1
|
DeAngelo V, Hilliard JD, Chiang CH, Viventi J, McConnell GC. Cerebellar activity in PINK1 knockout rats during volitional gait. Brain Commun 2024; 6:fcae249. [PMID: 39464218 PMCID: PMC11503944 DOI: 10.1093/braincomms/fcae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 01/26/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Preclinical models of Parkinson's disease are imperative to gain insight into the neural circuits that contribute to gait dysfunction in advanced stages of the disease. A PTEN-induced putative kinase 1 knockout early-onset model of Parkinson's disease may be a useful rodent model to study the effects of neurotransmitter degeneration caused by a loss of PTEN-induced putative kinase 1 function on brain activity during volitional gait. The goal of this study was to measure changes in neural activity at the cerebellar vermis at 8 months of age. It was found that gait deficits, except run speed, were not significantly different from age-matched wild-type controls, as previously reported. PTEN-induced putative kinase 1 knockout (n = 4) and wild-type (n = 4) rats were implanted with a micro-electrocorticographic array placed over cerebellar vermis Lobules VI (a-c) and VII. Local field potential recordings were obtained during volitional gait across a runway. Power spectral analysis and coherence analysis were used to quantify network oscillatory activity in frequency bands of interest. Cerebellar vermis power was hypoactive in the beta (VIb, VIc and VII) and alpha (VII) bands at cerebellar vermis Lobules VIb, VIc and VII in PTEN-induced putative kinase 1 knockout rats compared with wild-type controls during gait (P < 0.05). These results suggest that gait improvement in PTEN-induced putative kinase 1 knockout rats at 8 months may be a compensatory mechanism attributed to movement corrections caused by a decreased inhibition of the alpha band of cerebellar vermis Lobule VII and beta band of Lobules VIb, VIc and VII. The PTEN-induced putative kinase 1 knockout model may be a valuable tool for understanding the circuit mechanisms underlying gait dysfunction in patients with early-onset Parkinson's disease with a functional loss of PTEN-induced putative kinase 1. Future studies investigating the cerebellar vermis as a potential biomarker and therapeutic target for the treatment of gait dysfunction in Parkinson's disease are warranted.
Collapse
Affiliation(s)
- Valerie DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Semcer Center for Healthcare Innovation, Hoboken, NJ 07030, USA
| | - Justin D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, USA
- Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, USA
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
- Semcer Center for Healthcare Innovation, Hoboken, NJ 07030, USA
| |
Collapse
|
2
|
DeAngelo V, Gehan A, Paliwal S, Ho K, Hilliard JD, Chiang CH, Viventi J, McConnell GC. Cerebellar activity in hemi-parkinsonian rats during volitional gait and freezing. Brain Commun 2024; 6:fcae246. [PMID: 39464215 PMCID: PMC11503953 DOI: 10.1093/braincomms/fcae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Parkinson's disease is a neurodegenerative disease characterized by gait dysfunction in the advanced stages of the disease. The unilateral 6-hydroxydopamine toxin-induced model is the most studied animal model of Parkinson's disease, which reproduces gait dysfunction after >68% dopamine loss in the substantia nigra pars compacta. The extent to which the neural activity in hemi-parkinsonian rats correlates to gait dysfunction and dopaminergic cell loss is not clear. In this article, we report the effects of unilateral dopamine depletion on cerebellar vermis activity using micro-electrocorticography during walking and freezing on a runway. Gait and neural activity were measured in 6-hydroxydopamine- and sham-lesioned rats aged between 4 and 5 months at 14, 21 and 28 days after infusion of 6-hydroxydopamine or control vehicle into the medial forebrain bundle (n = 20). Gait deficits in 6-hydroxydopamine rats were different from sham rats at 14 days (P < 0.05). Gait deficits in 6-hydroxydopamine rats improved at 21 and 28 days except for run speed, which decreased at 28 days (P = 0.018). No differences in gait deficits were observed in sham-lesioned rats at any time points. Hemi-parkinsonian rats showed hyperactivity in the cerebellar vermis at 21 days (P < 0.05), but not at 14 and 28 days, and the activity was reduced during freezing epochs in Lobules VIa, VIb and VIc (P < 0.05). These results suggest that dopaminergic cell loss causes pathological cerebellar activity at 21 days post-lesion and suggest that compensatory mechanisms from the intact hemisphere contribute to normalized cerebellar activity at 28 days. The decrease in cerebellar oscillatory activity during freezing may be indicative of neurological changes during freezing of gait in patients with Parkinson's disease making this region a potential location for biomarker detection. Although the unilateral 6-hydroxydopamine model presents gait deficits that parallel clinical presentations of Parkinson's disease, further studies in animal models of bilateral dopamine loss are needed to understand the role of the cerebellar vermis in Parkinson's disease.
Collapse
Affiliation(s)
- Valerie DeAngelo
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Arianna Gehan
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Siya Paliwal
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Katherine Ho
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Justin D Hilliard
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Chia-Han Chiang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jonathan Viventi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Neurosurgery, Duke School of Medicine, Durham, NC 27710, USA
- Department of Neurobiology, Duke School of Medicine, Durham, NC 27710, USA
- Duke Comprehensive Epilepsy Center, Duke School of Medicine, Durham, NC 27710, USA
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
3
|
Manganaro JE, Emanuel K, Lamberty BG, George JW, Stauch KL. Pink1/Parkin deficiency alters circulating lymphocyte populations and increases platelet-T cell aggregates in rats. Sci Rep 2024; 14:23861. [PMID: 39394439 PMCID: PMC11470019 DOI: 10.1038/s41598-024-74775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk suggesting targeting the Pink1/Parkin pathway in the periphery might have therapeutic potential.
Collapse
Affiliation(s)
- Jane E Manganaro
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Katy Emanuel
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Benjamin G Lamberty
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Joseph W George
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly L Stauch
- College of Medicine, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Manganaro JE, Emanuel K, Lamberty BG, George JW, Stauch KL. Pink1/Parkin deficiency alters circulating lymphocyte populations and increases platelet-T cell aggregates in rats. RESEARCH SQUARE 2024:rs.3.rs-4431604. [PMID: 38854001 PMCID: PMC11160909 DOI: 10.21203/rs.3.rs-4431604/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Parkinson's disease (PD) is the most common progressive neurodegenerative movement disorder and results from the selective loss of dopaminergic neurons in the substantia nigra pars compacta. Pink1 and Parkin are proteins that function together in mitochondrial quality control, and when they carry loss-of-function mutations lead to familial forms of PD. While much research has focused on central nervous system alterations in PD, peripheral contributions to PD pathogenesis are increasingly appreciated. We report Pink1/Parkin regulate glycolytic and mitochondrial oxidative metabolism in peripheral blood mononuclear cells (PBMCs) from rats. Pink1/Parkin deficiency induces changes in the circulating lymphocyte populations, namely increased CD4 + T cells and decreased CD8 + T cells and B cells. Loss of Pink1/Parkin leads to elevated platelet counts in the blood and increased platelet-T cell aggregation. Platelet-lymphocyte aggregates are associated with increased thrombosis risk, and venous thrombosis is a cause of sudden death in PD, suggesting targeting the Pink1/Parkin pathway in the periphery has therapeutic potential.
Collapse
|
5
|
Soto I, McManus R, Navarrete-Barahona W, Kasanga EA, Doshier K, Nejtek VA, Salvatore MF. Aging hastens locomotor decline in PINK1 knockout rats in association with decreased nigral, but not striatal, dopamine and tyrosine hydroxylase expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578317. [PMID: 38352365 PMCID: PMC10862808 DOI: 10.1101/2024.02.01.578317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA content in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor impairment.
Collapse
|
6
|
Lamberty BG, Estrella LD, Mattingly JE, Emanuel K, Trease A, Totusek S, Sheldon L, George JW, Almikhlafi MA, Farmer T, Stauch KL. Parkinson's disease relevant pathological features are manifested in male Pink1/Parkin deficient rats. Brain Behav Immun Health 2023; 31:100656. [PMID: 37484197 PMCID: PMC10362548 DOI: 10.1016/j.bbih.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Animal disease models are important for neuroscience experimentation and in the study of neurodegenerative disorders. The major neurodegenerative disorder leading to motor impairments is Parkinson's disease (PD). The identification of hereditary forms of PD uncovered gene mutations and variants, such as loss-of-function mutations in PTEN-induced putative kinase 1 (Pink1) and the E3 ubiquitin ligase Parkin, two proteins involved in mitochondrial quality control, that could be harnessed to create animal models. However, to date, such models have not reproducibly recapitulated major aspects of the disease. Here, we describe the generation and phenotypic characterization of a combined Pink1/Parkin double knockout (dKO) rat, which reproducibly exhibits PD-relevant abnormalities, particularly in male animals. Motor dysfunction in Pink1/Parkin dKO rats was characterized by gait abnormalities and decreased rearing frequency, the latter of which was responsive to levodopa treatment. Pink1/Parkin dKO rats exhibited elevated plasma levels of neurofilament light chain and significant loss of tyrosine hydroxylase expression in the substantia nigra pars compacta (SNpc). Glial cell activation was also observed in the SNpc. Pink1/Parkin dKO rats showed elevated plasma and reduced cerebrospinal levels of alpha-synuclein as well as the presence of alpha-synuclein aggregates in the striatum. Further, the profile of circulating lymphocytes was altered, as elevated CD3+CD4+ T cells and reduced CD3+CD8+ T cells in Pink1/Parkin dKO rats were found. This coincided with mitochondrial dysfunction and infiltration of CD3+ T cells in the striatum. Altogether, the Pink1/Parkin dKO rats exhibited phenotypes similar to what is seen with PD patients, thus highlighting the suitability of this model for mechanistic studies of the role of Pink1 and Parkin in PD pathogenesis and as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Kelly L. Stauch
- Corresponding author. Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
7
|
Salvatore MF, Soto I, Kasanga EA, James R, Shifflet MK, Doshier K, Little JT, John J, Alphonso HM, Cunningham JT, Nejtek VA. Establishing Equivalent Aerobic Exercise Parameters Between Early-Stage Parkinson's Disease and Pink1 Knockout Rats. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1897-1915. [PMID: 35754287 PMCID: PMC9535586 DOI: 10.3233/jpd-223157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/07/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Rodent Parkinson's disease (PD) models are valuable to interrogate neurobiological mechanisms of exercise that mitigate motor impairment. Translating these mechanisms to human PD must account for physical capabilities of the patient. OBJECTIVE To establish cardiovascular parameters as a common metric for cross-species translation of aerobic exercise impact. METHOD We evaluated aerobic exercise impact on heart rate (HR) in 21 early-stage PD subjects (Hoehn Yahr ≤1.5) exercising in non-contact boxing training for ≥3 months, ≥3x/week. In 4-month-old Pink1 knockout (KO) rats exercising in a progressively-increased treadmill speed regimen, we determined a specific treadmill speed that increased HR to an extent similar in human subjects. RESULTS After completing aerobic exercise for ∼30 min, PD subjects had increased HR∼35% above baseline (∼63% maximum HR). Motor and cognitive test results indicated the exercising subjects completed the timed up and go (TUG) and trail-making test (TMT-A) in significantly less time versus exercise-naïve PD subjects. In KO and age-matched wild-type (WT) rats, treadmill speeds of 8-10 m/min increased HR up to 25% above baseline (∼67% maximum HR), with no further increases up to 16 m/min. Exercised KO, but not WT, rats showed increased locomotor activity compared to an age-matched exercise-naïve cohort at 5 months old. CONCLUSION These proof-of-concept results indicate HR is a cross-species translation parameter to evaluate aerobic exercise impact on specific motor or cognitive functions in human subjects and rat PD models. Moreover, a moderate intensity exercise regimen is within the physical abilities of early-stage PD patients and is therefore applicable for interrogating neurobiological mechanisms in rat PD models.
Collapse
Affiliation(s)
- Michael F. Salvatore
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Isabel Soto
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ella A. Kasanga
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rachael James
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Marla K. Shifflet
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Kirby Doshier
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joel T. Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Joshia John
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - J. Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Vicki A. Nejtek
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|