1
|
Talbert LD, Kaelberer Z, Gleave E, Driggs A, Driggs AS, Baldwin SA, Steffen PR, Larson MJ. A Systematic Review of the Relationship Between Traumatic Brain Injury and Disruptions in Heart Rate Variability. Appl Psychophysiol Biofeedback 2024:10.1007/s10484-024-09663-0. [PMID: 39222209 DOI: 10.1007/s10484-024-09663-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Autonomic nervous system dysfunction is increasingly recognized as a common sequela of traumatic brain injury (TBI). Heart rate variability (HRV) is a specific measure of autonomic nervous system functioning that can be used to measure beat-to-beat changes in heart rate following TBI. The objective of this systematic review was to determine the state of the literature on HRV dysfunction following TBI, assess the level of support for HRV dysfunction following TBI, and determine if HRV dysfunction predicts mortality and the severity and subsequent recovery of TBI symptoms. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two raters coded each article and provided quality ratings with discrepancies resolved by consensus. Eighty-nine papers met the inclusion criteria. Findings indicated that TBI of any severity is associated with decreased (i.e., worse) HRV; the severity of TBI appears to moderate the relationship between HRV and recovery; decreased HRV following TBI predicts mortality beyond age; HRV disturbances may persist beyond return-to-play and symptom resolution following mild TBI. Overall, current literature suggests HRV is decreased following TBI and may be a good indicator of physiological change and predictor of important outcomes including mortality and symptom improvement following TBI.
Collapse
Affiliation(s)
- Leah D Talbert
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA.
- Psychology Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Zoey Kaelberer
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Emma Gleave
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Annie Driggs
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Ammon S Driggs
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Scott A Baldwin
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Patrick R Steffen
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
| | - Michael J Larson
- Department of Psychology, Brigham Young University, Provo, UT, 244 TLRB84602, USA
- Neuroscience Center, Brigham Young University, Provo, UT, USA
| |
Collapse
|
2
|
Zuckerman A, Siedhoff HR, Balderrama A, Li R, Sun GY, Cifu DX, Cernak I, Cui J, Gu Z. Individualized high-resolution analysis to categorize diverse learning and memory deficits in tau rTg4510 mice exposed to low-intensity blast. Front Cell Neurosci 2024; 18:1397046. [PMID: 38948027 PMCID: PMC11212475 DOI: 10.3389/fncel.2024.1397046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/09/2024] [Indexed: 07/02/2024] Open
Abstract
Mild traumatic brain injury (mTBI) resulting from low-intensity blast (LIB) exposure in military and civilian individuals is linked to enduring behavioral and cognitive abnormalities. These injuries can serve as confounding risk factors for the development of neurodegenerative disorders, including Alzheimer's disease-related dementias (ADRD). Recent animal studies have demonstrated LIB-induced brain damage at the molecular and nanoscale levels. Nevertheless, the mechanisms linking these damages to cognitive abnormalities are unresolved. Challenges preventing the translation of preclinical studies into meaningful findings in "real-world clinics" encompass the heterogeneity observed between different species and strains, variable time durations of the tests, quantification of dosing effects and differing approaches to data analysis. Moreover, while behavioral tests in most pre-clinical studies are conducted at the group level, clinical tests are predominantly assessed on an individual basis. In this investigation, we advanced a high-resolution and sensitive method utilizing the CognitionWall test system and applying reversal learning data to the Boltzmann fitting curves. A flow chart was developed that enable categorizing individual mouse to different levels of learning deficits and patterns. In this study, rTg4510 mice, which represent a neuropathology model due to elevated levels of tau P301L, together with the non-carrier genotype were exposed to LIB. Results revealed distinct and intricate patterns of learning deficits and patterns within each group and in relation to blast exposure. With the current findings, it is possible to establish connections between mice with specific cognitive deficits to molecular changes. This approach can enhance the translational value of preclinical findings and also allow for future development of a precision clinical treatment plan for ameliorating neurologic damage of individuals with mTBI.
Collapse
Affiliation(s)
- Amitai Zuckerman
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Heather R. Siedhoff
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Ashley Balderrama
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Runting Li
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Biochemistry Department, University of Missouri, Columbia, MO, United States
| | - David X. Cifu
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ibolja Cernak
- Thomas F. Frist, Jr. College of Medicine, Belmont University, Nashville, TN, United States
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital Research Service, Columbia, MO, United States
| |
Collapse
|
3
|
Wee IC, Arulsamy A, Corrigan F, Collins-Praino L. Long-Term Impact of Diffuse Traumatic Brain Injury on Neuroinflammation and Catecholaminergic Signaling: Potential Relevance for Parkinson's Disease Risk. Molecules 2024; 29:1470. [PMID: 38611750 PMCID: PMC11013319 DOI: 10.3390/molecules29071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson's disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou's impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate-severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DβH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems.
Collapse
Affiliation(s)
- Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia;
| | - Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Lyndsey Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
4
|
Corrigan F, Wee IC, Collins-Praino LE. Chronic motor performance following different traumatic brain injury severity-A systematic review. Front Neurol 2023; 14:1180353. [PMID: 37288069 PMCID: PMC10243142 DOI: 10.3389/fneur.2023.1180353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is now known to be a chronic disease, causing ongoing neurodegeneration and linked to increased risk of neurodegenerative motor diseases, such as Parkinson's disease and amyotrophic lateral sclerosis. While the presentation of motor deficits acutely following traumatic brain injury is well-documented, however, less is known about how these evolve in the long-term post-injury, or how the initial severity of injury affects these outcomes. The purpose of this review, therefore, was to examine objective assessment of chronic motor impairment across the spectrum of TBI in both preclinical and clinical models. Methods PubMed, Embase, Scopus, and PsycINFO databases were searched with a search strategy containing key search terms for TBI and motor function. Original research articles reporting chronic motor outcomes with a clearly defined TBI severity (mild, repeated mild, moderate, moderate-severe, and severe) in an adult population were included. Results A total of 97 studies met the inclusion criteria, incorporating 62 preclinical and 35 clinical studies. Motor domains examined included neuroscore, gait, fine-motor, balance, and locomotion for preclinical studies and neuroscore, fine-motor, posture, and gait for clinical studies. There was little consensus among the articles presented, with extensive differences both in assessment methodology of the tests and parameters reported. In general, an effect of severity was seen, with more severe injury leading to persistent motor deficits, although subtle fine motor deficits were also seen clinically following repeated injury. Only six clinical studies investigated motor outcomes beyond 10 years post-injury and two preclinical studies to 18-24 months post-injury, and, as such, the interaction between a previous TBI and aging on motor performance is yet to be comprehensively examined. Conclusion Further research is required to establish standardized motor assessment procedures to fully characterize chronic motor impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols. Longitudinal studies investigating the same cohort over time are also a key for understanding the interaction between TBI and aging. This is particularly critical, given the risk of neurodegenerative motor disease development following TBI.
Collapse
Affiliation(s)
- Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey E. Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Corrigan F, Arulsamy A, Shultz SR, Wright DK, Collins-Praino LE. Initial Severity of Injury Has Little Effect on the Temporal Profile of Long-Term Deficits in Locomotion, Anxiety, and Cognitive Function After Diffuse Traumatic Brain Injury. Neurotrauma Rep 2023; 4:41-50. [PMID: 36726871 PMCID: PMC9886190 DOI: 10.1089/neur.2022.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with persistent impairments in multiple domains, including cognitive and neuropsychiatric function. Previous literature has suggested that the risk of such impairments may differ as a function of the initial severity of injury, with moderate-severe TBI (msTBI) associated with more severe cognitive dysfunction and mild TBI (mTBI) associated with a higher risk of developing an anxiety disorder. Despite this, relatively few pre-clinical studies have investigated the time course of behavioral change after different severities of injury. The current study compared the temporal profile of functional deficits incorporating locomotion, cognition, and anxiety up to 12 months post-injury after an mTBI, repeated mild TBI (rmTBI), and single msTBI in an experimental model of diffuse TBI. Injury appeared to alter the effect of aging on locomotor activity, with both msTBI and rmTBI rats showing a decrease in locomotion at 12 months relative to their earlier performance on the task, an effect not observed in shams or after a single mTBI. Further, mTBI seemed to be associated with decreased anxiety over time, as measured by increased time spent in the open arm of the elevated plus maze from 3 to 12 months post-injury. No significant findings were observed on spatial memory or volumetric magnetic resonance imaging. Future studies will need to use a more comprehensive behavioral battery, capable of capturing subtle alterations in function, and longer time points, following rats into old age, in order to more fully assess the evolution of persistent behavioral deficits in key domains after different severities of TBI, as well as their accompanying neuroimaging changes. Given the prevalence and significance of such deficits post-TBI for a person's quality of life, as well as the elevated risk of neurodegenerative disease post-injury, such investigations may play a critical role in identifying optimal windows of therapeutic intervention post-injury.
Collapse
Affiliation(s)
- Frances Corrigan
- Head Injury Lab, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alina Arulsamy
- Cognition, Ageing and Neurodegenerative Disease Lab, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Health and Human Services, Vancouver Island University, Nanaimo, British Columbia, Canada
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lyndsey E. Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Lab, School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Address correspondence to: Lyndsey E. Collins-Praino, PhD, Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia, Australia 5005;
| |
Collapse
|
6
|
TDP-43 drives synaptic and cognitive deterioration following traumatic brain injury. Acta Neuropathol 2022; 144:187-210. [PMID: 35713704 PMCID: PMC9945325 DOI: 10.1007/s00401-022-02449-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as an important risk factor for Alzheimer's disease (AD). However, the molecular mechanisms by which TBI contributes to developing AD remain unclear. Here, we provide evidence that aberrant production of TDP-43 is a key factor in promoting AD neuropathology and synaptic and cognitive deterioration in mouse models of mild closed head injury (CHI). We observed that a single mild CHI is sufficient to exacerbate AD neuropathology and accelerate synaptic and cognitive deterioration in APP transgenic mice but repeated mild CHI are required to induce neuropathological changes and impairments in synaptic plasticity, spatial learning, and memory retention in wild-type animals. Importantly, these changes in animals exposed to a single or repeated mild CHI are alleviated by silencing of TDP-43 but reverted by rescue of the TDP-43 knockdown. Moreover, overexpression of TDP-43 in the hippocampus aggravates AD neuropathology and provokes cognitive impairment in APP transgenic mice, mimicking single mild CHI-induced changes. We further discovered that neuroinflammation triggered by TBI promotes NF-κB-mediated transcription and expression of TDP-43, which in turn stimulates tau phosphorylation and Aβ formation. Our findings suggest that excessive production of TDP-43 plays an important role in exacerbating AD neuropathology and in driving synaptic and cognitive declines following TBI.
Collapse
|
7
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
8
|
Pinkowski NJ, Guerin J, Zhang H, Carpentier ST, McCurdy KE, Pacheco JM, Mehos CJ, Brigman JL, Morton RA. Repeated mild traumatic brain injuries impair visual discrimination learning in adolescent mice. Neurobiol Learn Mem 2020; 175:107315. [PMID: 32980477 DOI: 10.1016/j.nlm.2020.107315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 12/19/2022]
Abstract
Cognitive deficits following a mild traumatic brain injury (mTBI) are common and are associated with learning deficits in school-age children. Some of these deficits include problems with long-term memory, working memory, processing speeds, attention, mental fatigue, and executive function. Processing speed deficits have been associated with alterations in white matter, but the underlying mechanisms of many of the other deficits are unclear. Without a clear understanding of the underlying mechanisms we cannot effectively treat these injuries. The goal of these studies is to validate a translatable touchscreen discrimination/reversal task to identify deficits in executive function following a single or repeated mTBIs. Using a mild closed skull injury model in adolescent mice we were able to identify clear deficits in discrimination learning following repeated injuries that were not present from a single mTBI. The repeated injuries were not associated with any deficits in motor-based behavior but did induce a robust increase in astrocyte activation. These studies provide an essential platform to interrogate the underlying neurological dysfunction associated with these injuries.
Collapse
Affiliation(s)
- Natalie J Pinkowski
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Juliana Guerin
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Haikun Zhang
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Sydney T Carpentier
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Kathryn E McCurdy
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Johann M Pacheco
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States
| | - Carissa J Mehos
- Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Russell A Morton
- Department of Neurosciences, University of New Mexico, School of Medicine, Albuquerque, NM 87131, United States; Center for Brain Recovery and Repair, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
9
|
Zheng F, Zhou YT, Li PF, Hu E, Li T, Tang T, Luo JK, Zhang W, Ding CS, Wang Y. Metabolomics Analysis of Hippocampus and Cortex in a Rat Model of Traumatic Brain Injury in the Subacute Phase. Front Neurosci 2020; 14:876. [PMID: 33013291 PMCID: PMC7499474 DOI: 10.3389/fnins.2020.00876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) is a complex and serious disease as its multifaceted pathophysiological mechanisms remain vague. The molecular changes of hippocampal and cortical dysfunction in the process of TBI are poorly understood, especially their chronic effects on metabolic profiles. Here we utilize metabolomics-based liquid chromatography coupled with tandem mass spectrometry coupled with bioinformatics method to assess the perturbation of brain metabolism in rat hippocampus and cortex on day 7. The results revealed a signature panel which consisted of 13 identified metabolites to facilitate targeted interventions for subacute TBI discrimination. Purine metabolism change in cortical tissue and taurine and hypotaurine metabolism change in hippocampal tissue were detected. Furthermore, the associations between the metabolite markers and the perturbed pathways were analyzed based on databases: 64 enzyme and one pathway were evolved in TBI. The findings represented significant profiling changes and provided unique metabolite-protein information in a rat model of TBI following the subacute phase. This study may inspire scientists and doctors to further their studies and provide potential therapy targets for clinical interventions.
Collapse
Affiliation(s)
- Fei Zheng
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Yan-Tao Zhou
- College of Electrical and Information Engineering, Hunan University, Changsha, China
| | - Peng-Fei Li
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - En Hu
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Li
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jie-Kun Luo
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Song Ding
- School of Informatics, Hunan University of Chinese Medicine, Changsha, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Severo L, Godinho D, Machado F, Hartmann D, Fighera MR, Soares FA, Furian AF, Oliveira MS, Royes LF. The role of mitochondrial bioenergetics and oxidative stress in depressive behavior in recurrent concussion model in mice. Life Sci 2020; 257:117991. [PMID: 32569782 DOI: 10.1016/j.lfs.2020.117991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is a public health problem in which even though 80 to 90% of cases are considered mild, usually starts a sequence of neurological disorders that can last a considerable time. Most of the research of this injury has been focused on oxidative stress and functional deficits; however, mechanisms that underlie the development of neuropsychiatric disorders remain little researched. Due to this, the present authors decided to investigate whether recurrent concussion protocols alter depressive-like phenotype behavior, and whether mitochondria play an indispensable role in this behavior or not. The experimental data revealed, for the first time, that the present protocol of recurrent concussions (4, 7, and 10 injuries) in mice did not alter immobility time during tail suspension tests (TSTs), but decreased hippocampal mitochondrial respiration and increased expression of proteins such as nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide (SOD2). This experimental data suggests that bioenergetic changes elicited by recurrent concussion did not induce depressive-like behavior, but activated the transcription factor of responsive antioxidant elements (ARE) that delay or prevent secondary cascades in this neurological disease.
Collapse
Affiliation(s)
- Leandro Severo
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica Universidade Federal de Santa Maria, 97105-900, Brazil; Laboratório de Bioquímica do Exercício Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| | - Douglas Godinho
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica Universidade Federal de Santa Maria, 97105-900, Brazil; Laboratório de Bioquímica do Exercício Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Felipe Machado
- Laboratório de Bioquímica do Exercício Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Diane Hartmann
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900, Brazil
| | - Michele Rechia Fighera
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica Universidade Federal de Santa Maria, 97105-900, Brazil; Laboratório de Bioquímica do Exercício Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Félix Alexandre Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, 97105-900, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia-Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Luiz Fernando Royes
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica Toxicológica Universidade Federal de Santa Maria, 97105-900, Brazil; Laboratório de Bioquímica do Exercício Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Collins JM, Woodhouse A, Bye N, Vickers JC, King AE, Ziebell JM. Pathological Links between Traumatic Brain Injury and Dementia: Australian Pre-Clinical Research. J Neurotrauma 2020; 37:782-791. [PMID: 32046575 DOI: 10.1089/neu.2019.6906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) can cause persistent cognitive changes and ongoing neurodegeneration in the brain. Accumulating epidemiological and pathological evidence implicates TBI in the development of Alzheimer's disease, the most common cause of dementia. Further, the TBI-induced form of dementia, called chronic traumatic encephalopathy, shares many pathological hallmarks present in multiple different diseases which cause dementia. The inflammatory and neuritic responses to TBI and dementia overlap, indicating that they may share common pathological mechanisms and that TBI may ultimately cause a pathological cascade culminating in the development of dementia. This review explores Australian pre-clinical research investigating the pathological links between TBI and dementia.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Adele Woodhouse
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Bye
- School of Pharmacy, and College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.,School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
12
|
Zhang S, Wu YH, Zhang Y, Zhang Y, Cheng Y. Preliminary study of the validity and reliability of the Chinese version of the Saint Louis University Mental Status Examination (SLUMS) in detecting cognitive impairment in patients with traumatic brain injury. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 28:633-640. [PMID: 31646902 DOI: 10.1080/23279095.2019.1680986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuang Zhang
- Department of Rehabilitation Medicine, The First People’s Hospital of Changzhou, Changzhou, China
- Department of Rehabilitation Medicine, School of Clinical Medicine, Soochow University, Suzhou, China
| | - Ye-Huan Wu
- Department of Rehabilitation Medicine, The First People’s Hospital of Changzhou, Changzhou, China
| | - Yi Zhang
- Department of Rehabilitation Medicine, The First People’s Hospital of Changzhou, Changzhou, China
| | - Yu Zhang
- Department of Rehabilitation Medicine, The First People’s Hospital of Changzhou, Changzhou, China
| | - Yun Cheng
- Department of Rehabilitation Medicine, The First People’s Hospital of Changzhou, Changzhou, China
- Department of Rehabilitation Medicine, School of Clinical Medicine, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Arulsamy A, Corrigan F, Collins-Praino LE. Age, but not severity of injury, mediates decline in executive function: Validation of the rodent touchscreen paradigm for preclinical models of traumatic brain injury. Behav Brain Res 2019; 368:111912. [PMID: 30998995 DOI: 10.1016/j.bbr.2019.111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
Increasingly, it is being recognised that traumatic brain injury (TBI) is not just an acute event but instead results in ongoing neuronal injury that may lead to chronic impairments in multiple cognitive domains. Of these, deficits in executive function are one of the more common changes reported following TBI, and are a major predictor of well-being, social function and quality of life in individuals with a history of TBI. In order to fully understand the relationship between TBI and executive dysfunction, including brain mechanisms that may account for this, experimental models are clearly needed. However, to date, there have been a lack of preclinical studies systematically comparing the effect of injury severity on executive function, particularly at long-term timepoints post-injury. Furthermore, many previous studies have not used behavioural measures that are sensitive to the full range of executive function impairments that may manifest after injury, particularly in models of diffuse axonal injury (Lv et al.). The current study aimed to investigate the temporal profile, up to 12 months post-injury, of the evolution of executive dysfunction following different severities of injury in an experimental model of DAI. In order to do so, we utilised a rodent touchscreen paradigm to administer the 5 Choice- Continuous Performance Task (5C-CPT), an extension of the 5-choice serial reaction time task (5CSRT). Interestingly, there were no differences in learning, motivation, attention, response time or impulsivity at 1 month, 6 months or 12 months post-injury in any of the TBI groups compared to sham, regardless of the initial severity of the injury. Instead, most of the effects on executive function seen at the 12 month timepoint appeared to be a result of ageing, not injury. As even the 12-month timepoint represents middle age in the rat, future studies will be needed to further probe these effects, in order to determine whether DAI may influence the presentation of executive dysfunction in older age.
Collapse
Affiliation(s)
- Alina Arulsamy
- Cognition, Ageing and Neurodegenerative Disease Lab, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005 Australia
| | | | - Lyndsey E Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Lab, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005 Australia.
| |
Collapse
|