1
|
Tabari F, Patron C, Cryer H, Johari K. HD-tDCS over left supplementary motor area differentially modulated neural correlates of motor planning for speech vs. limb movement. Int J Psychophysiol 2024; 201:112357. [PMID: 38701898 DOI: 10.1016/j.ijpsycho.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The supplementary motor area (SMA) is implicated in planning, execution, and control of speech production and limb movement. The SMA is among putative generators of pre-movement EEG activity which is thought to be neural markers of motor planning. In neurological conditions such as Parkinson's disease, abnormal pre-movement neural activity within the SMA has been reported during speech production and limb movement. Therefore, this region can be a potential target for non-invasive brain stimulation for both speech and limb movement. The present study took an initial step in examining the application of high-definition transcranial direct current stimulation (HD-tDCS) over the left SMA in 24 neurologically intact adults. Subsequently, event-related potentials (ERPs) were recorded while participants performed speech and limb movement tasks. Participants' data were collected in three counterbalanced sessions: anodal, cathodal and sham HD-tDCS. Relative to sham stimulation, anodal, but not cathodal, HD-tDCS significantly attenuated ERPs prior to the onset of the speech production. In contrast, neither anodal nor cathodal HD-tDCS significantly modulated ERPs prior to the onset of limb movement compared to sham stimulation. These findings showed that neural correlates of motor planning can be modulated using HD-tDCS over the left SMA in neurotypical adults, with translational implications for neurological conditions that impair speech production. The absence of a stimulation effect on ERPs prior to the onset of limb movement was not expected in this study, and future studies are warranted to further explore this effect.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Celeste Patron
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Hope Cryer
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Johari K, Berger JI. Theta oscillations within right dorsolateral prefrontal cortex contribute differently to speech versus limb inhibition. J Neurosci Res 2024; 102:e25298. [PMID: 38361410 DOI: 10.1002/jnr.25298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024]
Abstract
Evidence suggests that speech and limb movement inhibition are subserved by common neural mechanisms, particularly within the right prefrontal cortex. In a recent study, we found that cathodal stimulation of right dorsolateral prefrontal cortex (rDLPFC) differentially modulated P3 event-related potentials for speech versus limb inhibition. In the present study, we further analyzed these data to examine the effects of cathodal high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC on frontal theta - an oscillatory marker of cognitive control - in response to speech and limb inhibition, during a Go/No-Go task in 21 neurotypical adults. Electroencephalography data demonstrated that both speech and limb No-Go elicited prominent theta activity over right prefrontal electrodes, with stronger activity for speech compared to limb. Moreover, we found that cathodal stimulation significantly increased theta power over right prefrontal electrodes for speech versus limb No-Go. Source analysis revealed that cathodal, but not sham, stimulation increased theta activity within rDLPFC and bilateral premotor cortex for speech No-Go compared to limb movement inhibition. These findings complement our previous report and suggest (1) right prefrontal theta activity is an amodal oscillatory mechanism supporting speech and limb inhibition, (2) larger theta activity in prefrontal electrodes for speech versus limb following cathodal stimulation may reflect allocation of additional neural resources for a more complex motor task, such as speech compared to limb movement. These findings have translational implications for conditions such as Parkinson's disease, wherein both speech and limb movement are impaired.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel I Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Johari K, Berger JI. High-definition transcranial direct current stimulation over right dorsolateral prefrontal cortex differentially modulates inhibitory mechanisms for speech vs. limb movement. Psychophysiology 2023; 60:e14289. [PMID: 36883294 DOI: 10.1111/psyp.14289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/25/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Evidence suggests that planning and execution of speech and limb movement are subserved by common neural substrates. However, less is known about whether they are supported by a common inhibitory mechanism. P3 event-related potentials (ERPs) is a neural signature of motor inhibition, which are found to be generated by several brain regions including the right dorsolateral prefrontal cortex (rDLPFC). However, the relative contribution of rDLPFC to the P3 response associated with speech versus limb inhibition remains elusive. We investigated the contribution of rDLPFC to the P3 underlying speech versus limb movement inhibition. Twenty-one neurotypical adults received both cathodal and sham high-definition transcranial direct current stimulation (HD-tDCS) over rDLPFC. ERPs were subsequently recorded while subjects were performing speech and limb Go/No-Go tasks. Cathodal HD-tDCS decreased accuracy for speech versus limb No-Go. Both speech and limb No-Go elicited a similar topographical distribution of P3, with significantly larger amplitudes for speech versus limb at a frontocentral location following cathodal HD-tDCS. Moreover, results showed stronger activation in cingulate cortex and rDLPFC for speech versus limb No-Go following cathodal HD-tDCS. These results indicate (1) P3 is an ERP marker of amodal inhibitory mechanisms that support both speech and limb inhibition, (2) larger P3 for speech versus limb No-Go following cathodal HD-tDCS may reflect the recruitment of additional neural resources-particularly within rDLPFC and cingulate cortex-as compensatory mechanisms to counteract the temporary stimulation-induced decline in speech inhibitory process. These findings have translational implications for neurological conditions that concurrently affect speech and limb movement.
Collapse
Affiliation(s)
- Karim Johari
- Human Neurophysiology and Neuromodulation Laboratory, Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joel I Berger
- Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Rohl A, Gutierrez S, Johari K, Greenlee J, Tjaden K, Roberts A. Speech dysfunction, cognition, and Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:153-173. [PMID: 35248193 PMCID: PMC11321444 DOI: 10.1016/bs.pbr.2022.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Communication difficulties are a ubiquitous symptom of Parkinson's disease and include changes to both motor speech and language systems. Communication challenges are a significant driver of lower quality of life. They are associated with decreased communication participation, social withdrawal, and increased risks for social isolation and stigmatization in persons with Parkinson's disease. Recent theoretical advances and experimental evidence underscore the intersection of cognition and motor processes in speech production and their impact on spoken language. This chapter overviews a growing evidence base demonstrating that cognitive impairments interact with motor changes in Parkinson's disease to negatively affect communication abilities in myriad ways, at all stages of the disease, both in the absence and presence of dementia. The chapter highlights common PD interventions (pharmacological, surgical, and non-pharmacological) and how cognitive influences on speech production outcomes are considered in each.
Collapse
Affiliation(s)
- Andrea Rohl
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Stephanie Gutierrez
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
| | - Karim Johari
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Jeremy Greenlee
- Department of Neurosurgery, University of Iowa, Iowa City, IA, United States
| | - Kris Tjaden
- Department of Communicative Disorders and Sciences, University at Buffalo, Buffalo, NY, United States
| | - Angela Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States; Department of Computer Science, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Johari K, Behroozmand R. Neural correlates of speech and limb motor timing deficits revealed by aberrant beta band desynchronization in Parkinson's disease. Clin Neurophysiol 2021; 132:2711-2721. [PMID: 34373199 DOI: 10.1016/j.clinph.2021.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We used a classical motor reaction time paradigm to examine the effects of Parkinson's disease (PD) on the mechanisms of speech production and upper limb movement. METHODS Electro-encephalography (EEG) signals were recorded in PD and control groups during speech vowel production and button press tasks in response to temporally predictable and unpredictable visual stimuli. RESULTS Motor reaction times were slower in PD vs. control group independent of stimulus timing and movement modality. This effect was accompanied by stronger desynchronizations of low beta (13-18 Hz) and high beta (18-25 Hz) band neural oscillations in PD vs. control prior to the onset of speech and hand movement. In addition, pre-movement desynchronization of beta band oscillations were correlated with motor reaction time in control subjects with faster responses associated with weaker beta band desynchronizations during the planning phase of movement. However, no such effect was found in the PD group. CONCLUSIONS We suggest that the aberrant pattern of beta band desynchronization is a neural correlate of speech and upper limb motor timing deficits as a result of cortico-striatal pathology in PD. SIGNIFICANCE These findings motivate interventions targeted toward normalizing beta band activities for improving speech and upper limb movement timing in PD.
Collapse
Affiliation(s)
- Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States; Human Brain Research Lab, Department of Neurosurgery, University of Iowa, 200 Hawkins Dr., Iowa City, IA 52242, United States
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 915 Greene Street, Columbia, SC 29208, United States.
| |
Collapse
|
6
|
Behroozmand R, Johari K. Pathological attenuation of the right prefrontal cortex activity predicts speech and limb motor timing disorder in Parkinson’s disease. Behav Brain Res 2019; 369:111939. [DOI: 10.1016/j.bbr.2019.111939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
|
7
|
Behavioral and neural correlates of normal aging effects on motor preparatory mechanisms of speech production and limb movement. Exp Brain Res 2019; 237:1759-1772. [PMID: 31030282 DOI: 10.1007/s00221-019-05549-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Normal aging is associated with decline of the sensorimotor mechanisms that support movement function in the human brain. In this study, we used behavioral and event-related potential (ERP) recordings to investigate the effects of normal aging on the motor preparatory mechanisms of speech production and limb movement. The experiment involved two groups of older and younger adults who performed randomized speech vowel vocalization and button press motor reaction time tasks in response to temporally predictable and unpredictable visual stimuli. Behavioral results revealed age-related slowness of motor reaction time only during speech production in response to temporally unpredictable stimuli, and this effect was accompanied by increased pre-motor ERP activities in older vs. younger adults during the speech task. These results indicate that motor preparatory mechanisms of limb movement during button press are not affected by normal aging, whereas the functional capacity of these mechanisms is reduced in older adults during speech production in response to unpredictable sensory stimuli. These findings suggest that the aging brain selectively compromises the motor timing of speech and recruits additional neural resources for motor planning and execution of speech, as indexed by the increased pre-motor ERP activations in response to temporally unpredictable vs. predictable sensory stimuli.
Collapse
|
8
|
Behroozmand R, Johari K. Sensorimotor Impairment of Speech and Hand Movement Timing Processing in Parkinson’s Disease. J Mot Behav 2018; 51:561-571. [DOI: 10.1080/00222895.2018.1528204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, SC 29028, Columbia
| | - Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, SC 29028, Columbia
| |
Collapse
|