1
|
Hollander JA, Cory-Slechta DA, Jacka FN, Szabo ST, Guilarte TR, Bilbo SD, Mattingly CJ, Moy SS, Haroon E, Hornig M, Levin ED, Pletnikov MV, Zehr JL, McAllister KA, Dzierlenga AL, Garton AE, Lawler CP, Ladd-Acosta C. Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology 2020; 45:1086-1096. [PMID: 32109936 PMCID: PMC7234981 DOI: 10.1038/s41386-020-0648-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms-synaptic dysfunction, immune alterations, and gut-brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease.
Collapse
Affiliation(s)
- Jonathan A Hollander
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, USA
| | - Felice N Jacka
- Food & Mood Centre, IMPACT SRC, School of Medicine, Deakin University, Geelong, VIC, Australia
- iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Black Dog Institute, Sydney, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| | - Steven T Szabo
- Duke University Medical Center, Durham, NC, USA
- Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Sheryl S Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mady Hornig
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mikhail V Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia L Zehr
- Developmental Mechanisms and Trajectories of Psychopathology Branch, National Institute of Mental Health, NIH, Rockville, MD, USA
| | - Kimberly A McAllister
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Anika L Dzierlenga
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Amanda E Garton
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Cindy P Lawler
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology and Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Maitra S, Chatterjee M, Sinha S, Mukhopadhyay K. Dopaminergic gene analysis indicates influence of inattention but not IQ in executive dysfunction of Indian ADHD probands. J Neurogenet 2019; 33:209-217. [PMID: 31663399 DOI: 10.1080/01677063.2019.1672679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Organizational inefficiency and inattention are speculated to be the reason for executive deficit (ED) of ADHD probands. Even with average IQ, probands often perform poorly due to higher inattention. Pharmacotherapy, cognitive behavioural therapy, and counselling provide only symptomatic relief. Several candidate genes showed involvement with ADHD; the most consistent are dopamine receptor 4 (DRD4) and solute carrier family 6 member 3 (SLC6A3). We analyzed association of rarely investigated DRD4 and SLC6A3 variants with ADHD core traits in Indo-Caucasoid probands. ED, inattention, organizational efficiency, and IQ were measured by Barkley Deficit in Executive Functioning-Child & Adolescent scale, DSM-IV-TR, Conners' Parent Rating Scale-revised, and WISC respectively. Target sites were analyzed by PCR, RFLP, and/or Sanger sequencing of genomic DNA. DRD4 variants mostly affected inattention while SLC6A3 variants showed association with IQ. Few DRD4 and SLC6A3 variants showed dichotomous association with IQ and inattention. DRD4 Exon3 VNTR >4R showed negative impact on all traits excepting IQ. Inattention showed correlation with attention span, organizational efficiency, and ED, while IQ failed to do so. We infer that IQ and attention could be differentially regulated by dopaminergic gene variants affecting functional efficiency in ADHD and the two traits should be considered together for providing better rehabilitation.
Collapse
Affiliation(s)
- Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India.,Mahidol University, Institute of Molecular Biosciences, Thailand
| | | | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, Kolkata, India
| | | |
Collapse
|