1
|
Teng Y, Niu J, Liu Y, Wang H, Chen J, Kong Y, Wang L, Lian B, Wang W, Sun H, Yue K. Ketamine alleviates fear memory and spatial cognition deficits in a PTSD rat model via the BDNF signaling pathway of the hippocampus and amygdala. Behav Brain Res 2024; 459:114792. [PMID: 38048914 DOI: 10.1016/j.bbr.2023.114792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is associated with traumatic stress experiences. This condition can be accompanied by learning and cognitive deficits. Studies have demonstrated that ketamine can rapidly and significantly alleviate symptoms in patients with chronic PTSD. Nonetheless, the effects of ketamine on neurocognitive impairment and its mechanism of action in PTSD remain unclear. METHODS In this study, different concentrations of ketamine (5, 10, 15, and 20 mg/kg, i.p.) were evaluated in rat models of single prolonged stress and electrophonic shock (SPS&S). Expression levels of brain-derived neurotrophic factor (BDNF) and post-synaptic density-95 (PSD-95) in the hippocampus (HIP) and amygdala (AMG) were determined by Western blot analysis and immunohistochemistry. RESULTS The data showed that rats subjected to SPS&S exhibited significant PTSD-like cognitive impairment. The effect of ketamine on SPS&S-induced neurocognitive function showed a U-shaped dose effect in rats. A single administration of ketamine at a dosage of 10-15 mg/kg resulted in significant changes in behavioral outcomes. These manifestations of improvement in cognitive function and molecular changes were reversed at high doses (15-20 mg/kg). CONCLUSION Overall, ketamine reversed SPS&S-induced fear and spatial memory impairment and the down-regulation of BDNF and BDNF-related PSD-95 signaling in the HIP and AMG. A dose equal to 15 mg/kg rapidly reversed the behavioral and molecular changes and promoted the amelioration of cognitive dysfunction. The enhanced association of BDNF signaling with PSD-95 effects could be involved in the therapeutic efficiency of ketamine for PTSD.
Collapse
Affiliation(s)
- Yue Teng
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JiaYao Niu
- School of Clinical Medicine, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Yang Liu
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Han Wang
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - JinHong Chen
- School of Continuing Education, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - YuJia Kong
- School of Public Health, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Ling Wang
- Clinical Competency Training Center, Medical experiment and training center, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China
| | - WeiWen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100864, PR China
| | - HongWei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang, Shandong 261053, PR China.
| | - KuiTao Yue
- The Medical imaging Center, Affiliated Hospital of Weifang Medical University, 2428# Yuhe Road, Weifang, Shandong 261053, PR China.
| |
Collapse
|
2
|
Rodd ZA, Swartzwelder HS, Waeiss RA, Soloviov SO, Lahiri DK, Engleman EA, Truitt WA, Bell RL, Hauser SR. Negative and positive allosteric modulators of the α7 nicotinic acetylcholine receptor regulates the ability of adolescent binge alcohol exposure to enhance adult alcohol consumption. Front Behav Neurosci 2023; 16:954319. [PMID: 37082421 PMCID: PMC10113115 DOI: 10.3389/fnbeh.2022.954319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 04/07/2023] Open
Abstract
Rationale and Objectives: Ethanol acts directly on the α7 Nicotinic acetylcholine receptor (α7). Adolescent-binge alcohol exposure (ABAE) produces deleterious consequences during adulthood, and data indicate that the α7 receptor regulates these damaging events. Administration of an α7 Negative Allosteric Modulator (NAM) or the cholinesterase inhibitor galantamine can prophylactically prevent adult consequences of ABAE. The goals of the experiments were to determine the effects of co-administration of ethanol and a α7 agonist in the mesolimbic dopamine system and to determine if administration of an α7 NAM or positive allosteric modulator (PAM) modulates the enhancement of adult alcohol drinking produced by ABAE. Methods: In adult rats, ethanol and the α7 agonist AR-R17779 (AR) were microinjected into the posterior ventral tegmental area (VTA), and dopamine levels were measured in the nucleus accumbens shell (AcbSh). In adolescence, rats were treated with the α7 NAM SB-277011-A (SB) or PNU-120596 (PAM) 2 h before administration of EtOH (ABAE). Ethanol consumption (acquisition, maintenance, and relapse) during adulthood was characterized. Results: Ethanol and AR co-administered into the posterior VTA stimulated dopamine release in the AcbSh in a synergistic manner. The increase in alcohol consumption during the acquisition and relapse drinking during adulthood following ABAE was prevented by administration of SB, or enhanced by administration of PNU, prior to EtOH exposure during adolescence. Discussion: Ethanol acts on the α7 receptor, and the α7 receptor regulates the critical effects of ethanol in the brain. The data replicate the findings that cholinergic agents (α7 NAMs) can act prophylactically to reduce the alterations in adult alcohol consumption following ABAE.
Collapse
Affiliation(s)
- Zachary A. Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - H. Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - R. Aaron Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Serhii O. Soloviov
- Department of Pharmacy, Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
- Department of Industrial Biotechnology and Biopharmacy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine
| | - Debomoy K. Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Psychiatry, Laboratory of Molecular Neurogenetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Eric A. Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - William A. Truitt
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L. Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sheketha R. Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Weapons of stress reduction: (R,S)-ketamine and its metabolites as prophylactics for the prevention of stress-induced psychiatric disorders. Neuropharmacology 2023; 224:109345. [PMID: 36427554 DOI: 10.1016/j.neuropharm.2022.109345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Exposure to stress is one of the greatest contributing factors to developing a psychiatric disorder, particularly in susceptible populations. Enhancing resilience to stress could be a powerful intervention to reduce the incidence of psychiatric disease and reveal insight into the pathophysiology of psychiatric disorders. (R,S)-ketamine and its metabolites have recently been shown to exert protective effects when administered before or after a variety of stressors and may be effective, tractable prophylactic compounds against psychiatric disease. Drug dosing, sex, age, and strain in preclinical rodent studies, significantly influence the prophylactic effects of (R,S)-ketamine and related compounds. Due to the broad neurobiological actions of (R,S)-ketamine, a variety of mechanisms have been proposed to contribute to the resilience-enhancing effects of this drug, including altering various transcription factors across the genome, enhancing inhibitory connections from the prefrontal cortex, and increasing synaptic plasticity in the hippocampus. Promisingly, select data have shown that (R,S)-ketamine may be an effective prophylactic against psychiatric disorders, such as postpartum depression (PPD). Overall, this review will highlight a brief history of the prophylactic effects of (R,S)-ketamine, the potential mechanisms underlying its protective actions, and possible future directions for translating prophylactic compounds to the clinic. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
|