1
|
Keserű D, Hajnik T, Pethő M, Détári L, Van Den Bossche M, Tóth A. Simultaneous activation of different subtypes of dopamine receptors may lead to activation of homeostatic sleep regulatory mechanisms. Pharmacol Biochem Behav 2025; 248:173954. [PMID: 39798808 DOI: 10.1016/j.pbb.2025.173954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/06/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Dopaminergic system gains importance in homeostatic sleep regulation, but the role of different dopamine receptors is not well-defined. 72 h rat electrocorticogram and sleep recordings were made after single application of dopaminergic drugs in clinical use or at least underwent clinical trials. The non-selective agonist apomorphine evoked short pharmacological sleep deprivation with intense wakefulness followed by pronounced sleep rebound. D2 agonist bromocriptine induced moderate and extended increase in wakefulness without a homeostatic sleep replacement but downregulated slow wave sleep need for 72 h. Selective D1 agonist SKF-38393 failed to induce enhanced waking sufficient for sleep replacement. High-dose D2 antagonism by sulpiride temporarily enhanced wakefulness. All drugs evoked extended (72 h) sleep changes after single application. Opposite sleep changes could be seen after the application of different doses in case of both bromocriptine and sulpiride. Theta, beta and gamma power reflected intensity differences in drug-induced wakefulness stages. Apomorphine- and high sulpiride dose-induced waking showed elevated power in all three frequency bands. Bromocriptine-induced wakefulness dominated by beta activity. Enhancement of more, than one type of electrocorticogram activities during wakefulness was a prerequisite for the activation of sleep homeostasis. According to present data, D1- or D2-like receptor agonism are not separately involved in the homeostatic regulation of slow wave sleep. Simultaneous and non-selective agonism on DA receptors is the most effective way to elicit intense W, which is followed by slow wave sleep rebound. REM sleep rebound could be evoked by D2 agonism. Rebound indicates the activation of homeostatic sleep regulation, but with unknown exact mechanisms.
Collapse
MESH Headings
- Animals
- Rats
- Homeostasis/drug effects
- Male
- Sleep/drug effects
- Sleep/physiology
- Bromocriptine/pharmacology
- Dopamine Agonists/pharmacology
- Wakefulness/drug effects
- Wakefulness/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D2/physiology
- Apomorphine/pharmacology
- Rats, Wistar
- Sulpiride/pharmacology
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/drug effects
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Receptors, Dopamine D1/agonists
- Electrocorticography
- Sleep Deprivation/physiopathology
- Electroencephalography
Collapse
Affiliation(s)
- Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary
| | - Maarten Van Den Bossche
- Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven, Belgium; Neuropsychiatry, Research Group Psychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Hungary.
| |
Collapse
|
2
|
Ontiveros-Araiza LF. The Neurobehavioral State hypothesis. Biosystems 2025; 247:105361. [PMID: 39521269 DOI: 10.1016/j.biosystems.2024.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/02/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Since the early attempts to understand the brain made by Greek philosophers more than 2000 years ago, one of the main questions in neuroscience has been how the brain perceives all the stimuli in the environment and uses this information to implement a response. Recent hypotheses of the neural code rely on the existence of an ideal observer, whether on specific areas of the cerebral cortex or distributed network composed of cortical and subcortical elements. The Neurobehavioral State hypothesis stipulates that neurons are in a quasi-stable state due to the dynamic interaction of their molecular components. This increases their computational capabilities and electrophysiological behavior further than a binary active/inactive state. Together, neuronal populations across the brain learn to identify and associate internal and external stimuli with actions and emotions. Furthermore, such associations can be stored through the regulation of neuronal components as new quasi-stable states. Using this framework, behavior arises as the result of the dynamic interaction between internal and external stimuli together with previously established quasi-stable states that delineate the behavioral response. Finally, the Neurobehavioral State hypothesis is firmly grounded on present evidence of the complex dynamics within the brain, from the molecular to the network level, and avoids the need for a central observer by proposing the brain configures itself through experience-driven associations.
Collapse
Affiliation(s)
- Luis Fernando Ontiveros-Araiza
- Department of Cognitive Neuroscience, Division of Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
3
|
Galindo-Charles L, Reyes-Legorreta C, Garduño J, Galarraga E, Tapia D, Hernández-López S. The activation of D2-like dopamine receptors increases NMDA currents in the dorsal raphe serotonergic neurons. Neurosci Lett 2024; 839:137933. [PMID: 39128818 DOI: 10.1016/j.neulet.2024.137933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The dorsal raphe nucleus (DRN) receives dopaminergic inputs from the ventral tegmental area (VTA). Also, the DRN contains a small population of cells that express dopamine (DRNDA neurons). However, the physiological role of dopamine (DA) in the DRN and its interaction with serotonergic (5-HT) neurons is poorly understood. Several works have reported moderate levels of D1, D2, and D3 DA receptors in the DRN. Furthermore, it was found that the activation of D2 receptors increased the firing of putative 5-HT neurons. Other studies have reported that D1 and D2 dopamine receptors can interact with glutamate NMDA receptors, modulating the excitability of different cell types. In the present work, we used immunocytochemical techniques to determine the kind of DA receptors in the DRN. Additionally, we performed electrophysiological experiments in brainstem slices to study the effect of DA agonists on NMDA-elicited currents recorded from identified 5-HT DRN neurons. We found that D2 and D3 but not D1 receptors are present in this nucleus. Also, we demonstrated that the activation of D2-like receptors increases NMDA-elicited currents in 5-HT neurons through a mechanism involving phospholipase C (PLC) and protein kinase C (PKC) enzymes. Possible physiological implications related to the sleep-wake cycle are discussed.
Collapse
Affiliation(s)
- L Galindo-Charles
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - C Reyes-Legorreta
- Laboratorio de Neuroprotección, Instituto Nacional de Rehabilitación-LGII, Ciudad de México 14389, Mexico
| | - J Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - E Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - D Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico
| | - S Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico.
| |
Collapse
|
4
|
Simon SL, Snell-Bergeon JK, Schäfer M, Barker AJ, Browne LP, Truong U, Tell SS, Vigers T, Baumgartner AD, Lyon E, Polsky S, Schauer IE, Nadeau KJ. Sleep duration and association with cardiometabolic health in adolescents and adults with type 1 diabetes: Results from the BCQR-T1D study. Diabetes Obes Metab 2024; 26:2662-2672. [PMID: 38584515 PMCID: PMC11150084 DOI: 10.1111/dom.15582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 04/09/2024]
Abstract
AIM Type 1 diabetes (T1D) increases the risk of morbidity and mortality from cardiovascular disease, and insufficient sleep is prevalent. Emerging evidence suggests a link between sleep and cardiometabolic health, but this has not been examined across the lifespan in individuals with T1D. We aimed to examine associations between sleep and cardiometabolic health in adolescents and adults with T1D in a secondary analysis of data from a 4-week double-blind, random-order, placebo-controlled crossover trial of bromocriptine quick release (BCQR) therapy with a 4-week washout in between conditions. MATERIALS AND METHODS Forty-two adults (19-60 years) and 42 adolescents (12-18 years) with T1D >9 months completed 1 week of home monitoring with wrist-worn actigraphy to estimate sleep duration and continuous glucose monitoring, anthropometrics, arterial stiffness, magnetic resonance imaging (adolescents only), and fasting laboratory testing at each treatment phase. RESULTS Sixty-two per cent of adolescents and 74% of adults obtained <7 h of sleep per night at baseline. After adjustment for age, sex and diabetes duration, baseline sleep <7 h per night was associated with a higher body mass index, a higher waist circumference, a higher systolic blood pressure, worse arterial stiffness and a lower estimated insulin sensitivity (all p < .05). When examined by age group, associations between sleep duration and cardiometabolic health outcomes remained significant, predominantly for adolescents. In adolescents only, wake time was significantly later (p = .027) and time in bed was significantly longer with BCQR versus placebo (p = .049). CONCLUSIONS Objectively measured sleep <7 h per night was prevalent in adolescents and adults with T1D and associated with poorer cardiometabolic health markers. Small changes in sleep were seen following BCQR treatment in adolescents only. Sleep may be an important and novel target for improving cardiometabolic health in individuals with T1D.
Collapse
Affiliation(s)
- Stacey L. Simon
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Janet K. Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora CO USA
| | - Michal Schäfer
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Alex J Barker
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Lorna P Browne
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Uyen Truong
- Department of Cardiology, Children’s National Hospital, Washington, DC USA
| | - Shoshana S. Tell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Timothy Vigers
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Amy D. Baumgartner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Ellen Lyon
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO USA
| | - Sarit Polsky
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora CO USA
| | - Irene E. Schauer
- Department of Medicine, University of Colorado Anschutz Medical Campus and Endocrinology Section, Rocky Mountain Regional VA Medical Center, Aurora, CO USA
| | - Kristen J. Nadeau
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
5
|
Xi H, Wu W, Qin S, Wang X, Liu C. Effects of electroacupuncture on the ventral tegmental area- nucleus accumbens dopamine pathway in rats with chronic sleep deprivation. Acupunct Med 2023; 41:336-344. [PMID: 36655631 DOI: 10.1177/09645284221146197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Insomnia is a well-recognized clinical sleep disorder in the adult population. It has been established that acupuncture has a clinical effects in the treatment of insomnia; however, research on the underlying neural circuits involved in these effects is limited. METHODS The modified multiple platform method (MMPM) was used to establish a rat model of chronic sleep deprivation (CSD). Forty rats were randomly divided into a control (Con) group, (untreated) CSD group, electroacupuncture-treated CSD group (CSD + EA) and estazolam-treated CSD group (CSD + Estazolam group) with n = 10 per group. In the CSD + EA group, EA was delivered at Yintang and unilateral HT7 (left and right treated every other day) with continuous waves (2 Hz frequency) for 30 min/day over 7 consecutive days. In the CSD + Estazolam groups, estazolam was administered by oral gavage (0.1 mg/kg) for 7 consecutive days. The open field test (OFT) was used to observe behavioral changes. Immunofluorescence assays and enzyme-linked immunosorbent assay (ELISA) were used to observe the effects of EA on the ventral tegmental area (VTA)-nucleus accumbens (NAc) dopamine (DA) pathway. We also assessed the effects of EA on the expression of dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R) in the NAc, which are the downstream targets of the VTA-NAc DA pathway. RESULTS After CSD was established by MMPM, rats exhibited increased autonomous activity and increased excitability of the VTA-NAc DA pathway, with increased VTA and NAc DA content, increased D1R expression and decreased D2R expression in the NAc. EA appeared to reduce the autonomous ability of CSD rats, leading to lower DA content in the VTA and NAc, reduced expression of D1R in the NAc and increased expression of D2R. Most importantly, EA produced effects similar to estazolam with respect to the general condition of rats with CSD and regulation of the VTA-NAc DA pathway. CONCLUSIONS The therapeutic effect of EA in chronic insomnia may be mediated by reduced excitability of the VTA-NAc DA pathway, with lower DA content in the VTA and NAc, downregulated expression of D1R in the NAc and increased expression of D2R.
Collapse
Affiliation(s)
- Hanqing Xi
- Department of Acupuncture-Moxibustion and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenzhong Wu
- Department of Acupuncture-Moxibustion and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shan Qin
- Department of Acupuncture-Moxibustion and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqiu Wang
- Physical Examination Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengyong Liu
- Department of Acupuncture-Moxibustion and Rehabilitation, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Niu L, Hao M, Wang Y, Wu K, Yuan C, Zhang Y, Zhang J, Liang X, Zhang Y. Dopamine D2-receptor neurons in nucleus accumbens regulate sevoflurane anesthesia in mice. Front Mol Neurosci 2023; 16:1287160. [PMID: 38089676 PMCID: PMC10713730 DOI: 10.3389/fnmol.2023.1287160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2024] Open
Abstract
INTRODUCTION The mechanism of general anesthesia remains elusive. In recent years, numerous investigations have indicated that its mode of action is closely associated with the sleep-wake pathway. As a result, this study aimed to explore the involvement of dopamine D2 receptor (D2R) expressing neurons located in the nucleus accumbens (NAc), a critical nucleus governing sleep-wake regulation, in sevoflurane anesthesia. METHODS This exploration was carried out using calcium fiber photometry and optogenetics technology, while utilizing cortical electroencephalogram (EEG), loss of righting reflex (LORR), and recovery of righting reflex (RORR) as experimental indicators. RESULTS The findings from calcium fiber photometry revealed a decrease in the activity of NAcD2R neurons during the induction phase of sevoflurane anesthesia, with subsequent recovery observed during the anesthesia's emergence phase. Moreover, the activation of NAcD2R neurons through optogenetics technology led to a reduction in the anesthesia induction process and an extension of the arousal process in mice. Conversely, the inhibition of these neurons resulted in the opposite effect. Furthermore, the activation of NAcD2R neurons projecting into the ventral pallidum (VP) via optogenetics demonstrated a shortened induction time for mice under sevoflurane anesthesia. DISCUSSION In conclusion, our research outcomes suggest that NAcD2R neurons play a promotive role in the sevoflurane general anesthesia process in mice, and their activation can reduce the induction time of anesthesia via the ventral pallidum (VP).
Collapse
Affiliation(s)
- Li Niu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Mengnan Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Yanhong Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Kai Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Wang J, Miao X, Sun Y, Li S, Wu A, Wei C. Dopaminergic System in Promoting Recovery from General Anesthesia. Brain Sci 2023; 13:brainsci13040538. [PMID: 37190503 DOI: 10.3390/brainsci13040538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Dopamine is an important neurotransmitter that plays a biological role by binding to dopamine receptors. The dopaminergic system regulates neural activities, such as reward and punishment, memory, motor control, emotion, and sleep-wake. Numerous studies have confirmed that the dopaminergic system has the function of maintaining wakefulness in the body. In recent years, there has been increasing evidence that the sleep-wake cycle in the brain has similar neurobrain network mechanisms to those associated with the loss and recovery of consciousness induced by general anesthesia. With the continuous development and innovation of neurobiological techniques, the dopaminergic system has now been proved to be involved in the emergence from general anesthesia through the modulation of neuronal activity. This article is an overview of the dopaminergic system and the research progress into its role in wakefulness and general anesthesia recovery. It provides a theoretical basis for interpreting the mechanisms regulating consciousness during general anesthesia.
Collapse
Affiliation(s)
- Jinxu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaolei Miao
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Sijie Li
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
8
|
Ji Q, Li SJ, Zhao JB, Xiong Y, Du XH, Wang CX, Lu LM, Tan JY, Zhu ZR. Genetic and neural mechanisms of sleep disorders in children with autism spectrum disorder: a review. Front Psychiatry 2023; 14:1079683. [PMID: 37200906 PMCID: PMC10185750 DOI: 10.3389/fpsyt.2023.1079683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/13/2023] [Indexed: 05/20/2023] Open
Abstract
Background The incidence of sleep disorders in children with autism spectrum disorder (ASD) is very high. Sleep disorders can exacerbate the development of ASD and impose a heavy burden on families and society. The pathological mechanism of sleep disorders in autism is complex, but gene mutations and neural abnormalities may be involved. Methods In this review, we examined literature addressing the genetic and neural mechanisms of sleep disorders in children with ASD. The databases PubMed and Scopus were searched for eligible studies published between 2013 and 2023. Results Prolonged awakenings of children with ASD may be caused by the following processes. Mutations in the MECP2, VGAT and SLC6A1 genes can decrease GABA inhibition on neurons in the locus coeruleus, leading to hyperactivity of noradrenergic neurons and prolonged awakenings in children with ASD. Mutations in the HRH1, HRH2, and HRH3 genes heighten the expression of histamine receptors in the posterior hypothalamus, potentially intensifying histamine's ability to promote arousal. Mutations in the KCNQ3 and PCDH10 genes cause atypical modulation of amygdala impact on orexinergic neurons, potentially causing hyperexcitability of the hypothalamic orexin system. Mutations in the AHI1, ARHGEF10, UBE3A, and SLC6A3 genes affect dopamine synthesis, catabolism, and reuptake processes, which can elevate dopamine concentrations in the midbrain. Secondly, non-rapid eye movement sleep disorder is closely related to the lack of butyric acid, iron deficiency and dysfunction of the thalamic reticular nucleus induced by PTCHD1 gene alterations. Thirdly, mutations in the HTR2A, SLC6A4, MAOA, MAOB, TPH2, VMATs, SHANK3, and CADPS2 genes induce structural and functional abnormalities of the dorsal raphe nucleus (DRN) and amygdala, which may disturb REM sleep. In addition, the decrease in melatonin levels caused by ASMT, MTNR1A, and MTNR1B gene mutations, along with functional abnormalities of basal forebrain cholinergic neurons, may lead to abnormal sleep-wake rhythm transitions. Conclusion Our review revealed that the functional and structural abnormalities of sleep-wake related neural circuits induced by gene mutations are strongly correlated with sleep disorders in children with ASD. Exploring the neural mechanisms of sleep disorders and the underlying genetic pathology in children with ASD is significant for further studies of therapy.
Collapse
Affiliation(s)
- Qi Ji
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Si-Jia Li
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Jun-Bo Zhao
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Yun Xiong
- Department of Psychology, Army Medical University, Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Xiao-Hui Du
- Department of Psychology, Army Medical University, Chongqing, China
| | - Chun-Xiang Wang
- Department of Psychology, Army Medical University, Chongqing, China
| | - Li-Ming Lu
- College of Educational Sciences, Chongqing Normal University, Chongqing, China
| | - Jing-Yao Tan
- College of Educational Sciences, Chongqing Normal University, Chongqing, China
| | - Zhi-Ru Zhu
- Department of Psychology, Army Medical University, Chongqing, China
- *Correspondence: Zhi-Ru Zhu,
| |
Collapse
|
9
|
Zhang J, Li J, Liu C, Gui H, Yuan C, Zhang Y. The role of intracerebral dopamine D1 and D2 receptors in sleep-wake cycles and general anesthesia. IBRAIN 2022; 8:48-54. [PMID: 37786416 PMCID: PMC10528804 DOI: 10.1002/ibra.12024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 10/04/2023]
Abstract
Dopamine (DA), a monoamine neurotransmitter, is synthesized and released mainly by neurons in the ventral tegmental area and the substantia nigra (SN) pars compacta of the midbrain. DA and its receptors are essential for the regulation of arousal, movement, cognition, reward, and other neurobiological behaviors. Arousal, locomotion, cognition, reward, and other neurobiological functions are all regulated by dopamine and its receptors. Dopamine receptors can be divided into D1-like receptors (including D1 and D5) or D2-like receptors (containing D2, D3, and D4), with D1 and D2 receptors (D1Rs, and D2Rs) being the most important. Currently, studies indicated that D1Rs and D2Rs are tightly involved with the process of sleep-wake and general anesthesia, but the specific mechanism remains unclear. In this review, we compiled the most recent findings, mainly focusing on the structure, distribution, and signal pathway of D1Rs and D2Rs in the central nervous system, as well as the involvement of D1Rs and D2Rs in sleep-wake and general anesthesia. Thus, the investigations of the D1Rs and D2Rs will benefit not only better knowledge for how sleep-wake control works but also the mechanism of general anesthesia.
Collapse
Affiliation(s)
- Jie Zhang
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Jia Li
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Cheng‐Xi Liu
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Huan Gui
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Cheng‐Dong Yuan
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Yi Zhang
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| |
Collapse
|
10
|
Murillo-Rodríguez E. The Endocannabinoid System as Prognostic Biomarker of the Obstructive Sleep Apnea Morbidity in COVID-19-Recovered Individuals. SLEEP AND VIGILANCE 2021; 5:205-211. [PMID: 34604693 PMCID: PMC8475390 DOI: 10.1007/s41782-021-00169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
The endocannabinoid system is a neurobiological signaling network that is present in the human biological systems, including the brain. This neurobiological system comprises cannabinoid receptors, endogenous ligands, as well as enzymatic synthesis, degradation and transport of endocannabinoids and has been suggested as a modulator of multiple physiological processes, including the sleep–wake cycle. On the other hand, the COVID-19 pandemic, originated by the novel coronavirus SARS-CoV-2, has caused global catastrophes in economic, social, and health spheres. COVID-19 is a multi-organ disease with a broad spectrum of health complications, such as respiratory infections leading to respiratory-related symptoms and disorders. The development, approval, and application of vaccines against SARS-CoV-2 is ongoing; however, there are increasing reports of prolonged effects after COVID-19 infection, including respiratory and neurological sequelae. Here, I provide a comprehensive review of the current literature on the endocannabinoid system and their role in sleep modulation. Whilst I discuss relevant considerations for the high risk for developing sleep disorders related to respiratory failures, such as obstructive sleep apnea (OSA) in recovered COVID-19-infected subjects. Finally, I propose a framework that integrates the analysis of the components of the endocannabinoid system as prognostic biomarkers of the likely OSA after COVID-19 infection.
Collapse
|
11
|
Trace amine-associated receptor 1 (TAAR1): Potential application in mood disorders: A systematic review. Neurosci Biobehav Rev 2021; 131:192-210. [PMID: 34537265 DOI: 10.1016/j.neubiorev.2021.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
There is a need for innovation with respect to therapeutics in psychiatry. Available evidence indicates that the trace amine-associated receptor 1 (TAAR1) agonist SEP-363856 is promising, as it improves measures of cognitive and reward function in schizophrenia. Hedonic and cognitive impairments are transdiagnostic and constitute major burdens in mood disorders. Herein, we systematically review the behavioural and genetic literature documenting the role of TAAR1 in reward and cognitive function, and propose a mechanistic model of TAAR1's functions in the brain. Notably, TAAR1 activity confers antidepressant-like effects, enhances attention and response inhibition, and reduces compulsive reward seeking without impairing normal function. Further characterization of the responsible mechanisms suggests ion-homeostatic, metabolic, neurotrophic, and anti-inflammatory enhancements in the limbic system. Multiple lines of evidence establish the viability of TAAR1 as a biological target for the treatment of mood disorders. Furthermore, the evidence suggests a role for TAAR1 in reward and cognitive function, which is attributed to a cascade of events that are relevant to the cellular integrity and function of the central nervous system.
Collapse
|
12
|
Effects of Electroacupuncture on Sleep via the Dopamine System of the HPA Axis in Rats after Cage Change. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5527060. [PMID: 34306138 PMCID: PMC8270700 DOI: 10.1155/2021/5527060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/13/2021] [Indexed: 11/17/2022]
Abstract
Background Insomnia is often related to stressful events. The hypothalamus-pituitary-adrenal (HPA) axis is related to stress, and dopamine (DA) and DA receptors are involved in the regulation of HPA axis. Electroacupuncture (EA) can improve sleep in individuals with insomnia, but the mechanism is unclear. We demonstrated that EA can improve sleep in rats after cage change through DA and the DA receptors in the HPA axis. Methods A rat model of insomnia was established by cage change to a dirty cage. The rats in treatment groups were intervened by EA and D1R (or D2R) antagonists. Electroencephalography (EEG) and electromyogram (EMG) were recorded to compare the changes in sleep. The DA, corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol (CORT) levels in the plasma and hypothalamus were measured by ELISAs, and the D1R and D2R levels were measured by RT-PCR and immunohistochemistry. Results The dirty group showed a significant increase in the amount of wakefulness and decrease in the amount of NREM sleep, with decreased numbers of long NREM sleep bouts and REM sleep bouts and increased mean duration of wakefulness during the light period. EA and D1R (or D2R) antagonists intervention could improve sleep disturbance by decreasing wakefulness in the light period after cage change, EA and D1R (or D2R) antagonists could increase the hypothalamus DA, CRH, ACTH, CORT level, and the D1R and D2R mRNA levels in the HPA axis, and the effect of EA plus D1R (or D2R) antagonist was not superior to that of EA or D1R (or D2R) antagonists alone. Conclusions EA can improve the sleep of rats after cage change, and the mechanism may be related to the regulation of DA and D1R or D2R in the HPA axis.
Collapse
|
13
|
Yang B, Ao Y, Liu Y, Zhang X, Li Y, Tang F, Xu H. Activation of Dopamine Signals in the Olfactory Tubercle Facilitates Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2021; 46:1487-1501. [PMID: 33710536 DOI: 10.1007/s11064-021-03291-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 11/28/2022]
Abstract
Activation of dopamine (DA) neurons is essential for the transition from sleep to wakefulness and maintenance of awakening, and sufficient to accelerate the emergence from general anesthesia in animals. Dopamine receptors (DR) are involve in arousal mediation. In the present study, we showed that the olfactory tubercle (OT) was active during emergence from isoflurane anesthesia, local injection of dopamine D1 receptor (D1R) agonist chloro-APB (1 mg/mL) and D2 receptor (D2R) agonist quinpirole (1 mg/mL) into OT enhanced behavioural and cortical arousal from isoflurane anesthesia, while D1R antagonist SCH-23390 (1 mg/mL) and D2R antagonist raclopride (2.5 mg/mL) prolonged recovery time. Optogenetic activation of DAergic terminals in OT also promoted behavioural and cortical arousal from isoflurane anesthesia. However, neither D1R/D2R agonists nor D1R/D2R antagonists microinjection had influences on the induction of isoflurane anesthesia. Optogenetic stimulation on DAergic terminals in OT also had no impact on the anesthesia induction. Our results indicated that DA signals in OT accelerated emergence from isoflurane anesthesia. Furthermore, the induction of general anesthesia, different from the emergence process, was not mediated by the OT DAergic pathways.
Collapse
Affiliation(s)
- Bo Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xuefen Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
14
|
Targeted mutagenesis in the olive flounder (Paralichthys olivaceus) using the CRISPR/Cas9 system with electroporation. Biologia (Bratisl) 2021. [DOI: 10.2478/s11756-020-00677-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Ao Y, Yang B, Zhang C, Li S, Xu H. Application of quinpirole in the paraventricular thalamus facilitates emergence from isoflurane anesthesia in mice. Brain Behav 2021; 11:e01903. [PMID: 33128305 PMCID: PMC7821568 DOI: 10.1002/brb3.1903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/06/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Dopamine is well-known to contribute to emergence from anesthesia. Previous studies have demonstrated that the paraventricular thalamus (PVT) in the midline nuclei is crucial for wakefulness. Moreover, the PVT receives dopaminergic projections from the brainstem. Therefore, we hypothesize that the dopaminergic signaling in the PVT plays a role in emergence from isoflurane anesthesia. METHODS We used c-Fos immunohistochemistry to reveal the activity of PVT neurons in three groups: The first group (iso+ EM- ) underwent the anesthesia protocol and was sacrificed before emergence. The second group (iso+ EM+ ) underwent passive emergence from the same anesthesia protocol. The last group (oxy+ ) received oxygen. D2-like agonist quinpirole (2 or 4 mM) or D2-like antagonist raclopride (2 or 5 mM) was microinjected into the PVT, and their effects on emergence and induction time were analyzed. Surface cortical electroencephalogram (EEG) recordings were used to explore the effects of quinpirole injection into the PVT on cortical excitability during isoflurane anesthesia. The activity of PVT neurons after quinpirole injection was assessed by c-Fos immunohistochemistry. RESULTS The number of c-Fos-positive nuclei for the iso+ EM+ group was significantly higher than the oxy+ and iso+ EM- groups. Application of quinpirole (4 mM) into the PVT shortened emergence time compared with the saline group (p < .01). In contrast, administration of raclopride (2 mM) delayed emergence time (p < .05). Neither quinpirole nor raclopride exerted an effect on induction time. EEG analyses showed that quinpirole (4 mM) decreased the burst suppression ratio during isoflurane anesthesia (p < .01). The number of c-Fos-positive nuclei for the quinpirole (4 mM) group was significantly higher than saline group (p < .01). CONCLUSIONS Our findings suggest that the activity of PVT neurons is enhanced after emergence from anesthesia, and the dopaminergic signaling in the PVT may facilitate emergence from isoflurane anesthesia.
Collapse
Affiliation(s)
- Yawen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Bo Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Caiju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Song SY, Li Y, Zhai XM, Li YH, Bao CY, Shan CJ, Hong J, Cao JL, Zhang LC. Connection Input Mapping and 3D Reconstruction of the Brainstem and Spinal Cord Projections to the CSF-Contacting Nucleus. Front Neural Circuits 2020; 14:11. [PMID: 32296310 PMCID: PMC7136615 DOI: 10.3389/fncir.2020.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 01/04/2023] Open
Abstract
Objective To investigate whether the CSF-contacting nucleus receives brainstem and spinal cord projections and to understand the functional significance of these connections. Methods The retrograde tracer cholera toxin B subunit (CB) was injected into the CSF-contacting nucleus in Sprague-Dawley rats according the previously reported stereotaxic coordinates. After 7–10 days, these rats were perfused and their brainstem and spinal cord were sliced (thickness, 40 μm) using a freezing microtome. All the sections were subjected to CB immunofluorescence staining. The distribution of CB-positive neuron in different brainstem and spinal cord areas was observed under fluorescence microscope. Results The retrograde labeled CB-positive neurons were found in the midbrain, pons, medulla oblongata, and spinal cord. Four functional areas including one hundred and twelve sub-regions have projections to the CSF-contacting nucleus. However, the density of CB-positive neuron distribution ranged from sparse to dense. Conclusion Based on the connectivity patterns of the CSF-contacting nucleus receives anatomical inputs from the brainstem and spinal cord, we preliminarily conclude and summarize that the CSF-contacting nucleus participates in pain, visceral activity, sleep and arousal, emotion, and drug addiction. The present study firstly illustrates the broad projections of the CSF-contacting nucleus from the brainstem and spinal cord, which implies the complicated functions of the nucleus especially for the unique roles of coordination in neural and body fluids regulation.
Collapse
Affiliation(s)
- Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Meng Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Hao Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Yi Bao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Cheng-Jing Shan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jia Hong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|