1
|
Rosenkranz JA. Shaping behaviors through social experience and their proposed sensitivity to stress. Learn Mem 2024; 31:a053926. [PMID: 39681461 DOI: 10.1101/lm.053926.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Mammals have evolved with a range of innate drives, such as thirst and hunger, that promote motivated behaviors to ensure survival. A drive for social engagement promotes social interaction and bond formation. While a stable social environment maintains the opportunity for resource sharing and protection, an additional benefit is provided by the social transmission of information. Social experiences, and information obtained from conspecifics, can be used to learn about threats and opportunities in the environment. This review examines the primary forms of social learning and how they can shape behavior. Additionally, while there is much known about the effects of stress on learning and memory, there is much less known about its effects on social learning and memory. This review will therefore dissect the major factors that contribute to social learning and propose how stress may impact these factors. This may serve as a way to formulate new hypotheses about how stress might impact social learning and the effects of social experiences on behavior.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| |
Collapse
|
2
|
Hutchens SED, Khurram I, Hurley LM. Solitude and serotonin: juvenile isolation alters the covariation between social behavior and cFos expression by serotonergic neurons. Front Neurosci 2024; 18:1446866. [PMID: 39502712 PMCID: PMC11535725 DOI: 10.3389/fnins.2024.1446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 11/08/2024] Open
Abstract
Variation in the mutual responsiveness of social partners to each other can be reflected in behavioral suites that covary with neural activity in ways that track the salience or valence of interactions. Juvenile social isolation alters social behavior and neural activity during social interaction, but whether and how it alters the covariation between behavior and neural activity has not been as well explored. To address this issue, four classes of experimental subjects: isolated males, socially housed males, isolated females, and socially housed females, were paired with an opposite-sex social partner that had been socially housed. Social behaviors and c-Fos expression in the serotonergic dorsal raphe nucleus (DRN) were then measured in subjects following the social interactions. Relative to social housing, postweaning isolation led to a decrease in the density of neurons double-labeled for tryptophan hydroxylase and c-Fos in the dorsomedial subdivision of the DRN, regardless of sex. Vocal and non-vocal behaviors were also affected by isolation. In interactions with isolated males, both ultrasonic vocalization (USVs) and broadband vocalizations (squeaks) increased in conjunction with greater male investigation of females. Neural and behavioral measures also correlated with each other. In the isolated male group, the density of double-labeled neurons in the dorsomedial DRN was negatively correlated with USV production and positively correlated with a principal component of non-vocal behavior corresponding to greater defensive kicking by females and less investigation and mounting behavior. This correlation was reversed in direction for socially housed males, and for isolated males versus isolated females. These findings confirm that the dynamics of social interactions are reflected in c-Fos activation in the dorsomedial DRN, and suggest an altered responsiveness of serotonergic neurons to social interaction following social isolation in males, in parallel with an altered male response to female cues.
Collapse
Affiliation(s)
- Sarah E. D. Hutchens
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Izza Khurram
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
| | - Laura M. Hurley
- Hurley Laboratory, Department of Biology, Indiana University, Bloomington, IN, United States
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, United States
| |
Collapse
|
3
|
Zhang Z, Li Y, Feng H, Li S, Qin Z, Li J, Chen Y, Zhang Y, Zhao Y, Yin X, Huang B, Gao Y, Shi Y, Shi H. Effects of postweaning cadmium exposure on socioemotional behaviors in adolescent male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116089. [PMID: 38354436 DOI: 10.1016/j.ecoenv.2024.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Exposure to cadmium (Cd), a toxic heavy metal classified as an environmental endocrine disruptor, can exert significant toxicity in both animals and humans. However, the potential effects of Cd exposure on socioemotional behaviors are still poorly understood, as are the underlying mechanisms. In the present study, employing a series of behavioral tests as well as 16 S rRNA sequencing analysis, we investigated the long-term effects of Cd exposure on socioemotional behaviors and their associated mechanisms in mice based on the brain-gut interaction theory. The results showed that postweaning exposure to Cd reduced the ability to resist depression, decreased social interaction, subtly altered sexual preference, and changed the composition of the gut microbiota in male mice during adolescence. These findings provided direct evidence for the deleterious effects of exposure to Cd in the postweaning period on socioemotional behaviors later in adolescence, and suggested that these effects of Cd exposure may be linked to changes in the gut microbiota.
Collapse
Affiliation(s)
- Zhengxin Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shijun Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, China.
| |
Collapse
|
4
|
Laighneach A, Kelly JP, Desbonnet L, Holleran L, Kerr DM, McKernan D, Donohoe G, Morris DW. Social isolation-induced transcriptomic changes in mouse hippocampus impact the synapse and show convergence with human genetic risk for neurodevelopmental phenotypes. PLoS One 2023; 18:e0295855. [PMID: 38127959 PMCID: PMC10735045 DOI: 10.1371/journal.pone.0295855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
Early life stress (ELS) can impact brain development and is a risk factor for neurodevelopmental disorders such as schizophrenia. Post-weaning social isolation (SI) is used to model ELS in animals, using isolation stress to disrupt a normal developmental trajectory. We aimed to investigate how SI affects the expression of genes in mouse hippocampus and to investigate how these changes related to the genetic basis of neurodevelopmental phenotypes. BL/6J mice were exposed to post-weaning SI (PD21-25) or treated as group-housed controls (n = 7-8 per group). RNA sequencing was performed on tissue samples from the hippocampus of adult male and female mice. Four hundred and 1,215 differentially-expressed genes (DEGs) at a false discovery rate of < 0.05 were detected between SI and control samples for males and females respectively. DEGS for both males and females were significantly overrepresented in gene ontologies related to synaptic structure and function, especially the post-synapse. DEGs were enriched for common variant (SNP) heritability in humans that contributes to risk of neuropsychiatric disorders (schizophrenia, bipolar disorder) and to cognitive function. DEGs were also enriched for genes harbouring rare de novo variants that contribute to autism spectrum disorder and other developmental disorders. Finally, cell type analysis revealed populations of hippocampal astrocytes that were enriched for DEGs, indicating effects in these cell types as well as neurons. Overall, these data suggest a convergence between genes dysregulated by the SI stressor in the mouse and genes associated with neurodevelopmental disorders and cognitive phenotypes in humans.
Collapse
Affiliation(s)
- Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Lieve Desbonnet
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Daniel M. Kerr
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Declan McKernan
- Discipline of Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Toyoshima M, Yamada K. Enhanced social motivation in briefly isolated male rats. IBRO Neurosci Rep 2023; 15:203-208. [PMID: 37767188 PMCID: PMC10520927 DOI: 10.1016/j.ibneur.2023.08.2195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Loneliness and anxiety are associated with psychiatric disorders in humans. Although brief social isolation in adult rats and mice has been proposed as a rodent model of loneliness, its socioemotional characteristics are not well known. In this study, we evaluated the social and emotional behaviors of adult male rats subjected to brief social isolation. Isolated rats frequently showed sniffing behavior toward empty cylinders where conspecifics had previously existed, as well as conspecifics themselves. Furthermore, social motivation correlated with anxiety levels, as indicated by the elevated plus-maze test performance in isolated but not in non-isolated rats. These results suggest that high social motivation is associated with anxiety in briefly isolated rats.
Collapse
Affiliation(s)
- Michimasa Toyoshima
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- JSPS Research Fellow, Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan
| | - Kazuo Yamada
- Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
6
|
D'Antoni S, Schiavi S, Buzzelli V, Giuffrida S, Feo A, Ascone F, Busceti CL, Nicoletti F, Trezza V, Catania MV. Group I and group II metabotropic glutamate receptors are upregulated in the synapses of infant rats prenatally exposed to valproic acid. Psychopharmacology (Berl) 2023; 240:2617-2629. [PMID: 37707611 PMCID: PMC10640443 DOI: 10.1007/s00213-023-06457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
RATIONALE Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted/stereotyped behavior. Prenatal exposure to valproic acid (VPA) is associated with an increased risk of developing ASD in humans and autistic-like behaviors in rodents. Increasing evidence indicates that dysfunctions of glutamate receptors at synapses are associated with ASD. In the VPA rat model, an involvement of glutamate receptors in autism-like phenotypes has been suggested; however, few studies were carried out on metabotropic glutamate (mGlu) receptors. OBJECTIVES We examined the protein expression levels of group I (mGlu1 and mGlu5) and group II (mGlu2/3) mGlu receptors in rats prenatally exposed to VPA and evaluated the effect of mGlu receptor modulation on an early autism-like phenotype in these animals. METHODS We used western blotting analysis on synaptosomes obtained from forebrain of control and VPA rats at different ages (postnatal day P13, 35, 90) and carried out ultrasonic vocalization (USV) emission test in infant control and VPA rats. RESULTS The expression levels of all these receptors were significantly increased in infant VPA rats. No changes were detected in adolescent and adult rats. An acute treatment with the preferential mGlu2/3 antagonist, LY341495, attenuated the impairment in the USV emission in VPA rats. No effect was observed after a treatment with the mGlu5 selective antagonist, MTEP. CONCLUSIONS Our findings demonstrate that the expression of group I and group II mGlu receptors is upregulated at synapses of infant VPA rats and suggest that mGlu2/3 receptor modulation may have a therapeutic potential in ASD.
Collapse
Affiliation(s)
- Simona D'Antoni
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Samuele Giuffrida
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy
| | - Alessandro Feo
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | - Fabrizio Ascone
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
| | | | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
7
|
Guimarães DM, Valério-Gomes B, Vianna-Barbosa RJ, Oliveira W, Neves GÂ, Tovar-Moll F, Lent R. Social isolation leads to mild social recognition impairment and losses in brain cellularity. Brain Struct Funct 2023; 228:2051-2066. [PMID: 37690044 DOI: 10.1007/s00429-023-02705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.
Collapse
Affiliation(s)
- Daniel Menezes Guimarães
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Robarts Research Institute, University of Western Ontario, London, Canada.
| | - Bruna Valério-Gomes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Washington Oliveira
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilda Ângela Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- D'Or Institute of Research and Education, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Ferrara NC, Trask S, Ritger A, Padival M, Rosenkranz JA. Developmental differences in amygdala projection neuron activation associated with isolation-driven changes in social preference. Front Behav Neurosci 2022; 16:956102. [PMID: 36090658 PMCID: PMC9449454 DOI: 10.3389/fnbeh.2022.956102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Adolescence is a developmental period characterized by brain maturation and changes in social engagement. Changes in the social environment influence social behaviors. Memories of social events, including remembering familiar individuals, require social engagement during encoding. Therefore, existing differences in adult and adolescent social repertoires and environmentally-driven changes in social behavior may impact novel partner preference, associated with social recognition. Several amygdala subregions are sensitive to the social environment and can influence social behavior, which is crucial for novelty preference. Amygdala neurons project to the septum and nucleus accumbens (NAc), which are linked to social engagement. Here, we investigated how the social environment impacts age-specific social behaviors during social encoding and its subsequent impact on partner preference. We then examined changes in amygdala-septal and -NAc circuits that accompany these changes. Brief isolation can drive social behavior in both adults and adolescents and was used to increase social engagement during encoding. We found that brief isolation facilitates social interaction in adolescents and adults, and analysis across time revealed that partner discrimination was intact in all groups, but there was a shift in preference within isolated and non-isolated groups. We found that this same isolation preferentially increases basal amygdala (BA) activity relative to other amygdala subregions in adults, but activity among amygdala subregions was similar in adolescents, even when considering conditions (no isolation, isolation). Further, we identify isolation-driven increases in BA-NAc and BA-septal circuits in both adults and adolescents. Together, these results provide evidence for changes in neuronal populations within amygdala subregions and their projections that are sensitive to the social environment that may influence the pattern of social interaction within briefly isolated groups during development.
Collapse
Affiliation(s)
- Nicole C. Ferrara
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sydney Trask
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexandra Ritger
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Mallika Padival
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - J. Amiel Rosenkranz
- Department of Foundational Sciences and Humanities, Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: J. Amiel Rosenkranz,
| |
Collapse
|