1
|
Borst B, Jovanovic T, House SL, Bruce SE, Harnett NG, Roeckner AR, Ely TD, Lebois LAM, Young D, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS, van Rooij SJH. Sex Differences in Response Inhibition-Related Neural Predictors of Posttraumatic Stress Disorder in Civilians With Recent Trauma. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:668-680. [PMID: 38522649 PMCID: PMC11227397 DOI: 10.1016/j.bpsc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Females are more likely to develop posttraumatic stress disorder (PTSD) than males. Impaired inhibition has been identified as a mechanism for PTSD development, but studies on potential sex differences in this neurobiological mechanism and how it relates to PTSD severity and progression are relatively rare. Here, we examined sex differences in neural activation during response inhibition and PTSD following recent trauma. METHODS Participants (n = 205, 138 female sex assigned at birth) were recruited from emergency departments within 72 hours of a traumatic event. PTSD symptoms were assessed 2 weeks and 6 months posttrauma. A Go/NoGo task was performed 2 weeks posttrauma in a 3T magnetic resonance imaging scanner to measure neural activity during response inhibition in the ventromedial prefrontal cortex, right inferior frontal gyrus, and bilateral hippocampus. General linear models were used to examine the interaction effect of sex on the relationship between our regions of interest and the whole brain, PTSD symptoms at 6 months, and symptom progression between 2 weeks and 6 months. RESULTS Lower response inhibition-related ventromedial prefrontal cortex activation 2 weeks posttrauma predicted more PTSD symptoms at 6 months in females but not in males, while greater response inhibition-related right inferior frontal gyrus activation predicted lower PTSD symptom progression in males but not females. Whole-brain interaction effects were observed in the medial temporal gyrus and left precentral gyrus. CONCLUSIONS There are sex differences in the relationship between inhibition-related brain activation and PTSD symptom severity and progression. These findings suggest that sex differences should be assessed in future PTSD studies and reveal potential targets for sex-specific interventions.
Collapse
Affiliation(s)
- Bibian Borst
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri St. Louis, St. Louis, Missouri
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alyssa R Roeckner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dmitri Young
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Rehabilitation International, Providence, Rhode Island; Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Many Brains Project, Belmont, Massachusetts
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University College of Nursing, Columbus, Ohio
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth M Datner
- Department of Emergency Medicine, Jefferson Einstein Hospital, Jefferson Health, Philadelphia, Pennsylvania; Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health, Ann Arbor, Ypsilanti, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, Michigan
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, Texas
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
2
|
Lemire M, Soulières I, Saint-Amour D. The effect of age on executive functions in adults is not sex specific. J Int Neuropsychol Soc 2024; 30:489-498. [PMID: 38221864 DOI: 10.1017/s1355617723011487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
OBJECTIVE Numerous studies have shown a decrease in executive functions (EF) associated with aging. However, few investigations examined whether this decrease is similar between sexes throughout adulthood. The present study investigated if age-related decline in EF differs between men and women from early to late adulthood. METHODS A total of 302 participants (181 women) aged between 18 and 78 years old completed four computer-based cognitive tasks at home: an arrow-based Flanker task, a letter-based Visual search task, the Trail Making Test, and the Corsi task. These tasks measured inhibition, attention, cognitive flexibility, and working memory, respectively. To investigate the potential effects of age, sex, and their interaction on specific EF and a global EF score, we divided the sample population into five age groups (i.e., 18-30, 31-44, 45-54, 55-64, 65-78) and conducted analyses of covariance (MANCOVA and ANCOVA) with education and pointing device as control variables. RESULTS Sex did not significantly affect EF performance across age groups. However, in every task, participants from the three youngest groups (< 55 y/o) outperformed the ones from the two oldest. Results from the global score also suggest that an EF decrease is distinctly noticeable from 55 years old onward. CONCLUSION Our results suggest that age-related decline in EF, including inhibition, attention, cognitive flexibility, and working memory, becomes apparent around the age of 55 and does not differ between sexes at any age. This study provides additional data regarding the effects of age and sex on EF across adulthood, filling a significant gap in the existing literature.
Collapse
Affiliation(s)
- Marilou Lemire
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Isabelle Soulières
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
- CIUSSS NIM Research Center, Hôpital en Santé Mentale Rivière-des-Prairies, Montréal, QC, Canada
| | - Dave Saint-Amour
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
- Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC, Canada
| |
Collapse
|
3
|
Zhuang Q, Qiao L, Xu L, Yao S, Chen S, Zheng X, Li J, Fu M, Li K, Vatansever D, Ferraro S, Kendrick KM, Becker B. The right inferior frontal gyrus as pivotal node and effective regulator of the basal ganglia-thalamocortical response inhibition circuit. PSYCHORADIOLOGY 2023; 3:kkad016. [PMID: 38666118 PMCID: PMC10917375 DOI: 10.1093/psyrad/kkad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 04/28/2024]
Abstract
Background The involvement of specific basal ganglia-thalamocortical circuits in response inhibition has been extensively mapped in animal models. However, the pivotal nodes and directed causal regulation within this inhibitory circuit in humans remains controversial. Objective The main aim of the present study was to determine the causal information flow and critical nodes in the basal ganglia-thalamocortical inhibitory circuits and also to examine whether these are modulated by biological factors (i.e. sex) and behavioral performance. Methods Here, we capitalize on the recent progress in robust and biologically plausible directed causal modeling (DCM-PEB) and a large response inhibition dataset (n = 250) acquired with concomitant functional magnetic resonance imaging to determine key nodes, their causal regulation and modulation via biological variables (sex) and inhibitory performance in the inhibitory circuit encompassing the right inferior frontal gyrus (rIFG), caudate nucleus (rCau), globus pallidum (rGP), and thalamus (rThal). Results The entire neural circuit exhibited high intrinsic connectivity and response inhibition critically increased causal projections from the rIFG to both rCau and rThal. Direct comparison further demonstrated that response inhibition induced an increasing rIFG inflow and increased the causal regulation of this region over the rCau and rThal. In addition, sex and performance influenced the functional architecture of the regulatory circuits such that women displayed increased rThal self-inhibition and decreased rThal to GP modulation, while better inhibitory performance was associated with stronger rThal to rIFG communication. Furthermore, control analyses did not reveal a similar key communication in a left lateralized model. Conclusions Together, these findings indicate a pivotal role of the rIFG as input and causal regulator of subcortical response inhibition nodes.
Collapse
Affiliation(s)
- Qian Zhuang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Lei Qiao
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Lei Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, 610068, China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoxiao Zheng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jialin Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Meina Fu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, The University of Electronic Science and Technology of China, Chengdu, Sichuan Province 611731, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Benjamin Becker
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong 999077, China
- Department of Psychology, The University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
4
|
Eriksson LJK, Sundin Ö, Jansson B. Exploring Response Inhibition, the Behavioral Inhibition System and Possible Sex Differences in Athletes and Non-Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6340. [PMID: 37510573 PMCID: PMC10379307 DOI: 10.3390/ijerph20146340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The objective of this study was to revisit the question concerning whether athletes are better than non-athletes at fundamental cognitive abilities, such as inhibitory control, in addition to also focusing on motivational dispositions and possible sex differences. Adding the latter could be crucial since both inhibitory control and motivational dispositions, such as approach and avoidance, are central to goal-directed behavior. METHODS This study's sample was composed of 93 participants (40 males): 29 biathletes; 30 alpine skiers; and 34 non-athletes. A non-sport-specific stop-signal task was used for the assessment of inhibitory control in terms of response inhibition, and the motivational dispositions were assessed with the BIS/BAS scales. RESULTS The results showed that there were no differences between the two different sports or non-athletes with regard to response inhibition. However, females showed significantly slower response inhibition than males (p = 0.018) and scored significantly higher on the trait variable BIS (p < 0.001). CONCLUSIONS The results from this study suggest that it might be meaningful to explore the contribution of sex differences and motivational dispositions on response inhibition in conjunction with different types of sports.
Collapse
Affiliation(s)
- Lina J K Eriksson
- Department of Psychology and Social Work, Mid Sweden University, 83125 Östersund, Sweden
| | - Örjan Sundin
- Department of Psychology and Social Work, Mid Sweden University, 83125 Östersund, Sweden
- Católica Research Centre for Psychological-Family and Social Wellbeing, Universidade Católica Portugesa, 1649-023 Lisboa, Portugal
| | - Billy Jansson
- Department of Psychology and Social Work, Mid Sweden University, 83125 Östersund, Sweden
| |
Collapse
|
5
|
Cabeen RP, Toga AW, Allman JM. Mapping frontoinsular cortex from diffusion microstructure. Cereb Cortex 2023; 33:2715-2733. [PMID: 35753692 PMCID: PMC10016069 DOI: 10.1093/cercor/bhac237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022] Open
Abstract
We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited. We delineated FI by jointly modeling cortical surface geometry and its coincident diffusion microstructure parameters. We found that neurite orientation dispersion in cortical gray matter can be used to map FI in specific individuals, and the derived measures reflect a range of behavioral factors in young adults from the Human Connectome Project (N=1052). FI volume was larger in the left hemisphere than the right (31%), and the percentage volume of FI was larger in women than men (15.3%). FI volume was associated with measures of decision-making (delay discounting, substance abuse), emotion (negative intrusive thinking and perception of hostility), and social behavior (theory of mind and working memory for faces). The common denominator is that larger FI size is related to greater self-control and social awareness.
Collapse
Affiliation(s)
- Ryan P Cabeen
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, United States
| | - John M Allman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| |
Collapse
|
6
|
Taddei M, Bulgheroni S, Riva D, Erbetta A. Task‐related functional neuroimaging contribution to sex/gender differences in cognition and emotion during development. J Neurosci Res 2022; 101:575-603. [PMID: 36354127 DOI: 10.1002/jnr.25143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Recent research has shown that sex/gender (s/g) influences on cognitive functions and related brain anatomy, functional responses, and connectivity are less clear than previously assumed, and most studies investigated adult population. In this mini-review, we summarize research progress in the study of s/g differences in the human brain function as investigated by neuroimaging methods adopting a developmental perspective. In particular, we review original studies published from 2000 to 2021 investigating s/g differences in task-related brain functional activation and connectivity in healthy children and adolescents. We summarize results about studies in the domains of language, visuospatial ability, social cognition, and executive functions. Overall, a clear relation between cognition and brain activation or connectivity pattern is far from being established and the few coherent results should be considered exploratory, despite in some cases, brain function seems to present specific patterns in comparison with what reported in adults. Moreover, future studies should address methodological limitations, such as fragmentation of tasks, lack of control for confounding variables, and lack of longitudinal designs to study developmental trajectories.
Collapse
Affiliation(s)
- Matilde Taddei
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Sara Bulgheroni
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Daria Riva
- Department of Pediatric Neuroscience Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Alessandra Erbetta
- Department of Neuroradiology Fondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
7
|
Vilca LW. The moderating role of sex in the relationship between executive functions and academic procrastination in undergraduate students. Front Psychol 2022; 13:928425. [PMID: 36072020 PMCID: PMC9444057 DOI: 10.3389/fpsyg.2022.928425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of the study was to determine if sex plays a moderating role in the relationship between executive functions and academic procrastination in 106 university students of both genders (28.3% male and 71.7% female) between the ages of 18 and 30 years (M = 19.7; SD = 2.7). The Academic Procrastination Scale and the Neuropsychological Battery of Executive Functions and Frontal Lobes (BANFE-2) were used to measure the variables. The results of the study showed that the degree of prediction of the tasks linked to the orbitomedial cortex (involves the orbitofrontal cortex [OFC] and the medial prefrontal cortex [mPFC]) on academic procrastination is significantly moderated by the sex of the university students (β3 = 0.53; p < 0.01). For men, the estimated effect of the tasks linked to the orbitomedial cortex on the degree of academic procrastination is −0.81. For women, the estimated effect of the tasks linked to the orbitomedial cortex on the degree of academic procrastination is −0.28. In addition, it was shown that sex does not play a moderating role in the relationship between the tasks linked to the dorsolateral prefrontal cortex (dlPFC) and academic procrastination (β3 = 0.12; p > 0.05). It was also determined that sex does not play a moderating role in the relationship between the tasks linked to the anterior prefrontal cortex (aPFC) and academic procrastination (β3 = 0.05; p > 0.05). It is concluded that only the executive functions associated with the orbitomedial cortex are moderated by the sex of the university students, where the impact of the tasks linked to the orbitomedial cortex on academic procrastination in men is significantly greater than in women.
Collapse
|
8
|
Swartz M, Burton F, Vakamudi K, Al-Khalil K, Witkiewitz K, Claus ED. Age dependent neural correlates of inhibition and control mechanisms in moderate to heavy drinkers. NEUROIMAGE-CLINICAL 2021; 32:102875. [PMID: 34781154 PMCID: PMC8604718 DOI: 10.1016/j.nicl.2021.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Older age was associated with reductions in inhibition related activity. Older drinkers had greater reductions in frontal activity than younger drinkers. Men and women had opposite correlations between alcohol use severity and activity.
Background Long-term, heavy alcohol consumption has been associated with impairments in control over alcohol use, but whether this extends to other areas of cognitive and behavioral control such as response inhibition remains unclear. Understanding individual differences in the neural correlates of response inhibition will provide further insight into the neurobiology of heavy drinking. The current study investigated response inhibition in a large sample of moderate to heavy drinkers Methods One hundred fifty-three individuals completed a stop signal task while undergoing functional magnetic resonance imaging. Multiple regression analyses focused on blood oxygen level-dependent (BOLD) response contrasts of correct inhibition and failed inhibition as dependent variables and included age, sex, and hazardous drinking (as measured by the Alcohol Use Disorders Identification Test (AUDIT)), and their interactions, as independent variables Results Age was negatively associated with BOLD response in lateral inferior and middle frontal gyri, anterior cingulate cortex, and inferior parietal lobe for both successful inhibition and failed inhibition contrasts. In addition, there was a significant age × AUDIT interaction in the successful inhibition contrast in the left middle frontal gyrus, with significant negative correlations between AUDIT and BOLD response in older participants, and a significant positive correlation between AUDIT and BOLD response in younger participants Conclusions Age appears to be a particularly important factor in predicting BOLD response and may be a critical variable to include in future studies of heavy drinking and alcohol use disorder, particularly those that assess cognitive function. Finally, the age × AUDIT interaction observed in the current study may represent evidence for accelerated aging effects of alcohol on cognitive function.
Collapse
Affiliation(s)
| | | | | | | | - Katie Witkiewitz
- Department of Psychology, University of New Mexico and the Center on Alcohol, Substance Use, and Addictions, Albuquerque, NM, USA
| | - Eric D Claus
- The Mind Research Network, Albuquerque, NM, USA; Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Fehring DJ, Samandra R, Haque ZZ, Jaberzadeh S, Rosa M, Mansouri FA. Investigating the sex-dependent effects of prefrontal cortex stimulation on response execution and inhibition. Biol Sex Differ 2021; 12:47. [PMID: 34404467 PMCID: PMC8369781 DOI: 10.1186/s13293-021-00390-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Context-dependent execution or inhibition of a response is an important aspect of executive control, which is impaired in neuropsychological and addiction disorders. Transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) has been considered a remedial approach to address deficits in response control; however, considerable variability has been observed in tDCS effects. These variabilities might be related to contextual differences such as background visual-auditory stimuli or subjects' sex. In this study, we examined the interaction of two contextual factors, participants' sex and background acoustic stimuli, in modulating the effects of tDCS on response inhibition and execution. In a sham-controlled and cross-over (repeated-measure) design, 73 participants (37 females) performed a Stop-Signal Task in different background acoustic conditions before and after tDCS (anodal or sham) was applied over the DLPFC. Participants had to execute a speeded response in Go trials but inhibit their response in Stop trials. Participants' sex was fully counterbalanced across all experimental conditions (acoustic and tDCS). We found significant practice-related learning that appeared as changes in indices of response inhibition (stop-signal reaction time and percentage of successful inhibition) and action execution (response time and percentage correct). The tDCS and acoustic stimuli interactively influenced practice-related changes in response inhibition and these effects were uniformly seen in both males and females. However, the effects of tDCS on response execution (percentage of correct responses) were sex-dependent in that practice-related changes diminished in females but heightened in males. Our findings indicate that participants' sex influenced the effects of tDCS on the execution, but not inhibition, of responses.
Collapse
Affiliation(s)
- Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Non-Invasive Brain Stimulation & Neuroplasticity Laboratory, Monash University, Melbourne, VIC, 3199, Australia
| | - Marcello Rosa
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Farshad A Mansouri
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Integrative Brain Function, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
10
|
Isherwood SJS, Keuken MC, Bazin PL, Forstmann BU. Cortical and subcortical contributions to interference resolution and inhibition - An fMRI ALE meta-analysis. Neurosci Biobehav Rev 2021; 129:245-260. [PMID: 34310977 DOI: 10.1016/j.neubiorev.2021.07.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
Interacting with our environment requires the selection of appropriate responses and the inhibition of others. Such effortful inhibition is achieved by a number of interference resolution and global inhibition processes. This meta-analysis including 57 studies and 73 contrasts revisits the overlap and differences in brain areas supporting interference resolution and global inhibition in cortical and subcortical brain areas. Activation likelihood estimation was used to discern the brain regions subserving each type of cognitive control. Individual contrast analysis revealed a common activation of the bilateral insula and supplementary motor areas. Subtraction analyses demonstrated the voxel-wise differences in recruitment in a number of areas including the precuneus in the interference tasks and the frontal pole and dorsal striatum in the inhibition tasks. Our results display a surprising lack of subcortical involvement within these types of cognitive control, a finding that is likely to reflect a systematic gap in the field of functional neuroimaging.
Collapse
Affiliation(s)
- S J S Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands.
| | - M C Keuken
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands
| | - P L Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands; Max Planck Institute for Human, Cognitive and Brain Sciences, Leipzig, Germany
| | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Nieuwe Achtergracht 129B, Postbus 15926, 1001 NK, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Gaillard A, Fehring DJ, Rossell SL. Sex differences in executive control: A systematic review of functional neuroimaging studies. Eur J Neurosci 2021; 53:2592-2611. [PMID: 33423339 DOI: 10.1111/ejn.15107] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/22/2020] [Accepted: 01/01/2021] [Indexed: 01/21/2023]
Abstract
The number of studies investigating sex differences in executive functions, particularly those using human functional neuroimaging techniques, has risen dramatically in the past decade. However, the influences of sex on executive function are still underexplored and poorly characterized. To address this, we conducted a systematic literature review of functional neuroimaging studies investigating sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Following the application of exclusion criteria, 21 studies were included, with a total of 677 females and 686 males. Ten of these studies were fMRI and PET, eight were EEG, and three were NIRS. At present, there is evidence for sex differences in the neural networks underlying all tasks of executive control included in this review suggesting males and females engage different strategies depending on task demands. There was one task exception, the 2-Back task, which showed no sex differences. Due to methodological variability and the involvement of multiple neural networks, a simple overarching statement with regard to gender differences during executive control cannot be provided. As such, we discuss limitations within the current literature and methodological considerations that should be employed in future research. Importantly, sex differences in neural mechanisms are present in the majority of tasks assessed, and thus should not be ignored in future research. PROSPERO registration information: CRD42019124772.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC., Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC., Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC., Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC., Australia
| |
Collapse
|
12
|
Gaillard A, Fehring DJ, Rossell SL. A systematic review and meta-analysis of behavioural sex differences in executive control. Eur J Neurosci 2020; 53:519-542. [PMID: 32844505 DOI: 10.1111/ejn.14946] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/28/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
Literature investigating whether an individuals' sex affects their executive control abilities and performance on cognitive tasks in a normative population has been contradictory and inconclusive. Using meta-analytic procedures (abiding by PRISMA guidelines), this study attempts to identify the magnitude of behavioural sex differences in three prominent executive control domains of cognitive set-shifting, performance monitoring, and response inhibition. PubMed, Web of Science, and Scopus were systematically searched. Across 46 included studies, a total of 1988 females and 1884 males were included in the analysis. Overall, males and females did not differ on performance in any of the three domains of performance monitoring, response inhibition, or cognitive set-shifting. Task-specific sex differences were observed in the domains of performance monitoring, in the CANTAB Spatial Working Memory task-males scored statistically higher than females (Hedges' g = -0.60), and response inhibition, in the Delay Discounting task-females scored statistically higher than males (Hedges' g = 0.64). While the meta-analysis did not detect overall behavioural sex differences in executive control, significant heterogeneity and task-specific sex differences were found. To further understand sex differences within these specific tasks and domains, future research must better control for age and sex hormone levels.
Collapse
Affiliation(s)
- Alexandra Gaillard
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Daniel J Fehring
- Cognitive Neuroscience Laboratory, Monash Biomedicine Discovery Institute, Department of Physiology, Monash University, Clayton, VIC, Australia.,ARC Centre of Excellence in Integrative Brain Function, Monash University, Clayton, VIC, Australia
| | - Susan L Rossell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia.,Psychiatry, St Vincent's Hospital, Melbourne, VIC, Australia
| |
Collapse
|