1
|
Li X, Zheng K, Chen H, Li W. Ginsenoside Re Regulates Oxidative Stress through the PI3K/Akt/Nrf2 Signaling Pathway in Mice with Scopolamine-Induced Memory Impairments. Curr Issues Mol Biol 2024; 46:11359-11374. [PMID: 39451557 PMCID: PMC11506191 DOI: 10.3390/cimb46100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
While Ginsenoside Re has been shown to protect the central nervous system, reports of its effects on memory in the model of scopolamine-induced memory impairment are rare. The aim of this study was to investigate the effects of Ginsenoside Re on scopolamine (SCOP)-induced memory damage and the mechanism of action. Male ICR mice were treated with SCOP (3 mg/kg) for 7 days and with or without Ginsenoside Re for 14 days. As evidenced by behavioral studies (escape latency and cross platform position), brain tissue morphology, and oxidative stress indicators after Ginsenoside Re treatment, the memory damage caused by SCOP was significantly ameliorated. Further mechanism research indicated that Ginsenoside Re inhibited cell apoptosis by regulating the PI3K/Akt/Nrf2 pathway, thereby exerting a cognitive impairment improvement effect. This research suggests that Ginsenoside Re could protect against SCOP-induced memory defects possibly through inhibiting oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Xin Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | | | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
Akarasereenont P, Pattanapholkornsakul S, Limsuvan S, Mamaethong D, Booranasubkajorn S, Pakaprot N, Tripatara P, Pilakasiri K. Therapeutic potential of Thai herbal formula for cognitive impairment: A metabolomics approach for Comprehensive Insights. Heliyon 2024; 10:e28027. [PMID: 38560220 PMCID: PMC10981045 DOI: 10.1016/j.heliyon.2024.e28027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic cerebral ischemia hypoperfusion plays a role in the initiation and progression of vascular dementia, which causes changes in metabolites. Currently, there is no standard treatment to treat, prevent and reduce the severity of this condition. Thai herbal Yahom no.20 (YHF20) is indicated for fatigue and dizziness. The components of YHF20 have been found to have pharmacological effects related to the pathology of chronic cerebral ischemia hypoperfusion. This study aimed to investigate metabolomic changes after YHF20 administration in a rat model of permanent bilateral common carotid artery occlusion (2-VO) induced chronic cerebral ischemia hypoperfusion, and to explore its impact on spatial learning and memory. Albino Wistar rats were randomly allocated to 5 groups; sham, 2-VO, 2-VO+ 100 mg/kg YHF20, 2-VO+300 mg/kg YHF20, and 2-VO+1000 mg/kg YHF20. The rats were administered YHF20 daily by oral gavage for 56 days after 2-VO induction. Plasma was collected weekly for metabolome change analysis using LC-MS/QTof and toxicity study. The rats were evaluated for spatial learning and memory using the Morris water maze. The results showed that 78 known metabolites and 10 tentative pathways altered after chronic cerebral hypoperfusion, although it was not able to determine the effect on memory and learning behaviors of rats. Glutathione and glutathione metabolism might be metabolite-pathway that were the affect after YHF20 administration in cerebral ischemic condition. The 4 known metabolites may be the metabolites from the constituents of YHF20 could be considered and confirmed for quality control purpose. In conclusion, YHF20 administration might contribute to metabolic changes related to cerebral ischemia condition without the effect on spatial learning and memory, including hepatotoxicity and nephrotoxicity after 56 days of treatment. Alterations in the potential metabolites may provide data support for elucidating dementia pathogenesis and selecting pathways for intervention.
Collapse
Affiliation(s)
- Pravit Akarasereenont
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Saracha Pattanapholkornsakul
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Suveerawan Limsuvan
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Dollaporn Mamaethong
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Suksalin Booranasubkajorn
- Center of Applied Thai Traditional Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Pinpat Tripatara
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| | - Kajee Pilakasiri
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, 10700, Bangkok, Thailand
| |
Collapse
|
3
|
Shan M, Bai Y, Fang X, Lan X, Zhang Y, Cao Y, Zhu D, Luo H. American Ginseng for the Treatment of Alzheimer's Disease: A Review. Molecules 2023; 28:5716. [PMID: 37570686 PMCID: PMC10420665 DOI: 10.3390/molecules28155716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent degenerative condition that is increasingly affecting populations globally. American ginseng (AG) has anti-AD bioactivity, and ginsenosides, as the main active components of AG, have shown strong anti-AD effects in both in vitro and in vivo studies. It has been reported that ginsenosides can inhibit amyloid β-protein (Aβ) production and deposition, tau phosphorylation, apoptosis and cytotoxicity, as well as possess anti-oxidant and anti-inflammatory properties, thus suppressing the progression of AD. In this review, we aim to provide a comprehensive overview of the pathogenesis of AD, the potential anti-AD effects of ginsenosides found in AG, and the underlying molecular mechanisms associated with these effects. Additionally, we will discuss the potential use of AG in the treatment of AD, and how ginsenosides in AG may exert more potent anti-AD effects in vivo may be a direction for further research.
Collapse
Affiliation(s)
- Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yunfan Bai
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Biopharmaceutical and Health Food, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.S.); (Y.B.); (X.F.); (X.L.); (Y.Z.); (Y.C.)
- Department of Pharmaceutical Chemistry and Traditional Chinese Medicine Chemistry, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
4
|
Li RL, Wang LY, Duan HX, Zhang Q, Guo X, Wu C, Peng W. Regulation of mitochondrial dysfunction induced cell apoptosis is a potential therapeutic strategy for herbal medicine to treat neurodegenerative diseases. Front Pharmacol 2022; 13:937289. [PMID: 36210852 PMCID: PMC9535092 DOI: 10.3389/fphar.2022.937289] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative disease is a progressive neurodegeneration caused by genetic and environmental factors. Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD) are the three most common neurodegenerative diseases clinically. Unfortunately, the incidence of neurodegenerative diseases is increasing year by year. However, the current available drugs have poor efficacy and large side effects, which brings a great burden to the patients and the society. Increasing evidence suggests that occurrence and development of the neurodegenerative diseases is closely related to the mitochondrial dysfunction, which can affect mitochondrial biogenesis, mitochondrial dynamics, as well as mitochondrial mitophagy. Through the disruption of mitochondrial homeostasis, nerve cells undergo varying degrees of apoptosis. Interestingly, it has been shown in recent years that the natural agents derived from herbal medicines are beneficial for prevention/treatment of neurodegenerative diseases via regulation of mitochondrial dysfunction. Therefore, in this review, we will focus on the potential therapeutic agents from herbal medicines for treating neurodegenerative diseases via suppressing apoptosis through regulation of mitochondrial dysfunction, in order to provide a foundation for the development of more candidate drugs for neurodegenerative diseases from herbal medicine.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohui Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaohui Guo, ; Chunjie Wu, ; Wei Peng,
| |
Collapse
|
5
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
6
|
Cai J, Huang K, Han S, Chen R, Li Z, Chen Y, Chen B, Li S, Xinhua L, Yao H. A comprehensive system review of pharmacological effects and relative mechanisms of Ginsenoside Re: Recent advances and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154119. [PMID: 35617888 DOI: 10.1016/j.phymed.2022.154119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ginsenoside Re (Re) belongs to protopanaxatriol saponins and exists in Panax ginseng, Panax quinquefolium, Panax notoginseng, and other plants in the Araliaceae family. Re has recently become a research focus owing to its pharmacological activities and benefits to human bodies. PURPOSE To summarize recent findings regarding the pharmacological effects and mechanisms of Re and highlight and predict the potential therapeutic effects and systematic mechanism of Re. METHODS Recent studies (2011-2021) on the pharmacological effects and mechanisms of Re were retrieved from Web of Science, PubMed, Google Scholar, Scopus, and Embase up to December 2021 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of Re against potential diseases. RESULTS Re presented a wide range of therapeutic and biological activities, including neuroprotective, cardiovascular, antidepressant, antitumorigenic, and others effects. The related pharmacological mechanisms of Re include the regulation of cholinergic and antioxidant systems in the brain; the induction of tumor cell apoptosis; the inhibition of tau protein hyperphosphorylation and oxidative stress; the activation of p38MAPK, ERK1/2, and JNK signals; the improvement of lipid metabolism; and the reduction of endothelial cell dysfunction. CONCLUSION This paper summarizes comprehensively the current research progress of Re and provides new research insights into the therapeutic effects and mechanisms of Re against potential diseases.
Collapse
Affiliation(s)
- Jiasong Cai
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Kunlong Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shengnan Han
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Ruichan Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijun Li
- Center of Chemistry Experiment, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Yan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Bing Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shaoguang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China.
| | - Lin Xinhua
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Gao XY, Liu GC, Zhang JX, Wang LH, Xu C, Yan ZA, Wang A, Su YF, Lee JJ, Piao GC, Yuan HD. Pharmacological Properties of Ginsenoside Re. Front Pharmacol 2022; 13:754191. [PMID: 35462899 PMCID: PMC9019721 DOI: 10.3389/fphar.2022.754191] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Ginsenoside Re is a protopanaxatriol-type saponin extracted from the berry, leaf, stem, flower bud, and root of Panax ginseng. In recent years, ginsenoside Re (Re) has been attracting attention as a dietary phytochemical. In this review, studies on Re were compiled by searching a combination of keywords, namely “pharmacology,” “pharmacokinetics,” and “toxicology,” in the Google Scholar, NCBI, PubMed, and Web of Science databases. The aim of this review was to provide an exhaustive overview of the pharmacological activities, pharmacokinetics, and toxicity of Re, focusing on clinical evidence that has shown effectiveness in specific diseases, such as diabetes mellitus, nervous system diseases, inflammation, cardiovascular disease, and cancer. Re is also known to eliminate virus, enhance the immune response, improve osteoporosis, improve skin barrier function, enhance intracellular anti-oxidant actions, regulate cholesterol metabolism, alleviate allergic responses, increase sperm motility, reduce erectile dysfunction, promote cyclic growth of hair follicles, and reduce gastrointestinal motility dysfunction. Furthermore, this review provides data on pharmacokinetic parameters and toxicological factors to examine the safety profile of Re. Such data will provide a theoretical basis and reference for Re-related studies and future applications.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- College of Pharmacy, Yanbian University, Jilin, China
| | | | | | - Ling-He Wang
- College of Integration Science, Yanbian University, Jilin, China
| | - Chang Xu
- College of Pharmacy, Yanbian University, Jilin, China
| | - Zi-An Yan
- College of Integration Science, Yanbian University, Jilin, China
| | - Ao Wang
- College of Pharmacy, Yanbian University, Jilin, China
| | - Yi-Fei Su
- College of Pharmacy, Yanbian University, Jilin, China
| | - Jung-Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
| | - Guang-Chun Piao
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| | - Hai-Dan Yuan
- College of Pharmacy, Yanbian University, Jilin, China
- College of Integration Science, Yanbian University, Jilin, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Jilin, China
- *Correspondence: Guang-Chun Piao, ; Hai-Dan Yuan,
| |
Collapse
|
8
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
9
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Yang Z, Zhou DD, Huang SY, Fang AP, Li HB, Zhu HL. Effects and mechanisms of natural products on Alzheimer's disease. Crit Rev Food Sci Nutr 2021:1-21. [PMID: 34613845 DOI: 10.1080/10408398.2021.1985428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly people with a high incidence rate and complicated pathogenesis, and causes progressive cognitive deficit and memory impairment. Some natural products and bioactive compounds from natural sources show great potential in the prevention and treatment of AD, such as apple, blueberries, grapes, chili pepper, Monsonia angustifolia, cruciferous vegetables, Herba epimedii, Angelica tenuissima, Embelia ribes, sea cucumber, Cucumaria frondosa, green tea, Puer tea, Amanita caesarea and Inonotus obliquus, via reducing amyloid beta (Aβ) deposition, decreasing Tau hyperphosphorylation, regulating cholinergic system, reducing oxidative stress, inhibiting apoptosis and ameliorating inflammation. This review mainly summarizes the effects of some natural products and their bioactive compounds on AD with the potential molecular mechanisms.
Collapse
Affiliation(s)
- Zhijun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ai-Ping Fang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Li J, Huang Q, Chen J, Qi H, Liu J, Chen Z, Zhao D, Wang Z, Li X. Neuroprotective Potentials of Panax Ginseng Against Alzheimer's Disease: A Review of Preclinical and Clinical Evidences. Front Pharmacol 2021; 12:688490. [PMID: 34149431 PMCID: PMC8206566 DOI: 10.3389/fphar.2021.688490] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is a major health concern in the increasingly aged population worldwide. Currently, no clinically effective drug can halt the progression of AD. Panax ginseng C.A. Mey. is a well-known medicinal plant that contains ginsenosides, gintonin, and other components and has neuroprotective effects against a series of pathological cascades in AD, including beta-amyloid formation, neuroinflammation, oxidative stress, and mitochondrial dysfunction. In this review, we summarize the effects and mechanisms of these major components and formulas containing P. ginseng in neuronal cells and animal models. Moreover, clinical findings regarding the prevention and treatment of AD with P. ginseng or its formulas are discussed. This review can provide new insights into the possible use of ginseng in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiaqi Liu
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zhaoqiang Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zeyu Wang
- Department of Scientific Research, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
12
|
Cognitive Dysfunction in a Mouse Model of Cerebral Ischemia Influences Salivary Metabolomics. J Clin Med 2021; 10:jcm10081698. [PMID: 33920851 PMCID: PMC8071145 DOI: 10.3390/jcm10081698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023] Open
Abstract
Vascular dementia, caused by cerebrovascular disease, is associated with cognitive impairment and reduced hippocampal metabolite levels. Specifically, cognitive impairment can be induced by decreased hippocampal brain-derived neurotrophic factor (BDNF) expression. The development of low or non-invasive biomarkers to characterize these diseases is an urgent task. Disturbance of metabolic pathways has been frequently observed in cognitive impairment, and salivary molecules also showed the potentials to reflect cognitive impairment. Therefore, we evaluated salivary metabolic profiles associated with altered hippocampal BDNF expression levels in a cerebral ischemia mouse model using metabolomic analyses. The effect of tacrine (a cholinesterase inhibitor) administration was also examined. The arteries of ICR mice were occluded with aneurysm clips to generate the cerebral ischemia model. Learning and memory performance was assessed using the elevated plus maze (EPM) test. Hippocampal and blood BDNF levels were quantified using an enzyme-linked immunosorbent assay. Glutamate decarboxylase 1 (GAD1) mRNA expression, is associated with cognitive impairment, was quantified by a real-time polymerase chain reaction. The EPM test revealed impaired spatial working memory in the cerebral ischemia mouse model; tacrine administration ameliorated this memory impairment. Cerebral ischemia suppressed GAD1 expression by decreasing hippocampal BDNF expression. In total, seven salivary metabolites, such as trimethylamine N-oxide and putrescine, were changed by cognitive impairment and tacrine administration. Our data suggest that salivary metabolite patterns were associated with cognitive function.
Collapse
|
13
|
Lye S, Aust CE, Griffiths LR, Fernandez F. Exploring new avenues for modifying course of progression of Alzheimer's disease: The rise of natural medicine. J Neurol Sci 2021; 422:117332. [PMID: 33607542 DOI: 10.1016/j.jns.2021.117332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/07/2021] [Accepted: 01/22/2021] [Indexed: 12/01/2022]
Abstract
With a constantly growing elderly population worldwide, a focus on developing efficient prevention and therapy for Alzheimer's disease (AD) seems timely and topical. Emphasis on natural medicine is increasingly popular in the search for drug candidates that are capable of preventing and treating AD related pathology, particularly where suppression of amyloid accumulation, neurofibrillary tangle formation, neuroinflammation and oxidative stress are equally significant. A number of phytochemical compounds have been shown to collectively reduce these AD hallmarks with the progression of natural drug candidates into human clinical trials. This review focuses on current research surrounding the therapies emerging within natural medicines and their related therapeutic potential for AD treatment.
Collapse
Affiliation(s)
- Sarah Lye
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia
| | - Caitlin E Aust
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Francesca Fernandez
- School of Health and Behavioural Science, Faculty of Health Sciences, 1100 Nudgee Road, Australian Catholic University, Brisbane, QLD, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.
| |
Collapse
|
14
|
Kang Z, Zhonga Y, Wu T, Huang J, Zhao H, Liu D. Ginsenoside from ginseng: a promising treatment for inflammatory bowel disease. Pharmacol Rep 2021; 73:700-711. [PMID: 33462754 PMCID: PMC8180475 DOI: 10.1007/s43440-020-00213-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease mediated by immune disorder and termed as one of the most refractory diseases by the Word Health Organization. Its morbidity has increased steadily over the past half century worldwide. Environmental, genetic, infectious, and immune factors are integral to the pathogenesis of IBD. Commonly known as the king of herbs, ginseng has been consumed in many countries for the past 2000 years. Its active ingredient ginsenosides, as the most prominent saponins of ginseng, have a wide range of pharmacological effects. Recent studies have confirmed that the active components of Panax ginseng have anti-inflammatory and immunomodulatory effects on IBD, including regulating the balance of immune cells, inhibiting the expression of cytokines, as well as activating Toll-like receptor 4, Nuclear factor-kappa B (NF-κB), nucleotide-binding oligomerization domain-like receptor (NLRP), mitogen-activated protein kinase signaling, and so on. Accumulated evidence indicates that ginsenosides may serve as a potential novel therapeutic drug or health product additive in IBD prevention and treatment in the future.
Collapse
Affiliation(s)
- Zengping Kang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Youbao Zhonga
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.,Experimental Animal Science and Technology Center, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Tiantian Wu
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiaqi Huang
- Graduate School, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Road, Nanchang, 330004, Jiangxi, China.
| | - Duanyong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine, 1689 Meiling Road, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
15
|
Yang M, Yan T, Yu M, Kang J, Gao R, Wang P, Zhang Y, Zhang H, Shi L. Advances in understanding of health‐promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minmin Yang
- College of Life Sciences Shaanxi Normal University Xi'an China
| | - Tao Yan
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Meng Yu
- The Institute of Medicinal Plant Development Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jie Kang
- Physical Education Institute Shaanxi Normal University Xi'an China
| | - Ruoxi Gao
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Peng Wang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Yuhuan Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
| | - Huafeng Zhang
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
| | - Lin Shi
- School of Food Engineering and Nutritional Science Shaanxi Normal University Xi'an China
- Internatinal Joint Research Center of Shaanxi Province for Food and Health Science Shaanxi Normal University Xi'an China
- Department of Biology and Biological Engineering Chalmers University of Technology Gothenburg Sweden
| |
Collapse
|
16
|
Protective Effect of Ocotillol, the Derivate of Ocotillol-Type Saponins in Panax Genus, against Acetic Acid-Induced Gastric Ulcer in Rats Based on Untargeted Metabolomics. Int J Mol Sci 2020; 21:ijms21072577. [PMID: 32276345 PMCID: PMC7177626 DOI: 10.3390/ijms21072577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer (GU), a prevalent digestive disease, has a high incidence and is seriously harmful to human health. Finding a natural drug with a gastroprotective effect is needed. Ocotillol, the derivate of ocotillol-type saponins in the Panax genus, possesses good anti-inflammatory activity. The study aimed to investigate the gastroprotective effect of ocotillol on acetic acid-induced GU rats. The serum levels of endothelin-1 (ET-1) and nitric oxide (NO), the gastric mucosa levels of epidermal growth factor, superoxide dismutase and NO were assessed. Hematoxylin and eosin staining of gastric mucosa for pathological changes and immunohistochemical staining of ET-1, epidermal growth factor receptors and inducible nitric oxide synthase were evaluated. A UPLC-QTOF-MS-based serum metabolomics approach was applied to explore the latent mechanism. A total of 21 potential metabolites involved in 7 metabolic pathways were identified. The study helps us to understand the pathogenesis of GU and to provide a potential natural anti-ulcer agent.
Collapse
|
17
|
Rho T, Jeong HW, Hong YD, Yoon K, Cho JY, Yoon KD. Identification of a novel triterpene saponin from Panax ginseng seeds, pseudoginsenoside RT 8, and its antiinflammatory activity. J Ginseng Res 2020; 44:145-153. [PMID: 32148397 PMCID: PMC7033336 DOI: 10.1016/j.jgr.2018.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/08/2018] [Accepted: 11/03/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Panax ginseng Meyer (Araliaceae) is a highly valued medicinal plant in Asian regions, especially in Korea, China, and Japan. Chemical and biological studies on P. ginseng have focused primarily on its roots, whereas the seeds remain poorly understood. This study explores the phytochemical and biological properties of compounds from P. ginseng seeds. METHODS P. ginseng seeds were extracted with methanol, and 16 compounds were isolated using various chromatographic methods. The chemical structures of the isolates were determined by spectroscopic data. Antiinflammatory activities were evaluated for triterpene and steroidal saponins using lipopolysaccharide-stimulated RAW264.7 macrophages and THP-1 monocyte leukemia cells. RESULTS Phytochemical investigation of P. ginseng seeds led to the isolation of a novel triterpene saponin, pseudoginsenoside RT8, along with 15 known compounds. Pseudoginsenoside RT8 exhibited more potent antiinflammatory activity than the other saponins, attenuating lipopolysaccharide-mediated induction of proinflammatory genes such as interleukin-1β, interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2, and matrix metalloproteinase-9, and suppressed reactive oxygen species and nitric oxide generation in a dose-dependent manner. CONCLUSION These findings indicate that pseudoginsenoside RT8 has a pharmaceutical potential as an antiinflammatory agent and that P. ginseng seeds are a good natural source for discovering novel bioactive molecules.
Collapse
Affiliation(s)
- Taewoong Rho
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hyun Woo Jeong
- Amorepacific Corp. R&D Unit, Gyeonggi, Republic of Korea
| | - Yong Deog Hong
- Amorepacific Corp. R&D Unit, Gyeonggi, Republic of Korea
| | - Keejung Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kee Dong Yoon
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
18
|
Hao E, Qin J, Wei W, Miao J, Xie Y, Pan X, Wu H, Xie J, Fan X, Du Z, Hou X, Deng J. Identification and Analysis of Components in Yizhi Granule and Cynomolgus Monkey Plasma after Oral Administration by UPLC/ESI-Q-TOF MS and Their Protective Effects on PC12 Cells. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:5165631. [PMID: 32351755 PMCID: PMC7171651 DOI: 10.1155/2020/5165631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/28/2020] [Indexed: 05/08/2023]
Abstract
Yizhi Granule (YZG) is a health food containing six traditional Chinese medicines (TCMs). It improves memory barriers in rat experiments. Here, we describe the first fast and sensitive ultraperformance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOF MS) method for analyzing YZG in plasma. We used this technique for studies in cynomolgus monkey plasma. By comparing retention time, MS, and MS/MS data of reference compounds, 70 compounds were detected in YZG. Of these, 63 were identified including 60 saponins, 2 flavones, and 1 methyl ester. There were 33 saponins, 1 flavone, and 1 methyl ester in the plasma. Next, to study the therapeutic properties of YZG, the neuroprotective effect of some of the absorbed components was evaluated using PC12 cell damage caused by the Aβ 25-35 model. The results showed that 9 compounds protect PC12 cells from Aβ 25-35 with cell viability (%) of 111.00 ± 8.12 (G-Rb1), 102.20 ± 4.22 (G-Rb2), 100.34 ± 6.47 (G-Rd), 102.83 ± 2.10 (G-Re), 101.68 ± 7.64 (NG-Fa), 101.19 ± 7.83 (NG-R1), 102.53 ± 0.55 (NG-R2), 106.88 ± 4.95 (gypenoside A), and 103.95 ± 4.11 (gypenoside XLIX), respectively, versus the control group (87.51 ± 6.59). These results can reveal the real pharmacodynamic basis of YZG and provide a theoretical basis for subsequent studies. It can also provide some references for the research of Alzheimer's disease.
Collapse
Affiliation(s)
- Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Postdoctoral Workstation, Guangxi Institue of Medicinal Plants, Nanning 530023, China
| | - Jianfeng Qin
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jianhua Miao
- Postdoctoral Workstation, Guangxi Institue of Medicinal Plants, Nanning 530023, China
| | - Yan Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Xianglong Pan
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Hangxuan Wu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Xiaosu Fan
- Experimental Center of College of Agriculture, Guangxi University, Nanning 530005, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Postdoctoral Workstation, Guangxi Institue of Medicinal Plants, Nanning 530023, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Postdoctoral Workstation, Guangxi Institue of Medicinal Plants, Nanning 530023, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
- Postdoctoral Workstation, Guangxi Institue of Medicinal Plants, Nanning 530023, China
| |
Collapse
|
19
|
Hu JR, Chun YS, Kim JK, Cho IJ, Ku SK. Ginseng berry aqueous extract prevents scopolamine-induced memory impairment in mice. Exp Ther Med 2019; 18:4388-4396. [PMID: 31772634 PMCID: PMC6862129 DOI: 10.3892/etm.2019.8090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ginseng berry exhibits a diverse range of pharmacological activities. The present study aimed to examine the neuroprotective effects of ginseng berry aqueous extract (GBE) against oxidative stress and to assess the impact of GBE on memory impairment in mice. In HT-22 cells, GBE pretreatment significantly inhibited glutamate- and hydrogen peroxide-mediated cytotoxicity in a concentration-dependent manner, while treatment with up to 100 µg/ml GBE alone did not change cell viability. In a murine model of scopolamine (SCP)-induced memory impairment, results from the passive avoidance test and the Morris water maze test indicated that GBE administration for 4 weeks prolonged step-through latency time and shortened escape latency time, suggesting that GBE can attenuate deficits in long-term memory induced by SCP. Additionally, GBE prevented SCP-induced reductions in acetylcholine by decreasing acetylcholinesterase activity and upregulating choline acetyltransferase mRNA levels in the hippocampus. GBE mitigated SCP-mediated mRNA decreases in brain-derived neurotrophic factor levels and its associated signaling molecules. Furthermore, GBE administration significantly suppressed malondialdehyde production and increased glutathione levels, catalase activity and superoxide dismutase activity in SCP-induced memory impaired mice. Therefore, the results of the current study indicated that ginseng berry may be a potential candidate for treating or preventing memory deficits that are associated with neurodegenerative disorders.
Collapse
Affiliation(s)
- Jin Ryul Hu
- Research Center for Herbal Convergence on Liver Disease, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Yoon Seok Chun
- Central Research Center, Aribio Co., Ltd., Pyeongtaek, Gyeonggi-do 17749, Republic of Korea
| | - Jong Kyu Kim
- Central Research Center, Aribio Co., Ltd., Pyeongtaek, Gyeonggi-do 17749, Republic of Korea
| | - Il Je Cho
- Research Center for Herbal Convergence on Liver Disease, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sae Kwang Ku
- Research Center for Herbal Convergence on Liver Disease, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| |
Collapse
|
20
|
Metabolomics analysis of Xanthoceras sorbifolia husks protection of rats against Alzheimer's disease using liquid chromatography mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121739. [DOI: 10.1016/j.jchromb.2019.121739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
|
21
|
Xu C, Wang W, Wang B, Zhang T, Cui X, Pu Y, Li N. Analytical methods and biological activities of Panax notoginseng saponins: Recent trends. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:443-465. [PMID: 30802611 DOI: 10.1016/j.jep.2019.02.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/02/2019] [Accepted: 02/19/2019] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng (Burk.) F. H. Chen, also called Sanqi, is a widely used traditional Chinese medicine, which has long history used as herbal medicines. It is currently an important medicinal material in China, holding the first place in the sale volume of the whole patent medicines market in China, and the market size of the single species has exceeded 10 billion yuan. In addition, P. notoginseng is an important constituent part of many famous Chinese patent medicines, such as Compound Danshen Dripping Pills and Yunnan Baiyao. P. notoginseng saponins (PNSs), which are the major active components of P. notoginseng, are a kind of chemical mixture containing different dammarane-type saponins. Many studies show that PNSs have been extensively used in medical research or applications, such as atherosclerosis, diabetes, acute lung injury, cancer, and cardiovascular diseases. In addition, various PNS preparations, such as injections and capsules, have been made commercially available and are widely applied in clinical practice. AIM OF THE REVIEW Since the safety and efficacy of compounds are related to their qualitative and quantitative analyses, this review briefly summarizes the analytic approaches for PNSs and their biological effects developed in the last decade. METHODOLOGY This review conducted a systematic search in electronic databases, such as Pubmed, Google Scholar, SciFinder, ISI Web of Science, and CNKI, since 2009. The information provided in this review is based on peer-reviewed papers and patents in either English or Chinese. RESULTS At present, the chromatographic technique remains the most extensively used approach for the identification or quantitation of PNSs, coupled with different detectors, among which the difference mainly lies in their sensitivity and specificity for analyzing various compounds. It is well-known that PNSs have traditionally strong activity on cardiovascular diseases, such as atherosclerosis, intracerebral hemorrhage, or brain injury. The recent studies showed that PNSs also responded to osteoporosis, cancers, diabetes, and drug toxicity. However, some other studies also showed that some PNSs injections and special PNS components might lead to some biological toxicity under certain dosages. CONCLUSION This review may be used as a basis for further research in the field of quantitative and qualitative analyses, and is expected to provide updated and valuable insights into the potential medicinal applications of PNSs.
Collapse
Affiliation(s)
- Congcong Xu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weiwei Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bing Wang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiuming Cui
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province, Kunming 650500, China
| | - Yiqiong Pu
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ning Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Institute of KPC Pharmaceuticals, Inc., Kunming 650100, China.
| |
Collapse
|
22
|
Wang C, Lin H, Yang N, Wang H, Zhao Y, Li P, Liu J, Wang F. Effects of Platycodins Folium on Depression in Mice Based on a UPLC-Q/TOF-MS Serum Assay and Hippocampus Metabolomics. Molecules 2019; 24:molecules24091712. [PMID: 31052597 PMCID: PMC6540008 DOI: 10.3390/molecules24091712] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD), also known as depression, is a state characterized by low mood and aversion to activity. Platycodins Folium (PF) is the dried leaf of Platycodon grandiflorum, with anti-inflammatory and antioxidative activities. Our previous research suggested that PF was rich in flavonoids, phenols, organic acids, triterpenoid saponins, coumarins and terpenoids. This study aimed to investigate the antidepressant effect of PF using lipopolysaccharide (LPS)-induced depressive mice. Several behavior tests (sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST)) and biochemical parameters (IL-6, TNF-α and SOD levels) were used to evaluate the antidepressive effect of PF on LPS-induced depression model. Furthermore, a UPLC-Q/TOF-MS-based metabolomics approach was applied to explore the latent mechanism of PF in attenuating depression. As a result, a total of 21 and 11 metabolites that potentially contribute to MDD progress and PF treatment were identified in serum and hippocampus, respectively. The analysis of metabolic pathways revealed that lipid metabolism, amino acid metabolism, energy metabolism, arachidonic acid metabolism, glutathione metabolism and inositol phosphate metabolism were disturbed in a model of mice undergoing MDD and PF treatment. These results help us to understand the pathogenesis of depression in depth, and to discover targets for clinical diagnosis and treatment. They also provide the possibility of developing PF into an anti-depressantive agent.
Collapse
Affiliation(s)
- Cuizhu Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Na Yang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Han Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China.
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
Razgonova MP, Veselov VV, Zakharenko AM, Golokhvast KS, Nosyrev AE, Cravotto G, Tsatsakis A, Spandidos DA. Panax ginseng components and the pathogenesis of Alzheimer's disease (Review). Mol Med Rep 2019; 19:2975-2998. [PMID: 30816465 PMCID: PMC6423617 DOI: 10.3892/mmr.2019.9972] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/15/2019] [Indexed: 12/02/2022] Open
Abstract
Ginseng is one of the main representatives of traditional Chinese medicine and presents a wide range of pharmacological actions. Ginsenosides are the main class of active compounds found in ginseng. They demonstrate unique biological activity and medicinal value, namely anti-tumour, anti-inflammatory and antioxidant properties, as well as anti-apoptotic properties. Increasing levels of stress in life are responsible for the increased incidence of nervous system diseases. Neurological diseases create a huge burden on the lives and health of individuals. In recent years, studies have indicated that ginsenosides play a pronounced positive role in the prevention and treatment of neurological diseases. Nevertheless, research is still at an early stage of development, and the complex mechanisms of action involved remain largely unknown. This review aimed to shed light into what is currently known about the mechanisms of action of ginsenosides in relation to Alzheimer's disease. Scientific material and theoretical bases for the treatment of nervous system diseases with purified Panax ginseng extracts are also discussed.
Collapse
Affiliation(s)
| | - Valery Vyacheslavovich Veselov
- Center of Bioanalytical Investigation and Molecular Design, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | | | | | - Alexander Evgenyevich Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, I.M. Sechenov First Moscow State Medical University, Moscow 119048, Russia
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
24
|
Davis MP, Behm B. Ginseng: A Qualitative Review of Benefits for Palliative Clinicians. Am J Hosp Palliat Care 2019; 36:630-659. [PMID: 30686023 DOI: 10.1177/1049909118822704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ginseng has been used for centuries to treat various diseases and has been commercially developed and cultivated in the past 300 years. Ginseng products may be fresh, dried (white), or dried and steamed (red). Extracts may be made using water or alcohol. There are over 50 different ginsenosides identified by chromatography. We did an informal systematic qualitative review that centered on fatigue, cancer, dementia, respiratory diseases, and heart failure, and we review 113 studies in 6 tables. There are multiple potential benefits to ginseng in cancer. Ginseng, in certain circumstances, has been shown to improve dementia, chronic obstructive pulmonary disease, and heart failure through randomized trials. Most trials had biases or unknown biases and so most evidence is of low quality. We review the gaps in the evidence and make some recommendations regarding future studies.
Collapse
Affiliation(s)
- Mellar P Davis
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| | - Bertrand Behm
- 1 Palliative Care Department, Knapper Cancer Center, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
25
|
Zhang M, Liu Y, Liu M, Liu B, Li N, Dong X, Hong Z, Chai Y. UHPLC-QTOF/MS-based metabolomics investigation for the protective mechanism of Danshen in Alzheimer's disease cell model induced by Aβ 1-42. Metabolomics 2019; 15:13. [PMID: 30830431 DOI: 10.1007/s11306-019-1473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disorder with neither definitive pathogenesis nor effective therapy so far. Danshen, the dried root and rhizome of Salvia miltiorrhiza Bunge, is used extensively in Alzheimer's disease treatment to ameliorate the symptoms, but the underlying mechanism remains to be clarified. OBJECTIVES To investigate potential biomarkers for AD and elucidate the protective mechanism of Danshen on AD cell model. METHODS An ultra high performance liquid chromatography-quadrupole time of flight mass spectrometry (UHPLC-QTOF/MS)-based approach combined with partial least squares discriminant analysis (PLS-DA) has been developed to discriminate the metabolic modifications between human brain microvascular endothelial cell (hBMEC) and AD cell model induced by amyloid-β protein (Aβ1-42). To further elucidate the pathophysiology of AD, related metabolic pathways have been studied. RESULTS Thirty-three distinct potential biomarkers were screened out and considered as potential biomarkers corresponding to AD, which were mostly improved and partially restored back to normalcy in Danshen pre-protection group. It was found that AD was closely related to disturbed arginine and proline metabolism, glutathione metabolism, alanine aspartate and glutamate metabolism, histidine metabolism, pantothenate and CoA biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis, citrate cycle and glycerophospholipid metabolism, and the protective mechanism of Danshen in AD cell model may be related to partially regulating the perturbed pathways. CONCLUSIONS These outcomes provide valuable evidences for therapeutic mechanism investigation of Danshen in AD treatment, and such an approach could be transferred to unravel the mechanism of other traditional Chinese medicine (TCM) and diseases.
Collapse
Affiliation(s)
- Mingyong Zhang
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Yue Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Min Liu
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Biying Liu
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Na Li
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| | - Zhanying Hong
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China.
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai, 200433, China
| |
Collapse
|
26
|
Characterization of phospholipids from Pacific saury ( Cololabis saira ) viscera and their neuroprotective activity. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Jarrell JT, Gao L, Cohen DS, Huang X. Network Medicine for Alzheimer's Disease and Traditional Chinese Medicine. Molecules 2018; 23:molecules23051143. [PMID: 29751596 PMCID: PMC6099497 DOI: 10.3390/molecules23051143] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative condition that currently has no known cure. The principles of the expanding field of network medicine (NM) have recently been applied to AD research. The main principle of NM proposes that diseases are much more complicated than one mutation in one gene, and incorporate different genes, connections between genes, and pathways that may include multiple diseases to create full scale disease networks. AD research findings as a result of the application of NM principles have suggested that functional network connectivity, myelination, myeloid cells, and genes and pathways may play an integral role in AD progression, and may be integral to the search for a cure. Different aspects of the AD pathology could be potential targets for drug therapy to slow down or stop the disease from advancing, but more research is needed to reach definitive conclusions. Additionally, the holistic approaches of network pharmacology in traditional Chinese medicine (TCM) research may be viable options for the AD treatment, and may lead to an effective cure for AD in the future.
Collapse
Affiliation(s)
- Juliet T Jarrell
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China.
| | - David S Cohen
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
28
|
Li SP, Wang YW, Qi SL, Zhang YP, Deng G, Ding WZ, Ma C, Lin QY, Guan HD, Liu W, Cheng XM, Wang CH. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice. Front Pharmacol 2018; 9:346. [PMID: 29755345 PMCID: PMC5932362 DOI: 10.3389/fphar.2018.00346] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
The analogous β-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more striking than those of HAR, and HAL manifested a comparable antioxidant capacity to HAR. Remarkably, the effective dosage of HAL (2 mg/kg) was far lower than that of HAR (20 mg/kg), which probably due to the evidently differences in the bioavailability and metabolic stability of the two analogs. Taken together, all these results revealed that HAL may be a promising candidate compound with better anti-amnesic effects and pharmacokinetic characteristics for the treatments of AD and related diseases.
Collapse
Affiliation(s)
- Shu-Ping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Yu-Wen Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Sheng-Lan Qi
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Yun-Peng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Wen-Zheng Ding
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Chao Ma
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Qi-Yan Lin
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Hui-Da Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Wei Liu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China
| | - Xue-Mei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China.,Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| | - Chang-Hong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine and The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai, China.,Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, China
| |
Collapse
|
29
|
Niu X, He B, Du Y, Sui Z, Rong W, Wang X, Li Q, Bi K. The investigation of immunoprotective and sedative hypnotic effect of total polysaccharide from Suanzaoren decoction by serum metabonomics approach. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:29-37. [PMID: 29654984 DOI: 10.1016/j.jchromb.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/19/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Suanzaoren decoction, as one of the traditional Chinese medicine prescriptions, has been most commonly used in Asian countries and reported to inhibit the process of immunodeficiency insomnia. Polysaccharide is important component which also contributes to the role of immunoprotective and sedative hypnotic effects. This study was aimed to explore the immunoprotective and sedative hypnotic mechanisms of polysaccharide from Suanzaoren decoction by serum metabonomics approach. With this purpose, complex physical and chemical immunodeficiency insomnia models were firstly established according to its multi-target property. Serum samples were analyzed using UHPLC/Q-TOF-MS spectrometry approach to determine endogenous metabolites. Then, principal component analysis was used to distinguish the groups, and partial least squares discriminate analysis was carried out to confirm the important variables. The serum metabolic profiling was identified and pathway analysis was performed after the total polysaccharide administration. The twenty-one potential biomarkers were screened, and the levels were all reversed to different degrees in the total polysaccharide treated groups. These potential biomarkers were mainly related to vitamin, sphingolipid, bile acid, phospholipid and acylcarnitine metabolisms. The result has indicated that total polysaccharide could inhibit insomnia triggered by immunodeficiency stimulation through regulating those metabolic pathways. This study provides a useful approach for exploring the mechanism and evaluating the efficacy of total polysaccharide from Suanzaoren decoction.
Collapse
Affiliation(s)
- Xiaoyi Niu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Bosai He
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yiyang Du
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhenyu Sui
- China Food and Drug Administration Institute of Executive Development, 16 Xizhannan Road, Beijing 100073, China
| | - Weiwei Rong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xiaotong Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|