model of Parkinson’s disease (5 months old), we demonstrated a significant increase in osmotic susceptibility of brain lysosomes, depending on autophagy, while in a murine model of Alzheimer’s disease, this parameter did not differ from that in the appropriate control.
Collapse
Affiliation(s)
- T. A. Korolenko
- Scientific Research Institute of Physiology and Basic Medicine
| | - A. B. Shintyapina
- Scientific Research Institute of Molecular Biology and Biophysics, Federal Research Center for Basic and Translational Medicine
| | - A. B. Pupyshev
- Scientific Research Institute of Physiology and Basic Medicine
| | - A. A. Akopyan
- Scientific Research Institute of Physiology and Basic Medicine
| | - G. S. Russkikh
- Scientific Research Institute of Biochemistry, Federal Research Center for Basic and Translational Medicine
| | - M. A. Dikovskaya
- Scientific Research Institute of Physiology and Basic Medicine; S.N. Fedorov NMRC “MNTK “Eye Microsurgery”, Novosibirsk Branch
| | - V. A. Vavilin
- Scientific Research Institute of Molecular Biology and Biophysics, Federal Research Center for Basic and Translational Medicine; Institute of Cytology and Genetics, SB RAS
| | | | - M. A. Tikhonova
- Scientific Research Institute of Physiology and Basic Medicine; Novosibirsk State University
| | - T. G. Amstislavskaya
- Scientific Research Institute of Physiology and Basic Medicine; Novosibirsk State University
| |
Collapse
|
26
|
Tai CH, Bellesi M, Chen AC, Lin CL, Li HH, Lin PJ, Liao WC, Hung CS, Schwarting RK, Ho YJ. A new avenue for treating neuronal diseases: Ceftriaxone, an old antibiotic demonstrating behavioral neuronal effects. Behav Brain Res 2019; 364:149-156. [DOI: 10.1016/j.bbr.2019.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/14/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
|
27
|
Yimer EM, Hishe HZ, Tuem KB. Repurposing of the β-Lactam Antibiotic, Ceftriaxone for Neurological Disorders: A Review. Front Neurosci 2019; 13:236. [PMID: 30971875 PMCID: PMC6444273 DOI: 10.3389/fnins.2019.00236] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
To date, there is no cure or disease-modifying agents available for most well-known neurological disorders. Current therapy is typically focused on relieving symptoms and supportive care in improving the quality of life of affected patients. Furthermore, the traditional de novo drug discovery technique is more challenging, particularly for neurological disorders. Therefore, the repurposing of existing drugs for these conditions is believed to be an efficient and dynamic approach that can substantially reduce the investments spent on drug development. Currently, there is emerging evidence that suggests the potential effect of a beta-lactam antibiotic, ceftriaxone (CEF), to alleviate the symptoms of different experimentally-induced neurological disorders: Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, epileptic-seizure, brain ischemia, traumatic brain injuries, and neuropathic pain. CEF also affects the markers of oxidative status and neuroinflammation, glutamatergic systems as well as various aggregated toxic proteins involved in the pathogenesis of different neurological disorders. Moreover, it was found that CEF administration to drug dependent animal models improved the withdrawal symptoms upon drug discontinuation. Thus, this review aimed to describe the effects of CEF against multiple models of neurological illnesses, drug dependency, and withdrawal. It also emphasizes the possible mechanisms of neuroprotective actions of CEF with respective neurological maladies.
Collapse
Affiliation(s)
- Ebrahim M Yimer
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Hailemichael Zeru Hishe
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| |
Collapse
|
28
|
Ceftriaxone Treatment for Neuronal Deficits: A Histological and MEMRI Study in a Rat Model of Dementia with Lewy Bodies. Behav Neurol 2018; 2018:4618716. [PMID: 30154934 PMCID: PMC6092970 DOI: 10.1155/2018/4618716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Dementia with Lewy bodies (DLB) is characterized by neuronal deficits and α-synuclein inclusions in the brain. Ceftriaxone (CEF), a β-lactam antibiotic, has been suggested as a therapeutic agent in several neurodegenerative disorders for its abilities to counteract glutamate-mediated toxicity and to block α-synuclein polymerization. By using manganese-enhanced magnetic resonance imaging (MEMRI) and immunohistochemistry, we measured the effects of CEF on neuronal activity and α-synuclein accumulation in the brain in a DLB rat model. The data showed that CEF corrected neuronal density and activity in the hippocampal CA1 area, suppressed hyperactivity in the subthalamic nucleus, and reduced α-synuclein accumulation, indicating that CEF is a potential agent in the treatment of DLB.
Collapse
|
29
|
Tikhonova MA, Amstislavskaya TG, Belichenko VM, Fedoseeva LA, Kovalenko SP, Pisareva EE, Avdeeva AS, Kolosova NG, Belyaev ND, Aftanas LI. Modulation of the expression of genes related to the system of amyloid-beta metabolism in the brain as a novel mechanism of ceftriaxone neuroprotective properties. BMC Neurosci 2018; 19:13. [PMID: 29745864 PMCID: PMC5998892 DOI: 10.1186/s12868-018-0412-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The dominant hypothesis about the pathogenesis of Alzheimer’s disease (AD) is the “amyloid cascade” concept and modulating the expression of proteins involved in the metabolism of amyloid-beta (Aβ) is proposed as an effective strategy for the prevention and therapy of AD. Recently, we found that an antibiotic ceftriaxone (CEF), which possesses neuroprotective activity, reduced cognitive deficits and neurodegenerative changes in OXYS rats, a model of sporadic AD. The molecular mechanisms of this effect are not completely clear, we suggested that the drug might serve as the regulator of the expression of the genes involved in the metabolism of Aβ and the pathogenesis of AD. The study was aimed to determine the effects of CEF on mRNA levels of Bace1 (encoding β-secretase BACE1 involved in Aβ production), Mme, Ide, Ece1, Ace2 (encoding enzymes involved in Aβ degradation), Epo (encoding erythropoietin related to endothelial function and clearance of Aβ across the blood brain barrier) in the frontal cortex, hippocampus, striatum, hypothalamus, and amygdala of OXYS and Wistar (control strain) male rats. Starting from the age of 14 weeks, animals received CEF (100 mg/kg/day, i.p., 36 days) or saline. mRNA levels were evaluated with RT-qPCR method. Biochemical parameters of plasma were measured for control of system effects of the treatment. Results To better understand strain variations studied here, we compared the gene expression between untreated OXYS and Wistar rats. This comparison showed a significant decrease in mRNA levels of Ace2 in the frontal cortex and hypothalamus, and of Actb in the amygdala of untreated OXYS rats. Analysis of potential effects of CEF revealed its novel targets. In the compound-treated OXYS cohort, CEF diminished mRNA levels of Bace1 and Ace2 in the hypothalamus, and Aktb in the frontal cortex. Furthermore, CEF augmented Mme, Ide, and Epo mRNA levels in the amygdala as well as the levels of Ece1 and Aktb in the striatum. Finally, CEF also attenuated the activity of ALT and AST in plasma of OXYS rats. Conclusion Those findings disclosed novel targets for CEF action that might be involved into neuroprotective mechanisms at early, pre-plaque stages of AD-like pathology development.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Victor M Belichenko
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Larisa A Fedoseeva
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia.,Federal Research Center "Institute of Cytology and Genetics", Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Sergey P Kovalenko
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Ekaterina E Pisareva
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Alla S Avdeeva
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Nataliya G Kolosova
- Federal Research Center "Institute of Cytology and Genetics", Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Lyubomir I Aftanas
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
30
|
Pupyshev AB, Korolenko TA, Akopyan AA, Amstislavskaya TG, Tikhonova MA. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci Lett 2018; 672:140-144. [DOI: 10.1016/j.neulet.2017.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 10/18/2022]
|