1
|
Marderstein AR, Kundu S, Padhi EM, Deshpande S, Wang A, Robb E, Sun Y, Yun CM, Pomales-Matos D, Xie Y, Nachun D, Jessa S, Kundaje A, Montgomery SB. Mapping the regulatory effects of common and rare non-coding variants across cellular and developmental contexts in the brain and heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638922. [PMID: 40027628 PMCID: PMC11870466 DOI: 10.1101/2025.02.18.638922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Whole genome sequencing has identified over a billion non-coding variants in humans, while GWAS has revealed the non-coding genome as a significant contributor to disease. However, prioritizing causal common and rare non-coding variants in human disease, and understanding how selective pressures have shaped the non-coding genome, remains a significant challenge. Here, we predicted the effects of 15 million variants with deep learning models trained on single-cell ATAC-seq across 132 cellular contexts in adult and fetal brain and heart, producing nearly two billion context-specific predictions. Using these predictions, we distinguish candidate causal variants underlying human traits and diseases and their context-specific effects. While common variant effects are more cell-type-specific, rare variants exert more cell-type-shared regulatory effects, with selective pressures particularly targeting variants affecting fetal brain neurons. To prioritize de novo mutations with extreme regulatory effects, we developed FLARE, a context-specific functional genomic model of constraint. FLARE outperformed other methods in prioritizing case mutations from autism-affected families near syndromic autism-associated genes; for example, identifying mutation outliers near CNTNAP2 that would be missed by alternative approaches. Overall, our findings demonstrate the potential of integrating single-cell maps with population genetics and deep learning-based variant effect prediction to elucidate mechanisms of development and disease-ultimately, supporting the notion that genetic contributions to neurodevelopmental disorders are predominantly rare.
Collapse
Affiliation(s)
- Andrew R. Marderstein
- Department of Pathology, Stanford University, Stanford, CA, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soumya Kundu
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M. Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Salil Deshpande
- Department of Genetics, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Austin Wang
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Esther Robb
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ying Sun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Chang M. Yun
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Selin Jessa
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Stephen B. Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
2
|
Wu Z, Chen J, Liu Y, Yang Y, Feng M, Dai H. The Effects of PICALM rs3851179 and Age on Brain Atrophy and Cognition Along the Alzheimer's Disease Continuum. Mol Neurobiol 2024; 61:6984-6996. [PMID: 38363532 DOI: 10.1007/s12035-024-03953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Rs3851179, a variant of PICALM gene, and age are the risk factors of Alzheimer's disease (AD). AD is divided into early-onset AD (EOAD, < 65 years) and late-onset AD (LOAD, ≥ 65 years) by age. The purpose was to investigate the impact of different genotypes of PICALM rs3851179 on brain atrophy and cognitive decline across the AD continuum in different age groups. Four hundred seven cognitive normal (CN) controls, 362 mild cognitive impairment (MCI) patients, and 94 AD patients were enrolled to assess the interaction between AD continuum, age status, and PICALM on gray matter volume (GMV), global cognition, memory function, and executive function using full factorial ANCOVA (3 × 2 × 2). The interaction between AD continuum and PICALM significantly affected the GMV of the left putamen (PUT.L). rs3851179 A-allele carriers did not show a significant decrease in PUT.L GMV from CN to MCI to AD, while GG-allele carriers did. The interaction between AD continuum and age status was significant on GMV of the left angular gyrus (ANG.L) and right superior occipital gyrus (SOG.R). LOAD had higher GMV of ANG.L and SOG.R than EOAD. The interactive effects among AD continuum, age status, and PICALM were not significant on GMV but were significant on global cognition and executive function. The A-allele was found to have a protective effect on global cognition and executive function in EOAD, but not significantly so in LOAD. PICALM rs3851179 A-allele might alleviate the atrophy of PUT.L across the AD continuum than GG-allele. Age status did not affect the interaction between AD continuum and PICALM on brain atrophy. The ANG.L and SOG.R atrophied more severely in EOAD than in LOAD. Rs3851179 A-allele was protective for global cognition and executive function in EOAD.
Collapse
Affiliation(s)
- Zhiwei Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, 230001, People's Republic of China
| | - Jinhong Chen
- Department of Ultrasound, Hefei Hospital affiliated to Anhui Medical University: The Second People's Hospital of Hefei, Hefei, Anhui Province, 230011, People's Republic of China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui Province, 230032, People's Republic of China
| | - Yuanqing Liu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Yiwen Yang
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Mengmeng Feng
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China
| | - Hui Dai
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China.
- Institute of Medical Imaging, Soochow University, Suzhou, Jiangsu Province, 215006, People's Republic of China.
- Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou, Jiangsu Province, 215123, People's Republic of China.
| |
Collapse
|
3
|
Kisler K, Sagare AP, Lazic D, Bazzi S, Lawson E, Hsu CJ, Wang Y, Ramanathan A, Nelson AR, Zhao Z, Zlokovic BV. Anti-malaria drug artesunate prevents development of amyloid-β pathology in mice by upregulating PICALM at the blood-brain barrier. Mol Neurodegener 2023; 18:7. [PMID: 36707892 PMCID: PMC9883925 DOI: 10.1186/s13024-023-00597-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND PICALM is one of the most significant susceptibility factors for Alzheimer's disease (AD). In humans and mice, PICALM is highly expressed in brain endothelium. PICALM endothelial levels are reduced in AD brains. PICALM controls several steps in Aβ transcytosis across the blood-brain barrier (BBB). Its loss from brain endothelium in mice diminishes Aβ clearance at the BBB, which worsens Aβ pathology, but is reversible by endothelial PICALM re-expression. Thus, increasing PICALM at the BBB holds potential to slow down development of Aβ pathology. METHODS To identify a drug that could increase PICALM expression, we screened a library of 2007 FDA-approved drugs in HEK293t cells expressing luciferase driven by a human PICALM promoter, followed by a secondary mRNA screen in human Eahy926 endothelial cell line. In vivo studies with the lead hit were carried out in Picalm-deficient (Picalm+/-) mice, Picalm+/-; 5XFAD mice and Picalmlox/lox; Cdh5-Cre; 5XFAD mice with endothelial-specific Picalm knockout. We studied PICALM expression at the BBB, Aβ pathology and clearance from brain to blood, cerebral blood flow (CBF) responses, BBB integrity and behavior. RESULTS Our screen identified anti-malaria drug artesunate as the lead hit. Artesunate elevated PICALM mRNA and protein levels in Eahy926 endothelial cells and in vivo in brain capillaries of Picalm+/- mice by 2-3-fold. Artesunate treatment (32 mg/kg/day for 2 months) of 3-month old Picalm+/-; 5XFAD mice compared to vehicle increased brain capillary PICALM levels by 2-fold, and reduced Aβ42 and Aβ40 levels and Aβ and thioflavin S-load in the cortex and hippocampus, and vascular Aβ load by 34-51%. Artesunate also increased circulating Aβ42 and Aβ40 levels by 2-fold confirming accelerated Aβ clearance from brain to blood. Consistent with reduced Aβ pathology, treatment of Picalm+/-; 5XFAD mice with artesunate improved CBF responses, BBB integrity and behavior on novel object location and recognition, burrowing and nesting. Endothelial-specific knockout of PICALM abolished all beneficial effects of artesunate in 5XFAD mice indicating that endothelial PICALM is required for its therapeutic effects. CONCLUSIONS Artesunate increases PICALM levels and Aβ clearance at the BBB which prevents development of Aβ pathology and functional deficits in mice and holds potential for translation to human AD.
Collapse
Affiliation(s)
- Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Abhay P. Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Divna Lazic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Sam Bazzi
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Erica Lawson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Ching-Ju Hsu
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Yaoming Wang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Anita Ramanathan
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Amy R. Nelson
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Zhen Zhao
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| | - Berislav V. Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine of the University of Southern California, 1501 San Pablo St, Los Angeles, CA 90089 USA
| |
Collapse
|
4
|
Liu YB, Wang XJ, Tan L, Tan CC, Xu W. PICALM Variation Moderates the Relationships of APOE ɛ4 with Alzheimer's Disease Cerebrospinal Biomarkers and Memory Function Among Non-Demented Population. J Alzheimers Dis 2023; 96:1651-1661. [PMID: 38007652 DOI: 10.3233/jad-230516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND APOE ɛ4 and PICALM are established genes associated with risk of late-onset Alzheimer's disease (AD). Previous study indicated interaction of PICALM with APOE ɛ4 in AD patients. OBJECTIVE To explore whether PICALM variation could moderate the influences of APOE ɛ4 on AD pathology biomarkers and cognition in pre-dementia stage. METHODS A total of 1,034 non-demented participants (mean age 74 years, 56% females, 40% APOE ɛ4 carriers) were genotyped for PICALM rs3851179 and APOE ɛ4 at baseline and were followed for influences on changes of cognition and cerebrospinal fluid (CSF) AD markers in six years. The interaction effects were examined via regression models adjusting for age, gender, education, and cognitive diagnosis. RESULTS The interaction term of rs3851179×APOE ɛ4 accounted for a significant amount of variance in baseline general cognition (p = 0.039) and memory function (p = 0.002). The relationships of APOE ɛ4 with trajectory of CSF Aβ42 (p = 0.007), CSF P-tau181 (p = 0.003), CSF T-tau (p = 0.001), and memory function (p = 0.017) were also moderated by rs3851179 variation. CONCLUSIONS APOE ɛ4 carriers experienced slower clinical and pathological progression when they had more protective A alleles of PICALM rs3851179. These findings firstly revealed the gene-gene interactive effects of PICALM with APOE ɛ4 in pre-dementia stage.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Medical college, Qingdao University, Qingdao, China
| | - Xue-Jie Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Ando K, Nagaraj S, Küçükali F, de Fisenne MA, Kosa AC, Doeraene E, Lopez Gutierrez L, Brion JP, Leroy K. PICALM and Alzheimer's Disease: An Update and Perspectives. Cells 2022; 11:3994. [PMID: 36552756 PMCID: PMC9776874 DOI: 10.3390/cells11243994] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified the PICALM (Phosphatidylinositol binding clathrin-assembly protein) gene as the most significant genetic susceptibility locus after APOE and BIN1. PICALM is a clathrin-adaptor protein that plays a critical role in clathrin-mediated endocytosis and autophagy. Since the effects of genetic variants of PICALM as AD-susceptibility loci have been confirmed by independent genetic studies in several distinct cohorts, there has been a number of in vitro and in vivo studies attempting to elucidate the underlying mechanism by which PICALM modulates AD risk. While differential modulation of APP processing and Aβ transcytosis by PICALM has been reported, significant effects of PICALM modulation of tau pathology progression have also been evidenced in Alzheimer's disease models. In this review, we summarize the current knowledge about PICALM, its physiological functions, genetic variants, post-translational modifications and relevance to AD pathogenesis.
Collapse
Affiliation(s)
- Kunie Ando
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Siranjeevi Nagaraj
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Fahri Küçükali
- Complex Genetics of Alzheimer’s Disease Group, VIB Center for Molecular Neurology, VIB Antwerp, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Marie-Ange de Fisenne
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Andreea-Claudia Kosa
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Emilie Doeraene
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Lidia Lopez Gutierrez
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Karelle Leroy
- Laboratory of Histology, Neuropathology and Neuroanatomy, Faculty of Medicine, Université Libre de Bruxelles, ULB Neuroscience Institute, 808 Route de Lennik, 1070 Brussels, Belgium
| |
Collapse
|
6
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
7
|
Cruz-Sanabria F, Bonilla-Vargas K, Estrada K, Mancera O, Vega E, Guerrero E, Ortega-Rojas J, Mahecha María F, Romero A, Montañés P, Celeita V, Arboleda H, Pardo R. Analysis of cognitive performance and polymorphisms of SORL1, PVRL2, CR1, TOMM40, APOE, PICALM, GWAS_14q, CLU, and BIN1 in patients with mild cognitive impairment and cognitively healthy controls. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:681-691. [PMID: 34752346 DOI: 10.1016/j.nrleng.2018.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/28/2018] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Alzheimer disease risk polymorphisms have been studied in patients with dementia, but have not yet been explored in mild cognitive impairment (MCI) in our population; nor have they been addressed in relation to cognitive variables, which can be predictive biomarkers of disease. OBJECTIVE To evaluate cognitive performance and presence of polymorphisms of the genes SORL1(rs11218304), PVRL2(rs6859), CR1(rs6656401), TOMM40(rs2075650), APOE (isoforms ε2, ε3, ε4), PICALM(rs3851179), GWAS_14q(rs11622883), BIN1(rs744373), and CLU(rs227959 and rs11136000) in patients with MCI and healthy individuals. METHODOLOGY We performed a cross-sectional, exploratory, descriptive study of a prospective cohort of participants selected by non-probabilistic sampling, evaluated with neurological, neuropsychological, and genetic testing, and classified as cognitively healthy individuals and patients with MCI. Cognition was evaluated with the Neuronorma battery and analysed in relation to the polymorphic variants by means of measures of central tendency, confidence intervals, and nonparametric statistics. RESULTS We found differences in performance in language and memory tasks between carriers and non-carriers of BIN1, CLU, and CR1 variants and a trend towards poor cognitive performance for PICALM, GWAS_14q, SORL1, and PVRL2 variants; the APOE and TOMM40 variants were not associated with poor cognitive performance. DISCUSSION Differences in cognitive performance associated with these polymorphic variants may suggest that the mechanisms regulating these genes could have an effect on cognition in the absence of dementia; however, this study was exploratory and hypotheses based on these results must be explored in larger samples.
Collapse
Affiliation(s)
- F Cruz-Sanabria
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia; PhD Program in Clinical and Translational Science, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Italy.
| | - K Bonilla-Vargas
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia; Unidad de Neurología, Hospital Universitario Nacional, Bogotá, Colombia
| | - K Estrada
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Instituto de Investigaciones Clínicas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - O Mancera
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Unidad de Neurología, Hospital Universitario Nacional, Bogotá, Colombia
| | - E Vega
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - E Guerrero
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - J Ortega-Rojas
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - F Mahecha María
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - A Romero
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - P Montañés
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - V Celeita
- Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - H Arboleda
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Pardo
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Unidad de Neurología, Hospital Universitario Nacional, Bogotá, Colombia; Instituto de Investigaciones Clínicas, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
8
|
Zhang D, Huang Y, Gao J, Lei Y, Ai K, Tang M, Yan X, Lei X, Yang Z, Shao Z, Zhang X. Altered Functional Topological Organization in Type-2 Diabetes Mellitus With and Without Microvascular Complications. Front Neurosci 2021; 15:726350. [PMID: 34630014 PMCID: PMC8493598 DOI: 10.3389/fnins.2021.726350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 01/19/2023] Open
Abstract
Microvascular complications can accelerate cognitive impairment in patients with type 2 diabetes mellitus (T2DM) and have a high impact on their quality of life; however, the underlying mechanism is still unclear. The complex network in the human brain is the physiological basis for information processing and cognitive expression. Therefore, this study explored the relationship between the functional network topological properties and cognitive function in T2DM patients with and without microvascular complications (T2DM-C and T2DM-NC, respectively). Sixty-seven T2DM patients and 41 healthy controls (HCs) underwent resting-state functional MRI and neuropsychological assessment. Then, graph theoretical network analysis was performed to explore the global and nodal topological alterations in the functional whole brain networks of T2DM patients. Correlation analyses were performed to investigate the relationship between the altered topological parameters and cognitive/clinical variables. The T2DM-C group exhibited significantly higher local efficiency (Eloc), normalized cluster coefficient (γ), and small-world characteristics (σ) than the HCs. Patients with T2DM at different clinical stages (T2DM-C and T2DM-NC) showed varying degrees of abnormalities in node properties. In addition, compared with T2DM-NC patients, T2DM-C patients showed nodal properties disorders in the occipital visual network, cerebellum and middle temporal gyrus. The Eloc metrics were positively correlated with HbA1c level (P = 0.001, r = 0.515) and the NE values in the right paracentral lobule were negatively related with serum creatinine values (P = 0.001, r = −0.517) in T2DM-C patients. This study found that T2DM-C patients displayed more extensive changes at different network topology scales. The visual network and cerebellar may be the central vulnerable regions of T2DM-C patients.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Huang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yumeng Lei
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Min Tang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhen Yang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhirong Shao
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
9
|
Avila J, Perry G. A Multilevel View of the Development of Alzheimer's Disease. Neuroscience 2020; 457:283-293. [PMID: 33246061 DOI: 10.1016/j.neuroscience.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Every year the Alzheimer's Association publishes a report that provides facts and figures indicating the public health, social and economic impact of Alzheimer's disease (AD). In addition, there are a number of reviews on the disease for general readers. Also, at congresses, AD is analyzed at different but not always related levels, leading to an "elephant as seen by blind men situation" for many of the participants. The review presented herein seeks to provide readers with a holistic view of how AD develops from various perspectives: the whole human organism, brain, circuits, neurons, cellular hallmarks, and molecular level.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), 28049 Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain.
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
10
|
Xu W, Tan CC, Cao XP, Tan L. Association of Alzheimer's disease risk variants on the PICALM gene with PICALM expression, core biomarkers, and feature neurodegeneration. Aging (Albany NY) 2020; 12:21202-21219. [PMID: 33170153 PMCID: PMC7695360 DOI: 10.18632/aging.103814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
It is still unclear how PICALM mutations influence the risk of Alzheimer's disease (AD). We tested the association of AD risk variants on the PICALM gene with PICALM expression and AD feature endophenotypes. Bioinformatic methods were used to annotate the functionalities and to select the tag single nucleotide polymorphisms (SNPs). Multiple regressions were used to examine the cross-sectional and longitudinal influences of tag SNPs on cerebrospinal fluid (CSF) AD biomarkers and neurodegenerations. A total of 59 SNPs, among which 75% were reported in Caucasians, were associated with AD risk. Of these, 73% were linked to PICALM expression in the whole blood (p < 0.0001) and/or brain regions (p < 0.05). Eleven SNPs were selected as tag SNPs in Caucasians. rs510566 (T allele) was associated with decreased CSF ptau and ptau/abeta42 ratio. The G allele of rs1237999 and rs510566 was linked with greater reserve capacities of the hippocampus, parahippocampus, middle temporal lobe, posterior cingulate, and precuneus. The longitudinal analyses revealed four loci that could predict dynamic changes of CSF ptau and ptau/abeta42 ratio (rs10501610, p = 0.0001) or AD feature neurodegeneration (rs3851179, rs592297, and rs7480193, p < 0.005). Overall, the genetic, bioinformatic, and association studies tagged four SNPs (rs3851179, rs7480193, rs510566, and rs1237999) as the most prominent PICALM loci contributing to AD in Caucasians.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | | |
Collapse
|
11
|
Cheng Y, Yan L, Hu L, Wu H, Huang X, Tian Y, Wu X. Differences in network centrality between high and low myopia: a voxel-level degree centrality study. Acta Radiol 2020; 61:1388-1397. [PMID: 32098475 DOI: 10.1177/0284185120902385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. PURPOSE To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. MATERIAL AND METHODS Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. RESULTS DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients (P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM (P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions (P < 0.05). CONCLUSION Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Li Yan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Liqun Hu
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Hongyun Wu
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yu Tian
- Department of Ophthalmology, Ganzhou People's Hospital of Jiangxi Province, PR China
| | - Xiaorong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| |
Collapse
|
12
|
Shang S, Chen YC, Zhang H, Dou W, Qian L, Yin X, Wu J. Mapping the Interactive Effects of ApoE Gene Polymorphism on Caudate Functional Connectivity in Mild Cognitive Impairment Associated With Parkinson's Disease. Front Neurosci 2020; 14:857. [PMID: 33041748 PMCID: PMC7527607 DOI: 10.3389/fnins.2020.00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Cognitive impairment (CI) is a frequent non-motor symptom of Parkinson’s disease (PD). Caudate and Apolipoprotein E (ApoE) are biomarkers linked to CI in PD. There is little known about whether ApoE affects caudate in mild CI of PD (PD-MCI). We investigated the possible interactive effect of ApoE genotypes on caudate functional connectivity (FC) in PD-MCI. Methods A total of 95 PD-MCI patients and 99 matched healthy controls underwent extensive neuropsychological assessment and magnetic resonance imaging. The two groups were separated into three subgroups according to their genotyping. Functional data were analyzed with FC analysis. Results Decreased FC between the caudate and the bilateral inferior orbit frontal gyrus and bilateral middle occipital gyrus (MOG) was found between groups, along with poor performance in general, executive, episodic memory, language, and visual–spatial function. Decreased FC between the caudate and right MOG, right middle temporal gyrus, and right superior occipital gyrus was found as an interaction effect. The FC values of ε4 carriers with PD-MCI were much lower than the other carriers, and FC was positively correlated with the impairment of global and language function. Conclusion These results support the idea that altered FC between the bilateral caudate and posterior cortical regions was interactively influenced by ApoE genotype and PD-MCI status, and the ε4 subtype associated with underlying pathology of global cognitive decline and semantic fluency impairment in an interactive manner. Gene-based imaging approaches might strengthen the credibility in imaging genetic associations, which might provide new powerful insights into the neural mechanisms underlying PD-MCI.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongying Zhang
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, China
| | - Long Qian
- GE Healthcare, MR Research China, Beijing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingtao Wu
- Department of Radiology, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Chandler HL, Hodgetts CJ, Caseras X, Murphy K, Lancaster TM. Polygenic risk for Alzheimer's disease shapes hippocampal scene-selectivity. Neuropsychopharmacology 2020; 45:1171-1178. [PMID: 31896120 PMCID: PMC7234982 DOI: 10.1038/s41386-019-0595-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023]
Abstract
Preclinical models of Alzheimer's disease (AD) suggest APOE modulates brain function in structures vulnerable to AD pathophysiology. However, genome-wide association studies now demonstrate that AD risk is shaped by a broader polygenic architecture, estimated via polygenic risk scoring (AD-PRS). Despite this breakthrough, the effect of AD-PRS on brain function in young individuals remains unknown. In a large sample (N = 608) of young, asymptomatic individuals, we measure the impact of both (i) APOE and (ii) AD-PRS on a vulnerable cortico-limbic scene-processing network heavily implicated in AD pathophysiology. Integrity of this network, which includes the hippocampus (HC), is fundamental for maintaining cognitive function during ageing. We show that AD-PRS, not APOE, selectively influences activity within the HC in response to scenes, while other perceptual nodes remained intact. This work highlights the impact of polygenic contributions to brain function beyond APOE, which could aid potential therapeutic/interventional strategies in the detection and prevention of AD.
Collapse
Affiliation(s)
- Hannah L Chandler
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Kevin Murphy
- CUBRIC, School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| | - Thomas M Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, CF24 4HQ, UK.
- MRC Centre for Neuropsychiatric Genetics & Genomics, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
- UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
14
|
Ponomareva N, Andreeva T, Protasova M, Konovalov R, Krotenkova M, Malina D, Mitrofanov A, Fokin V, Illarioshkin S, Rogaev E. Genetic Association Between Alzheimer's Disease Risk Variant of the PICALM Gene and EEG Functional Connectivity in Non-demented Adults. Front Neurosci 2020; 14:324. [PMID: 32372909 PMCID: PMC7177435 DOI: 10.3389/fnins.2020.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Genome wide association studies (GWAS) have identified and validated the association of the PICALM genotype with Alzheimer's disease (AD). The PICALM rs3851179 A allele is thought to have a protective effect, whereas the G allele appears to confer risk for AD. The influence of the PICALM genotype on brain functional connectivity in non-demented subjects remains largely unknown. We examined the association of the PICALM rs3851179 genotype with the characteristics of lagged linear connectivity (LLC) of resting EEG sources in 104 non-demented adults younger than 60 years of age. The EEG analysis was performed using exact low-resolution brain electromagnetic tomography (eLORETA) freeware (Pascual-Marqui et al., 2011). We found that the carriers of the A PICALM allele (PICALM AA and AG genotypes) had higher widespread interhemispheric LLC of alpha sources compared to the carriers of the GG PICALM allele. An exploratory correlation analysis showed a moderate positive association between the alpha LLC interhemispheric characteristics and the corpus callosum size and between the alpha interhemispheric LLC characteristics and the Luria word memory scores. These results suggest that the PICALM rs3851179 A allele provides protection against cognitive decline by facilitating neurophysiological reserve capacities in non-demented adults. In contrast, lower functional connectivity in carriers of the AD risk variant, PICALM GG, suggests early functional alterations in alpha rhythm networks.
Collapse
Affiliation(s)
- Natalya Ponomareva
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Andreeva
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Protasova
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Rodion Konovalov
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Krotenkova
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Daria Malina
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Mitrofanov
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russia
| | - Vitaly Fokin
- Research Center of Neurology, Russian Academy of Sciences, Moscow, Russia
| | | | - Evgeny Rogaev
- Laboratory of Evolutionary Genomics, Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
15
|
Blujus JK, Korthauer LE, Awe E, Frahmand M, Driscoll I. Single Nucleotide Polymorphisms in Alzheimer's Disease Risk Genes Are Associated with Intrinsic Connectivity in Middle Age. J Alzheimers Dis 2020; 78:309-320. [PMID: 32986668 PMCID: PMC11694215 DOI: 10.3233/jad-200444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is critical to identify individuals at risk for Alzheimer's disease (AD) earlier in the disease time course, such as middle age and preferably well prior to the onset of clinical symptoms, when intervention efforts may be more successful. Genome-wide association and candidate gene studies have identified single nucleotide polymorphisms (SNPs) in APOE, CLU, CR1, PICALM, and SORL1 that confer increased risk of AD. OBJECTIVE In the current study, we investigated the associations between SNPs in these genes and resting-state functional connectivity within the default mode network (DMN), frontoparietal network (FPN), and executive control network (ECN) in healthy, non-demented middle-aged adults (age 40 -60; N = 123; 74 females). METHODS Resting state networks of interest were identified through independent components analysis using a template-matching procedure and individual spatial maps and time courses were extracted using dual regression. RESULTS Within the posterior DMN, functional connectivity was associated with CR1 rs1408077 and CLU rs9331888 polymorphisms (p's < 0.05). FPN connectivity was associated with CR1 rs1408077, CLU rs1136000, SORL1 rs641120, and SORL1 rs689021 (p's < 0.05). Functional connectivity within the ECN was associated with the CLU rs11136000 (p < 0.05). There were no APOE- or PICALM-related differences in any of the networks investigated (p's > 0.05). CONCLUSION This is the first demonstration of the relationship between intrinsic network connectivity and AD risk alleles in CLU, CR1, and SORL1 in healthy, middle-aged adults. These SNPs should be considered in future investigations aimed at identifying potential preclinical biomarkers for AD.
Collapse
Affiliation(s)
| | - Laura Elizabeth Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI
| | - Elizabeth Awe
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI
| | - Marijam Frahmand
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI
| |
Collapse
|
16
|
Abstract
Radiogenomics, defined as the integrated analysis of radiologic imaging and genetic data, is a well-established tool shown to augment neuroimaging in the clinical diagnosis, prognostication, and scientific study of late-onset Alzheimer disease (LOAD). Early work using candidate single nucleotide polymorphisms (SNPs) identified genetic variation in APOE, BIN1, CLU, and CR1 as key modifiers of brain structure and function using magnetic resonance imaging (MRI). More recently, polygenic risk scores used in conjunction with MRI and positron emission tomography have shown great promise as a risk-stratification tool for clinical trials and care-management decisions. In addition, recent work using multimodal MRI and positron emission tomography as proxies of LOAD progression has identified novel risk variants that are enhancing our understanding of LOAD pathophysiology and progression. Herein, we highlight key studies and trends in the radiogenomics of LOAD over the past two decades and their implications for clinical practice and scientific research.
Collapse
|
17
|
Zhuang L, Liu X, Shi Y, Liu X, Luo B. Genetic Variants of PICALM rs541458 Modulate Brain Spontaneous Activity in Older Adults With Amnestic Mild Cognitive Impairment. Front Neurol 2019; 10:494. [PMID: 31133980 PMCID: PMC6517502 DOI: 10.3389/fneur.2019.00494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Phosphatidylinositol binding clathrin assembly protein (PICALM) rs541458 C allele has been identified and validated to be associated with a reduction of Alzheimer's disease (AD) risk. Nevertheless, the exact mechanisms through which the variant exert its disease-relevant association remain to be elucidated. This study is to determine whether PICALM rs541458 polymorphism modulates functional magnetic resonance imaging measured brain spontaneous activity in older adults with amnestic mild cognitive impairment (aMCI). Methods: Thirty five aMCI patients and twenty six healthy controls (HC) were enrolled in this study. Each individual was genotyped for rs541458 and scanned with resting-state functional magnetic resonance imaging. Each group was divided into two subgroups (C carriers and TT genotype). Brain activity was measured with amplitude of low-frequency fluctuation (ALFF). Results: The aMCI patients showed decreased ALFF in left inferior frontal gyrus, superior temporal gyrus and insula, while increased ALFF in right cuneus, calcarine, and bilateral posterior cingulate and precuneus. A significant interaction between diagnosis (aMCI vs. HC) and PICALM rs541458 genotype (C carriers vs. TT) on ALFF was observed mainly in the right frontal lobe, with aMCI C carriers and TT genotype in HC showing significantly lower ALFF than HC C carriers. While only negative correlation between ALFF and verbal fluency test was found in HC C carriers (r = −0.543, p = 0.030). Conclusions: This study provided preliminary evidences that PICALM rs541458 variations may modulate the spontaneous brain activity in aMCI patients.
Collapse
Affiliation(s)
- Liying Zhuang
- Department of Neurology, Zhejiang Hospital, Hangzhou, China.,Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongmei Shi
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoli Liu
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Benyan Luo
- Department of Neurology and Brain Medical Centre, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
The Association between DRD3 Ser9Gly Polymorphism and Depression Severity in Parkinson's Disease. PARKINSONS DISEASE 2019; 2019:1642087. [PMID: 31143436 PMCID: PMC6501220 DOI: 10.1155/2019/1642087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 01/04/2023]
Abstract
More and more evidence suggests that dopamine receptor D3 gene (DRD3) plays an important role in the clinical manifestations and the treatment of Parkinson's disease (PD). DRD3 Ser9Gly polymorphism is the most frequently studied variant point. Our aim was to investigate the potential effect of DRD3 Ser9Gly polymorphism on modulating resting-state brain function and associative clinical manifestations in PD patients. We consecutively recruited 61 idiopathic PD patients and 47 healthy controls (HC) who were evaluated by clinical scales, genotyped for variant Ser9Gly in DRD3, and underwent resting-state functional magnetic resonance imaging. Based on DRD3 Ser9Gly polymorphism, PD patients and HCs were divided into four subgroups. Then, two-way analysis of covariance (ANCOVA) was applied to investigate main effects and interactions of PD and DRD3 Ser9Gly polymorphism on the brain function via amplitude of low-frequency fluctuations (ALFF) approach. The association between DRD3 Ser9Gly-modulated significantly different brain regions, and clinical manifestations were detected by Spearman's correlations. PD patients exhibited decreased ALFF values in the right inferior occipital gyrus, lingual gyrus, and fusiform gyrus. A significant difference in the interaction of “groups × genotypes” was observed in the right medial frontal gyrus. The ALFF value of the cluster showing significant interactions was positively correlated with HAMD-17 scores (r=0.489, p=0.011) and anhedonia scores (r=0.512, p=0.008) in PD patients with the Ser/Gly or Gly/Gly genotypes. Therefore, D3 gene Ser9Gly polymorphism might be associated with the severity of depression characterized by anhedonia in PD patients.
Collapse
|
19
|
Cruz-Sanabria F, Bonilla-Vargas K, Estrada K, Mancera O, Vega E, Guerrero E, Ortega-Rojas J, Mahecha María F, Romero A, Montañés P, Celeita V, Arboleda H, Pardo R. Analysis of cognitive performance and polymorphisms of SORL1, PVRL2, CR1, TOMM40, APOE, PICALM, GWAS_14q, CLU, and BIN1 in patients with mild cognitive impairment and cognitively healthy controls. Neurologia 2018; 36:S0213-4853(18)30198-1. [PMID: 30503753 DOI: 10.1016/j.nrl.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/07/2018] [Accepted: 07/28/2018] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Alzheimer disease risk polymorphisms have been studied in patients with dementia, but have not yet been explored in mild cognitive impairment (MCI) in our population; nor have they been addressed in relation to cognitive variables, which can be predictive biomarkers of disease. OBJECTIVE To evaluate cognitive performance and presence of polymorphisms of the genes SORL1(rs11218304), PVRL2(rs6859), CR1(rs6656401), TOMM40(rs2075650), APOE (isoforms ɛ2, ɛ3, ɛ4), PICALM(rs3851179), GWAS_14q(rs11622883), BIN1(rs744373), and CLU (rs227959 and rs11136000) in patients with MCI and healthy individuals. METHODOLOGY We performed a cross-sectional, exploratory, descriptive study of a prospective cohort of participants selected by non-probabilistic sampling, evaluated with neurological, neuropsychological, and genetic testing, and classified as cognitively healthy individuals and patients with MCI. Cognition was evaluated with the Neuronorma battery and analysed in relation to the polymorphic variants by means of measures of central tendency, confidence intervals, and nonparametric statistics. RESULTS We found differences in performance in language and memory tasks between carriers and non-carriers of BIN1, CLU, and CR1 variants and a trend toward poor cognitive performance for PICALM, GWAS_14q, SORL1, and PVRL2 variants; the APOE and TOMM40 variants were not associated with poor cognitive performance. DISCUSSION Differences in cognitive performance associated with these polymorphic variants may suggest that the mechanisms regulating these genes could have an effect on cognition in the absence of dementia; however, this study was exploratory and hypotheses based on these results must be explored in larger samples.
Collapse
Affiliation(s)
- F Cruz-Sanabria
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - K Bonilla-Vargas
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia; Unidad de Neurología, Hospital Universitario Nacional, Bogotá, Colombia
| | - K Estrada
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Instituto de Investigaciones Clínicas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - O Mancera
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Unidad de Neurología, Hospital Universitario Nacional, Bogotá, Colombia
| | - E Vega
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - E Guerrero
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - J Ortega-Rojas
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - F Mahecha María
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - A Romero
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - P Montañés
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - V Celeita
- Departamento de Psicología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - H Arboleda
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Pardo
- Grupo de Neurociencias, Universidad Nacional de Colombia, Bogotá, Colombia; Unidad de Neurología, Hospital Universitario Nacional, Bogotá, Colombia; Instituto de Investigaciones Clínicas, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
20
|
Lin L, Xing G, Han Y. Advances in Resting State Neuroimaging of Mild Cognitive Impairment. Front Psychiatry 2018; 9:671. [PMID: 30574100 PMCID: PMC6291484 DOI: 10.3389/fpsyt.2018.00671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/21/2018] [Indexed: 01/27/2023] Open
Abstract
The rapidly increasing number of patients with Alzheimer's disease (AD) worldwide has become a major public concern. Mild cognitive impairment (MCI), characterized with accelerated memory decline than normal aging, is a stage between cognitively unimpaired and dementia. Identification of MCI in the Alzheimer's continuum from normal aging, is important for early diagnosis and improved intervention of AD. The imaging technique has been extensively used for diagnose and understanding the mechanisms of MCI. Firstly, we review the recent progresses in the research framework of MCI depending on the clinical and/or biomarker findings. Secondly, we cover studies that use of rs-fMRI (resting state functional magnetic resonance imaging) for the brain activities and functional connectivity between normal aging and MCI. Other methodologies and multi-modal studies for investigating the mechanism and early diagnosis of MCI are also discussed. Finally, we discuss how genetic and environmental factors such as education could interact with in MCI. Overall, MCI is a heterogeneous state and employing resting state neuroimaging with other AD biomarker approaches will be able to target in the more precise population and AD-related pathology process.
Collapse
Affiliation(s)
- Li Lin
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Guoqiang Xing
- Department of Imaging & Imaging Institute of Rehabilitation and Development of Brain Function, The Second Clinical Institute of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China.,Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|